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Abstract 
As the VLSI technology advances continuously, ASIC can 
easily achieve the required performance and most of them 
are actually over-designed.  Thus, architecture shrinking is 
inevitable in optimal designs especially when supply voltages 
are getting lower.  However, conventional designs starting 
from minimization of algorithmic operations (e.g. multiply) 
may not always lead to optimal architectures, for the wires 
and the interconnection complexity significantly grow and 
have become predominant.  This paper explores algorithms 
and architectures for the 2-D transform in H.264/AVC, of 
which the operations are very simple (i.e. only shift and add).  
We have shown that fewer operations do not always result in 
more compact designs.  In our experiments with the UMC 
0.18µm CMOS technology, the most straightforward matrix 
multiplication without separable 2-D operation or any fast 
algorithm has the best area efficiency for D1-size (720×480) 
video at 30fps.  It saves 48%, 34%, and 16% silicon area of 
the previous works respectively. 

1. Introduction 
The H.264/AVC [1] is a new video coding standard, which is 
developed for efficient video compression and reliable data 
transport.  It provides better performance over its prior 
standards such as H.263 and MPEG-4, and the applications 
include videoconferencing, video telephony, digital TV and 
DVD, etc.  There are four kinds of 4-by-4 2-D transforms in 
the H.264/AVC video encoder – forward, inverse, Hadamard, 
and inverse Hadamard transforms.  These four transforms are 
very similar and therefore this paper discusses the forward 
transform only, which is approximation of the 2-D discrete 
cosine transform (DCT) [2] with the scaling multiplications 
integrated into the quantizer. 
There have been quite a lot of works on the algorithms and 
the architectures for DCT such as [3][4], but only few focus 
on DCT with small block sizes, such as those for H.264/AVC 
[5][6][7].  Besides, it is not the functional units but the 
interconnections that dominate the circuit performance (i.e. 
speed, silicon area, and even power consumption) in today’s 
VLSI technology.  That is, choosing an algorithm with fewer 
operations may not always lead to less hardware complexity 
as before.  Moreover, the 2-D transforms in H.264/AVC can 
be carried out with only additions and shifts, and such simple 
operations make the interconnection overheads much more 
significant.  This paper discusses the area efficiency of the 
architecture mapping of several algorithms for the forward 
transform, and we have shown that fewer operations do not 
necessarily result in smaller designs.  In our experiments with 

the 0.18µm CMOS technology, the most straightforward 
matrix multiplication without separable 2-D operation or fast 
algorithm has the best area efficiency for D1-size (720×480) 
video at 30fps.  It can save 48%, 34%, and 16% silicon area 
of the previous works [5][6][7] respectively. 
The rest of this paper is organized as follows.  Section 2 first 
reviews the algorithms for the 2-D transform in H.264/AVC. 
Section 3 then describes their architecture mapping.  Several 
designs are implemented via effective architecture mapping 
of the algorithms, and the results and area comparison are 
available in Section 4.  Section 5 concludes this paper. 

2. Algorithms for Forward Transform 
2.1 Separable or direct 2-D transforms 
The forward transform in H.264/AVC is defined as 

TT MCCXCY ==    (1) 

where X and Y denote the 4-by-4 input and output matrices 
respectively.  M denotes the intermediate result matrix and 
the coefficient matrix C is defined as 



















−−
−−

−−
=

1221
1111
2112

1111

C . 

M=CX represents the four column-wise 1-D transforms as 
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on the input matrix X, while Y=MCT represents another four 
similar row-wise 1-D transforms on the intermediate matrix 
M.  Therefore, Eq. (1) is called the “separable” 2-D transform. 
Alternatively, we can rewrite Eq. (1) as Eq. (3), and compute 
the output matrix Y directly by performing the matrix-vector 
multiplication on the elements of X.  This is the direct 2-D 
transform. 
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Since the coefficients are very simple and only require trivial 
multiplications by shifts, the computational complexities of 
these two algorithms can thus be compared by the number of 
the required additions and subtractions.  First, the separable 
2-D forward transform needs eight 1-D transforms shown in 
Eq. (2), each of which requires twelve additions/subtractions.  
Therefore, it needs 96 additions/subtractions in total.  On the 
other hand, the direct 2-D forward transform requires 240 
additions/ subtractions. 

2.2 Algorithmic strength reduction  
Both 1-D and direct 2-D forward transform algorithms have 
symmetric coefficients in their transform matrices, which can 
be exploited to rearrange the computations and to effectively 
reduce the additions/subtractions.  For example, the 1-D 
forward transform can save four additions as shown in Fig. 1.  
Thus, the separable 2-D and fast forward transform, which is 
adopted in [5] and [6], requires only 64 additions/subtractions. 
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Fig 1. Fast 1-D transform 

Similarly, the symmetry property of the direct 2-D forward 
transform can also be exploited by rewriting Eq. (3) as 
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where 
ixv  and 

iyv  are the transposes of the i-th rows of the 
input and the output matrices respectively [7].  Interestingly, 
this direct 2-D and fast forward transform also requires 64 
additions/subtractions after the computation rearrangements.  
Table 1 summarizes the computational complexities of the 
above four forward transform algorithms. 

Table 1  Comparison of forward transform algorithms 
Algorithm 

2-D Transform Strength Reduction 
# Additions

Direct 96  Separable 
Fast 64 [5][6]

Direct 240 Direct 
Fast 64 [7]

3. Architecture Mapping  
The most straightforward method to translate an algorithm 
into its hardware implementation is to allocate a dedicated 
functional unit to each operation.  However, it is too costly 
for many practical applications, especially when advanced 
fabrication technology is used.  Architecture shrinking that 
time-multiplexes several operations on shared resources is a 
commonly used technique to reduce such unnecessary waste.   

Folding [8] is the systematic methodology that maps DSP 
algorithms on hardware architectures.  To clarify our further 
discussions, we classify the architectures into two major 
categories – data-parallel and data-serial.  The former 
handles multiple input data concurrently, while the latter 
processes a single input datum at one time.  Besides, we will 
extensively use the term scaling-down factor (SF) to indicate 
the number of steps for the target architecture to perform the 
4-by-4 forward transform.  For example, the aforementioned 
“most straightforward architecture mapping” that dedicates a 
functional unit to each operation has SF=1.  Note that a 
higher SF may only imply that fewer functional units are 
required in the hardware implementation.  Indeed, it incurs 
extra multiplexers and sometimes additional registers.  These 
overheads will compensate the benefits, not to mention the 
fact that interconnection predominates the performance in 
today’s deep-submicron VLSI technology. 

3.1 Data-parallel architectures 

1D

1D

1D

1D

1D

1D

1D

1D

Transpose
Matrix

In 1
In 2
In 3

In 4
In 5
In 6

In 8
In 9
In 10
In 11

In 12
In 13
In 14

In 0

In 7

In 15

Out 1
Out 2
Out 3

Out 4
Out 5
Out 6

Out 8
Out 9
Out 10
Out 11

Out 12
Out 13
Out 14

Out 0

Out 7

Out 15
 

(a)  

REG

MUX

In

m
ux

-

-

m
ux

m
ux

m
ux

1D 1D O
ut

 
(b) 

Fig 2.   Data-parallel architectures for separable 2-D/fast 
forward transform (a) SF=1 [5], (b) SF=4 [6] 



Fig. 2(a) depicts the most straightforward hardware mapping 
of the separable 2-D and fast forward transform algorithm [5].  
It contains eight 1-D fast transform modules shown in Fig. 1.  
A direct interconnection network is included for transposition 
of the intermediate results.  Fig. 2(b) shows a shrunk version 
of Fig. 2(b) with SF=4.  Therefore, it requires only two 1-D 
transform modules, and the four column- and the four row-
transforms are performed respectively in the corresponding 
modules.  Besides, the original memory-less transpose matrix 
becomes a transpose memory with 16 registers after the 
architecture shrinking. 
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Fig 3.  Data-parallel architecture for direct 2-D/fast forward 

transform algorithm [8] 

Fig. 3 shows the architecture mapping of the direct 2-D and 
fast forward transform algorithm in Eq. (4) with SF=2 [7].  
For each 4-by-4 forward transform, the 16 input samples hold 
for two cycles, each of which generates half output results.  
The architecture shrinking in this case is very efficient, which 
just incurs an additional output de-multiplexer.   

3.2 Data-serial architectures 
Data-serial architectures process one input sample at a time 
and thus they would have SF>16 for the 4-by-4 2-D forward 
transform.  Fig. 4(a) shows the data-serial architecture for the 
direct 2-D and direct forward transform algorithm in Eq. (3) 
with SF=16.  This architecture processes an input sample in a 
cycle, which multiplies the sample with 16 coefficients in a 
column of the 16-by-16 coefficient matrix in Eq. (3) and 
accumulates the 16 products into the 16 registers respectively.  
Thus, the accumulation registers will have the 16 outputs of 
the forward transform after 16 cycles. 
Fig. 4(b) shows our proposed area-efficient architecture for 
the 2-D forward transform in H.264/AVC with SF=256.  This 
architecture is actually a shrunk design from Fig. 4(a) by 
folding it 16 times.  Here, each sample holds at the input for 
16 cycles, and is multiplied by 16 coefficients accordingly 
and then accumulated in the 16 output registers.  After 256 
cycles, the outputs will be ready on these 16 accumulation 
registers. 
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Fig 4.  Data-serial architectures for direct 2-D/direct forward 
transform algorithm   (a) SF=16, (b) SF=256 

4. Simulation Results 
In this section, we will evaluate the area efficiency of our 
proposed data-serial architecture for the 4-by-4 2-D forward 
transform in H.264/AVC with some typical designs based on 
the algorithms and architectures classified in Section 3 and 4.  
The designs under investigation are listed in Table 2 with the 
abbreviated names.  First, D/D/S/256 represents the proposed 
area-efficient design depicted in Fig. 4(b), while S/F/P/1, 
S/F/P/4 and D/F/P/2 denote the three previous works [5], [6] 
and [7] respectively.  Data-serial architectures for the 
separable and the direct 2-D fast algorithms are derived for 
reference by applying ASAP operation scheduling and the 
forward-backward register allocation with minimum registers 
[8].  These two designs are S/F/S/64 and D/F/S/64, and both 
of them only have a single adder as our proposed D/D/S/256.   
An additional D/F/P/1 is designed to evaluate the architecture 
shrinking of D/F/P/2 [7], and to provide a fair comparison 
with S/F/P/1 [5].  Finally, D/D/S/128 is constructed to show 
the performance scalability of our proposed architecture. 

Table 2  List of compared architectures 
Algorithm 

2-D 
Transform

Strength 
Reduction

Architecture SF Notation 

Parallel 1 S/F/P/1  [5]
Parallel 4 S/F/P/4  [6]Separable
Serial 64 S/F/S/64 

Parallel 1 D/F/P/1 
Parallel 2 D/F/P/2  [7]

Fast 

Serial 64 D/F/S/64 
Serial 128 D/D/S/128 

Direct 

Direct 
Serial 256 D/D/S/256 



The eight designs in Table 2 are first described in Verilog 
RTL and synthesized using Synopsis Design Compiler.  The 
cell library is from Artisan and it is designed for the UMC 
0.18µm CMOS technology.  The clock period constraint is 
derived from the required pixel processing rate.  For example, 
a D1-size image has 720×480×1.5=518,400 pixels in 4:2:0 
color format.  The pixel count amounts to 15,552,000 for 30 
frames.  D/D/S/256 processes 16 samples in 256 clock cycles, 
and its allowable cycle period for D1@30fps is 

019.4
256000,552,15

161
=

×
×

 ns. 

The clock period constraints and the minimum area reported 
by the Synopsys Design Compiler for the eight designs under 
investigation are shown in Table 3.  The designs are listed in 
the descending order of their reported area. 

Table 3 Synthesis results for D1@30fps 
Architecture Clock Period Area 
S/F/P/1  [5] 1,024 ns 199,323.1
D/F/P/1 1,024 ns 198,464.3
S/F/S/64 16 ns 179,337.8
D/F/S/64 16 ns 159,040.1
S/F/P/4  [6] 256 ns 158,051.3
D/F/P/2  [7] 512 ns 123,927.9
D/D/S/128 8 ns 107,794.5
D/D/S/256 4 ns 104,495.0

Thanks to the fast functional unit supported by the advanced 
0.18µm technology and the regular data-serial architecture, 
D/D/S/256 and D/D/S/128 are the two designs with the 
smallest area, despite the required operations are 3.75 times 
of those with fast algorithms.  Both S/F/S/64 and D/F/S/64 
have the same single adder, but their synthesis results are 
even worsen than S/F/P/4 [6] and D/F/P/2 [7] with much 
more functional units.  In other words, the fast algorithms 
reduce the operations at the cost of irregular dataflow, which 
prevent their architectures from efficiently scaling down. 
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Fig. 5. Comparison of DCT algorithms and architectures 

Fig. 5 shows the minimum area for the eight designs under 
different throughput requirements.  The report numbers are 
almost constants due to the loose synthesis constraints 
derived from the pixel rates of interests, except D/D/S/256 

and D/D/S/128.  The processing capability of D/D/S/256 is 
up to D1@30fps in the UMC 0.18µm technology, and it 
stands for the most area-efficient design for the applications 
with lower pixel rates.  By the way, the separable 2-D 
transform seems unable to perform well for small block sizes, 
for D/F/P/1 and D/F/P/2 always outperform S/F/P/1 and 
S/F/P/4 respectively. 

5. Conclusions 
This paper reviews the algorithms and architectures for the 4-
by-4 2-D forward transform in H.264/AVC and it describes 
an area-efficient data-serial architecture for the transform. 
Owing to the fast functional unit in the advanced 0.18µm 
technology and the regular dataflow, the proposed design of 
direct matrix multiplication without any fast algorithm or 
separable 2-D operations stands for the most area-efficient 
one for applications with lower pixel rates than D1@30fps.  
It can save 48%, 34%, and 16% silicon area of the previous 
works [5][6][7] respectively.  Our experimental results in the 
UMC 0.18µm CMOS technology show that separable 2-D 
transform algorithms seem unable to perform well for small 
block sizes.  Therefore, high-performance applications such 
as HDTV and cinema videos may adopt the direct 2-D and 
fast forward transform algorithm [7].  For low-cost and area-
critical codec, the proposed data-serial architecture with the 
direct 2-D and direct forward transform algorithm is an 
effective alternative.  By the way, although our proposed 
design is the most area-efficient one for many practical 
applications (throughput < D1@30fps), the required clock 
rate (250MHz) is extremely high.  It wastes significant power 
and may not be acceptable in many embedded systems.  We 
are studying the power issues and trying to identify the 
application ranges that our proposed approach has low-power 
advantages.  In the future, we will study circuit techniques to 
reduce the clock overheads to broaden its applications. 
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