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ABSTRACT

Parametric watermarking is effected by modifying the linear pre-
dictor coefficients of speech. In this work, the parameter noise is
analyzed when watermarked speech is subjected to additive white
and colored noise in the time domain. The paper presents two
detection techniques for parametric watermarking. The first ap-
proach uses the Neyman-Pearson criterion to solve a binary de-
cision problem. In the second approach, discriminant functions
based on the minimum-error-rate criterion are used to determine
which one of the many watermarks was embedded or if no water-
mark is present. Experiments with speech data are used to deter-
mine the false-alarm and missed detection rates.

1. INTRODUCTION

Digital watermarking has emerged as a new technology for the
protection of copyrighted material. Digital watermarking is the
process of embedding data (watermark) imperceptibly into the host
signal (coversignal), resulting in the stegosignal. When copyright
questions arise, the watermark is recovered from the stegosignal
as evidence of title. The design of a watermarking strategy in-
volves the balancing of two principal criteria. First, embedded
watermarks must be imperceptible to the listener. Second, water-
marks must be robust. That is, they must be able to survive attacks
- those deliberately designed to destroy them, as well as distor-
tions inadvertently imposed upon the watermarks by technical or
systemic processes.

Parametric watermarking [1] is based on manipulation of lin-
ear predictor parameter values [2] of speech signals. This paper
deals with watermark detector design for parametric watermark-
ing. A common approach to watermark detection involves the hy-
potheses, H0 : IR = I and H1 : IR = I + W , where IR is
the received signal, I is the original signal and W is the water-
mark signal [3], [4]. A Bayesian or Neyman-Pearson approach
is followed in deriving the detection thresholds. For image wa-
termarking, the image DCT coefficients are generally modeled as
generalized Gaussian in distribution [3]. Most of these approaches
do not consider the effect of noise while deriving the detection
threshold. Several watermark detectors are based on correlation
detection [5], [6]. That is, the correlation between the original
and recovered watermarks or the correlation between the original
watermark and recovered signal is compared against a threshold.
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Correlation detectors are optimal when the watermark and noise
are jointly Gaussian, or in case of blind detectors the watermarked
signal and noise should be jointly Gaussian. For example, the de-
tector presented in [7, Ch. 6] assumes that the detector output for
each bit is Gaussian distributed. This is true for watermark patterns
that are white, which is not the case in parametric watermarking.
In this work, noise in the parameter domain is analyzed when the
stegosignal is distorted by additive white or colored Gaussian noise
in the time domain. Watermark detection in the parameter domain
is converted into a binary or multiple decision problem in the pres-
ence of additive noise.

2. BACKGROUND

In the present study, the coversignal is assumed to be generated by
an LP model,

yn =

M∑
i=1

aiyn−i + ξn. (1)

The “true” model is determined by standard LP analysis of a frame
selected for watermarking [2]. The sequence {ξn} is the prediction
residual associated with the estimated model. The stegosignal is
constructed using the FIR filter model

ỹn =

M∑
i=1

ãiyn−i + ξn (2)

where {ãi} represents a deliberately perturbed version of the “true”
set {ai}. The algorithmic steps for watermark embedding and re-
covery appear in Tables 1 and 2, respectively.

An important step in the recovery process, is the least squares
estimation of modified watermark coefficients. In the stegosig-
nal, the watermark information is spread out, while during re-
covery the watermark information is concentrated in a few coef-
ficients {ωi}M

i=1 derived from an estimate of the modified LP co-
efficients. Parametric watermarking involves informed detection,
and the coversignal is required for watermark recovery. CWRseg

is used to measure stegosignal fidelity and is defined as,

CWRseg =
1

K

K∑
j=1

10 log10




kj∑

l=kj−L+1

y2
l

[ỹl − yl]2


 , (3)

where, k1, k2, ..., kK are the end-times for the K frames, each
of which is length L. The CWRseg assigns equal weight to the
loud and soft portions of speech. For computing CWRseg, speech
frames of 15 ms duration were used. A simple way to control the
fidelity of the stegosignal is to scale the watermark vector, ω, by a
constant, say κ, before adding it to the original LP parameters.
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Table 1. WATERMARK EMBEDDING ALGORITHM

Let {yn}∞n=−∞ denote a coversignal, and let {yn}n′k
n=nk

be the kthof K speech frames to be watermarked. Then:

For k = 1, 2, . . . , K

1 Using the “autocorrelation method” (e.g., [2, Ch. 5]), derive a set of LP coefficients of order M , say {ai}M
i=1, for the given

frame. Use the LP parameters in an inverse filter configuration (e.g. [2, Ch. 5]) to obtain the prediction residual on the frame,{
ξn = yn −

∑M
i=1 aiyn−i

}n′k

n=nk

.

2 Modify the LP parameters in some predetermined way to produce a new set, say {ãi}M
i=1. The modifications to the LP

parameters (or, equivalently, to the autocorrelation sequence) comprise the watermark.

3 Use the modified LP parameters as a (suboptimal) predictor of the original sequence, adding the residual obtained in Step 2

above at each n, to resynthesize the speech over the frame,
{

ỹn =
∑M

i=1 ãiyn−i + ξn

}n′k

n=nk

. The sequence {ỹn}n′k
nk

is the

kthframe of the watermarked speech (stegosignal).

Next k.

Table 2. WATERMARK RECOVERY ALGORITHM

For k = 1, 2, . . . , K

1 Subtract residual frame {ξn}n′k
nk

from the stegosignal frame {ỹn}n′k
nk . This results in an estimate of the modified predicted

speech, {dn = ỹn − ξn}n′k
nk

.

2 Estimate the modified LP coefficients {ãi}M
1 by computing the least-square-error solution, say {ˆ̃ai}M

1 , to the overdetermined
system of equations: dn ≈

∑M
i=1 αiyn−i, n = nk, . . . , n′k.

3 Use the parameter estimates from Step 2 to derive the corresponding watermark values.

Next k.

3. WATERMARK DETECTION IN PARAMETER
DOMAIN

The watermarks are comprised of non-binary orthogonal vectors
of length eight. Each of the eight orthogonal vectors (ωk for k =
1, · · · , 8) can be interpreted as symbols from an alphabet of size
eight. The watermark may be composed of many such symbols.
Each orthogonal watermark vector (symbol) of length eight, is em-
bedded into 0.125 seconds of speech, sampled at 16 kHz. The wa-
termark vector is added to the coefficients of an eighth order linear
predictor model. The length of the watermark vector (and hence
the predictor model order) and the duration of speech frame can be
selected quite arbitrarily, subject to certain constraints on stegosig-
nal fidelity. These constraints include an upper limit on predictor
model order, and a need to use FIR models of small order for very
short speech frames (˜500 samples).

Noise in the LP domain, caused by stegosignal exposure to
additive noise, can be modeled as having a Gaussian distribution.
Figure 1(a) shows a typical noise distribution in the LP domain
when white noise (SNR 15 dB) is added to the stegosignal. This
noise distribution (Fig. 1(a)) was obtained by conducting 1000 ex-
periments, involving a stegosignal of 1 s duration watermarked at
CWRseg of 7 dB using a watermark message consisting of eight
orthogonal vectors, each vector embedded into 0.125 seconds or
2000 samples of speech. The coversignal was the sentence from
TIMIT database [8], “She had your dark suit in greasy wash wa-
ter all year,” sampled at 16 kHz. When white Gaussian noise was
added to the stegosignal, the noise samples affecting a particular
watermark coefficient, in the parameter domain were uncorrelated

and could be approximated as independent and identically dis-
tributed (i.i.d) Gaussian noise. The LP noise affecting a watermark
coefficient was uncorrelated with the LP noise affecting a different
watermark coefficient. The noise samples were also uncorrelated
with the corresponding LP coefficients. When the stegosignal is
distorted by white Gaussian noise, the parameter noise is of very
low power and asymptotically tends to zero. Also, the noise gener-
ated using the “randn” function in matlab, is not ideal white noise.

The parametric noise distribution when the stegosignal was
affected by colored noise is similar to that shown in Fig. 1(b). Col-
ored noise was generated by filtering a white noise process using a
11thorder FIR lowpass filter with a cut-off frequency of 6400 Hz.
The LP noise affecting any given watermark coefficient was found
to be Gaussian and i.i.d. in nature. However, a realization of noise
affecting all the watermark coefficients was found to be correlated
with the original LP coefficients. A possible solution to this prob-
lem is to normalize the watermark coefficients before adding them
to the original LP coefficients. That is, instead of directly adding
the watermark vector to the original LP coefficients (ã = a + ω,
where ω is any of the eight orthogonal vectors ωk), we obtain the
modified LP coefficients as,

ãi = ai + ωi|ai|. (4)

From the estimate of the modified LP coefficients, the watermark
vector vector is obtained as,

ω̂i =
ˆ̃ai − ai

|ai| (5)

with ˆ̃a = {ai}M
i=1, as defined in Table 2. However, when |ai| ¿



Table 3. EFFECT OF SELECTIVE NORMALIZATION
Noise SNR (dB) Normalization µ σ2 cra(0)
White 10 no 2.849× 10−4 0.0517 −0.0059
White 10 complete −0.0152 4.6477 −0.0051
White 10 selective −6.2× 10−5 0.1099 7.6445× 10−4

Colored 15 no 2.3438× 10−4 0.0049 0.0328
Colored 15 complete 0.0139 0.7518 −0.0094
Colored 15 selective −1.162× 10−4 0.0071 0.0023

1, the recovery of watermark coefficients magnifies the noise vari-
ance in the LP domain. To avoid this, watermark coefficients are
normalized before embedding only if |ai| ≥ 1. For the experi-
ments presented in this paper, watermark embedding and recovery
involves this “selective normalization.” Step 3 of Table 1 is carried
out using the following rule in the algorithm implemented here:

ãi =

{
ai + ωi|ai|, if |ai| ≥ 1
ai + ωi, otherwise

The final step in the recovery algorithm (Table 2) involves the fol-
lowing equation:

ω̂i =

{
ˆ̃ai−ai
|ai| , if |ai| ≥ 1

ˆ̃ai − ai, otherwise

It is observed from Table 3 that selective normalization of wa-
termark coefficients significantly reduces the correlation between
noise in LP domain and the LP coefficients, especially when the
stegosignal is subjected to colored noise in the time domain. As
the noise variance in the LP domain is reduced, selective normal-
ization improves the correlation coefficient between the original
and recovered watermarks.

3.1. Neyman-Pearson based watermark detector

A Neyman-Pearson solution to watermark detection is applicable
to the binary decision problem of determining the presence or ab-
sence of a particular watermark vector in the received signal dis-
torted by additive noise. Preliminary experiments are used to set
the hypotheses,

H0 : ri = vi, i = 1, 2, ..., L

H1 : ri = ωi + vi, i = 1, 2, ..., L
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Fig. 1. Noise distribution in the LP domain.

where {ri}L
i=1 is the observation vector. The null hypothesis is

that no watermark is present and only noise is transmitted {vi}L
i=1,

while under H1 both the watermark {ωi}L
i=1 and noise samples

{vi}L
i=1 are present in additive combination. Due to selective nor-

malization of watermark coefficients, the noise in LP domain, vi

is approximately distributed as N (0, σ2), when noise {ζi}N
i=1 is

added to the stegosignal in the time domain such that the SNR

is S1 = 10 log10

∑N
n=1 ỹ2

n∑N
n=1 ζ2

n
. For this watermark detection prob-

lem, the expressions for false-alarm, detection and missed detec-
tion rates are well-known and are given by [9],

PF = 0.5


erfc


 ln η +

∑L
i=1

ω2
i

2σ2√
2σ̄





 (6)

PD = 0.5


erfc


 ln η +

∑L
i=1

ω2
i

2σ2 − µ̄1√
2σ̄





 (7)

PM = 1− PD (8)

Here, µ̄1 =
∑L

i=1

ω2
i

σ2 , σ̄ =

√∑L
i=1

ω2
i

σ2 and η is the detection

threshold. Let η′′ = ln η +
∑L

i=1

ω2
i

2σ2 then, the decision rule is

L∑
i=1

riωi

σ2

H1

≥
<
H0

η′′. (9)

In a practical implementation, the threshold τ ′′, corresponding to
an SNR of S1, can be adjusted further if the actual SNR in the time
domain is determined. As an example, if the SNR was found to be

S2 = 10 log10

∑N
n=1 ỹ2

n∑N
n=1 ζ̌2

n
(assuming zero-mean noise), the thresh-

old τ ′′ is altered by multiplying σ2 with the adjustment factor 1/β,

where β = 10(
S1−S2

10 ). Equation (9) is based on the assumption
that the detector receives watermarked and unwatermarked signals
with equal probability.

The SNR in the parametric domain is given by, d2 = ( µ̄1
σ̄

)2 [9].
In the prsent case d =

√
µ̄1. Embedded marks of greater energy

will result in improved robustness, while noise of higher variance
in the parametric domain will hinder watermark detection. The
stegosignal was subjected to white and colored noise, resulting in
different SNRs in the time and parametric domain. In each case,
experiments were repeated 1000 times in order to estimate the
mean and variance of the Gaussian noise affecting each watermark
coefficient. The receiver operating characteristics (ROC) were de-
termined using equations (6) and (7). It can be observed from Ta-
ble 4 that very low false-positive rates can be obtained for paramet-
ric watermarking with selective normalization. When 10 dB white



Table 4. ESTIMATES OF SNR, d2 , PD AND PF

Noise d2 PD PF τ ′′

White (15dB) 696.95 0.99999 4.37× 10−114 6.8699
White (10dB) 72.79 0.99994 1.37× 10−6 4.3960
Color (7dB) 167.29 0.99999 1.20× 10−18 5.4038
White (3dB) 14.45 0.9987 0.215 1.6610
White (1dB) 9.54 0.99715 0.37304 0.8388

noise is added to the stegosignal, for a threshold τ ′′ = 4.3960,
a PD = 0.99999 and a false-alarm rate PF = 1.37 × 10−6 are
obtained. Experiments for time domain SNRs of 1 dB and 3 dB
resulted in PF of 0.14 and 0.0033 respectively, an improvement
over the results in Table 4.

3.2. Discriminant functions for watermark detection

Discriminant functions [10] are used to assign the recovered vec-
tor to one of the many possible classes. In the present applica-
tion, there are nine classes which include the eight orthogonal wa-
termarks and the case of no watermark being present. Discrimi-
nant functions are derived based on minimum-error-rate classifica-
tion [10] for all the nine classes. The recovered vector is assigned
to the class that results in the highest discriminant function.

Detection is done on a per frame basis. The parameter noise
affecting a watermark coefficient when colored noise is added in
the time domain, can be approximated by N (0, σ2). The noise
distribution was the same even when no watermark was embed-
ded. Since vectors of dimension eight were considered, the noise
affecting all the eight coefficients of the recovered vector for a par-
ticular class k can be expressed by the general multivariate normal
density,

pk(r) =
1

(2π)(4)|Σ| 12
exp[−1

2
(r− µk)′Σ−1(r− µk)] (10)

where Σ = σ2I, I being the identity matrix, and µk is the mean
of the multivariate normal density for class k. For this application,
k takes values from 1 to 9, with 9 corresponding to the ’no noise’
case. Hence, µk = ωk for k = 1, · · · , 8 and µk=9 = 0, with
0 being the zero vector. The discriminant function for class k is
given by,

gk(r) = − 1

2σ2
[r′r− 2µ′kr + µ′kµk] (11)

The recovered vector r is assigned to the class the j satisfying the
following equation.

gj(r) > gk(r) for allj 6= k. (12)

Thus using the above expression, a watermark present in the recov-
ered vector is detected. Experiments were performed to determine
the false-alarm and detection rates and the results are tabulated
in Table 5. For time domain SNRs below 15 dB, the resulting
stegosignals are highly noisy and are of no commercial signifi-
cance. Due to low false-alarm rates (< 10−6), it is not feasible
to experimentally determine PF for SNRs above 15 dB. In most
watermarking applications, it is necessary to have very low false-
alarm rates. Instead of using minimum-error-rate criterion where

Table 5. MINIMUM-ERROR-RATE DETECTION USING DISCRIM-
INANT FUNCTIONS

Noise SNR (dB) PD PF

White 3dB 0.9289 0.2487
White 7dB 0.9939 0.0797
White 10dB 0.9997 0.0198
White 15dB 0.9998 10×−5

both missed detection and false-alarm are equally costly, the false-
alarm error can be weighted more heavily and the discriminant
functions derived accordingly.

4. CONCLUSIONS

Parameter noise is analyzed when the stegosignal is distorted by
additive noise. Selective normalization of watermark coefficients
is proposed. By using Neyman-Pearson detector and minimum-
error-rate classification, the false-alarm and missed detection rates
are determined.
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