
Architecture for Area-Efficient 2-D Transform in H.264/AVC
Yu-Ting Kuo, Tay-Jyi Lin, Chih-Wei Liu, and Chein-Wei Jen

Department of Electronics Engineering
National Chiao Tung University, Taiwan

Abstract
As the VLSI technology advances continuously, ASIC can
easily achieve the required performance and most of them
are actually over-designed. Thus, architecture shrinking is
inevitable in optimal designs especially when supply voltages
are getting lower. However, conventional designs starting
from minimization of algorithmic operations (e.g. multiply)
may not always lead to optimal architectures, for the wires
and the interconnection complexity significantly grow and
have become predominant. This paper explores algorithms
and architectures for the 2-D transform in H.264/AVC, of
which the operations are very simple (i.e. only shift and add).
We have shown that fewer operations do not always result in
more compact designs. In our experiments with the UMC
0.18µm CMOS technology, the most straightforward matrix
multiplication without separable 2-D operation or any fast
algorithm has the best area efficiency for D1-size (720×480)
video at 30fps. It saves 48%, 34%, and 16% silicon area of
the previous works respectively.

1. Introduction
The H.264/AVC [1] is a new video coding standard, which is
developed for efficient video compression and reliable data
transport. It provides better performance over its prior
standards such as H.263 and MPEG-4, and the applications
include videoconferencing, video telephony, digital TV and
DVD, etc. There are four kinds of 4-by-4 2-D transforms in
the H.264/AVC video encoder – forward, inverse, Hadamard,
and inverse Hadamard transforms. These four transforms are
very similar and therefore this paper discusses the forward
transform only, which is approximation of the 2-D discrete
cosine transform (DCT) [2] with the scaling multiplications
integrated into the quantizer.
There have been quite a lot of works on the algorithms and
the architectures for DCT such as [3][4], but only few focus
on DCT with small block sizes, such as those for H.264/AVC
[5][6][7]. Besides, it is not the functional units but the
interconnections that dominate the circuit performance (i.e.
speed, silicon area, and even power consumption) in today’s
VLSI technology. That is, choosing an algorithm with fewer
operations may not always lead to less hardware complexity
as before. Moreover, the 2-D transforms in H.264/AVC can
be carried out with only additions and shifts, and such simple
operations make the interconnection overheads much more
significant. This paper discusses the area efficiency of the
architecture mapping of several algorithms for the forward
transform, and we have shown that fewer operations do not
necessarily result in smaller designs. In our experiments with

the 0.18µm CMOS technology, the most straightforward
matrix multiplication without separable 2-D operation or fast
algorithm has the best area efficiency for D1-size (720×480)
video at 30fps. It can save 48%, 34%, and 16% silicon area
of the previous works [5][6][7] respectively.
The rest of this paper is organized as follows. Section 2 first
reviews the algorithms for the 2-D transform in H.264/AVC.
Section 3 then describes their architecture mapping. Several
designs are implemented via effective architecture mapping
of the algorithms, and the results and area comparison are
available in Section 4. Section 5 concludes this paper.

2. Algorithms for Forward Transform
2.1 Separable or direct 2-D transforms
The forward transform in H.264/AVC is defined as

TT MCCXCY == (1)

where X and Y denote the 4-by-4 input and output matrices
respectively. M denotes the intermediate result matrix and
the coefficient matrix C is defined as



















−−
−−

−−
=

1221
1111
2112

1111

C .

M=CX represents the four column-wise 1-D transforms as







































−−
−−

−−
=





















j

j

j

j

j

j

j

j

x
x
x
x

m
m
m
m

,3

,2

,1

,0

,3

,2

,1

,0

1221
1111
2112

1111

 (2)

on the input matrix X, while Y=MCT represents another four
similar row-wise 1-D transforms on the intermediate matrix
M. Therefore, Eq. (1) is called the “separable” 2-D transform.
Alternatively, we can rewrite Eq. (1) as Eq. (3), and compute
the output matrix Y directly by performing the matrix-vector
multiplication on the elements of X. This is the direct 2-D
transform.

















































































































−−−−−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

=

























































33

32

31

30

23

22

21

20

13

12

11

10

03

02

01

00

33

32

31

30

23

22

21

20

13

12

11

10

03

02

01

00

1221244224421221
1111222222221111

2112422442242112
1111222222221111
1221122112211221

1111111111111111
2112211221122112

1111111111111111
2442122112212442
2222111111112222

4224211121124224
2222111111112222
1221122112211221

1111111111111111
2112211221122112

1111111111111111

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y

 (3)

This research was supported in part by the National Science Council
under Grant NSC93-2220-E-009-017 and the Ministry of Economic
Affairs under Grant 94-EC-17-A-01-S1-034.

0-7803-9332-5/05/$20.00 ©2005 IEEE

Since the coefficients are very simple and only require trivial
multiplications by shifts, the computational complexities of
these two algorithms can thus be compared by the number of
the required additions and subtractions. First, the separable
2-D forward transform needs eight 1-D transforms shown in
Eq. (2), each of which requires twelve additions/subtractions.
Therefore, it needs 96 additions/subtractions in total. On the
other hand, the direct 2-D forward transform requires 240
additions/ subtractions.

2.2 Algorithmic strength reduction
Both 1-D and direct 2-D forward transform algorithms have
symmetric coefficients in their transform matrices, which can
be exploited to rearrange the computations and to effectively
reduce the additions/subtractions. For example, the 1-D
forward transform can save four additions as shown in Fig. 1.
Thus, the separable 2-D and fast forward transform, which is
adopted in [5] and [6], requires only 64 additions/subtractions.

- 2

-2

-

-

-

x0

x1

x2

x3 y3

y2

y1

y0

Fig 1. Fast 1-D transform

Similarly, the symmetry property of the direct 2-D forward
transform can also be exploited by rewriting Eq. (3) as









+
+









−

=








21

30

2

0

xx
xx

 CC
 C C

y
y

vv

vv

v

v

 







−
−









−

=








21

30

3

1

xx
xx

2CC
C2C

y
y

vv

vv

w

v

 (4)

where
ixv and

iyv are the transposes of the i-th rows of the
input and the output matrices respectively [7]. Interestingly,
this direct 2-D and fast forward transform also requires 64
additions/subtractions after the computation rearrangements.
Table 1 summarizes the computational complexities of the
above four forward transform algorithms.

Table 1 Comparison of forward transform algorithms
Algorithm

2-D Transform Strength Reduction
Additions

Direct 96 Separable
Fast 64 [5][6]

Direct 240 Direct
Fast 64 [7]

3. Architecture Mapping
The most straightforward method to translate an algorithm
into its hardware implementation is to allocate a dedicated
functional unit to each operation. However, it is too costly
for many practical applications, especially when advanced
fabrication technology is used. Architecture shrinking that
time-multiplexes several operations on shared resources is a
commonly used technique to reduce such unnecessary waste.

Folding [8] is the systematic methodology that maps DSP
algorithms on hardware architectures. To clarify our further
discussions, we classify the architectures into two major
categories – data-parallel and data-serial. The former
handles multiple input data concurrently, while the latter
processes a single input datum at one time. Besides, we will
extensively use the term scaling-down factor (SF) to indicate
the number of steps for the target architecture to perform the
4-by-4 forward transform. For example, the aforementioned
“most straightforward architecture mapping” that dedicates a
functional unit to each operation has SF=1. Note that a
higher SF may only imply that fewer functional units are
required in the hardware implementation. Indeed, it incurs
extra multiplexers and sometimes additional registers. These
overheads will compensate the benefits, not to mention the
fact that interconnection predominates the performance in
today’s deep-submicron VLSI technology.

3.1 Data-parallel architectures

1D

1D

1D

1D

1D

1D

1D

1D

Transpose
Matrix

In 1
In 2
In 3

In 4
In 5
In 6

In 8
In 9
In 10
In 11

In 12
In 13
In 14

In 0

In 7

In 15

Out 1
Out 2
Out 3

Out 4
Out 5
Out 6

Out 8
Out 9
Out 10
Out 11

Out 12
Out 13
Out 14

Out 0

Out 7

Out 15

(a)

REG

MUX

In

m
ux

-

-

m
ux

m
ux

m
ux

1D 1D O
ut

(b)

Fig 2. Data-parallel architectures for separable 2-D/fast
forward transform (a) SF=1 [5], (b) SF=4 [6]

Fig. 2(a) depicts the most straightforward hardware mapping
of the separable 2-D and fast forward transform algorithm [5].
It contains eight 1-D fast transform modules shown in Fig. 1.
A direct interconnection network is included for transposition
of the intermediate results. Fig. 2(b) shows a shrunk version
of Fig. 2(b) with SF=4. Therefore, it requires only two 1-D
transform modules, and the four column- and the four row-
transforms are performed respectively in the corresponding
modules. Besides, the original memory-less transpose matrix
becomes a transpose memory with 16 registers after the
architecture shrinking.

- 2

-2

-

-

-

- 2

-2

-

-

-

2,1

2,1

2,1

2,1

1,2

1,2

1,2

1,2

In0

Out 1/9

Out 2/10

Out 3/11

Out 4/12

Out 5/13

Out 6/14

Out 7/15

Out 0/8
In1
In2
In3
In4
In5
In6
In7

In8
In9

In10
In11
In12
In13
In14
In15

Fig 3. Data-parallel architecture for direct 2-D/fast forward

transform algorithm [8]

Fig. 3 shows the architecture mapping of the direct 2-D and
fast forward transform algorithm in Eq. (4) with SF=2 [7].
For each 4-by-4 forward transform, the 16 input samples hold
for two cycles, each of which generates half output results.
The architecture shrinking in this case is very efficient, which
just incurs an additional output de-multiplexer.

3.2 Data-serial architectures
Data-serial architectures process one input sample at a time
and thus they would have SF>16 for the 4-by-4 2-D forward
transform. Fig. 4(a) shows the data-serial architecture for the
direct 2-D and direct forward transform algorithm in Eq. (3)
with SF=16. This architecture processes an input sample in a
cycle, which multiplies the sample with 16 coefficients in a
column of the 16-by-16 coefficient matrix in Eq. (3) and
accumulates the 16 products into the 16 registers respectively.
Thus, the accumulation registers will have the 16 outputs of
the forward transform after 16 cycles.
Fig. 4(b) shows our proposed area-efficient architecture for
the 2-D forward transform in H.264/AVC with SF=256. This
architecture is actually a shrunk design from Fig. 4(a) by
folding it 16 times. Here, each sample holds at the input for
16 cycles, and is multiplied by 16 coefficients accordingly
and then accumulated in the 16 output registers. After 256
cycles, the outputs will be ready on these 16 accumulation
registers.

+/- 1
+/- 2

D

+/- 4 0

Out 0In
PE0

PE1
Out 1

Out 15

PE2
Out 2

PE15
(a)

+/- 1
+/- 2

D

+/- 4 0

OutIn
D D

16 accumulators

(b)

Fig 4. Data-serial architectures for direct 2-D/direct forward
transform algorithm (a) SF=16, (b) SF=256

4. Simulation Results
In this section, we will evaluate the area efficiency of our
proposed data-serial architecture for the 4-by-4 2-D forward
transform in H.264/AVC with some typical designs based on
the algorithms and architectures classified in Section 3 and 4.
The designs under investigation are listed in Table 2 with the
abbreviated names. First, D/D/S/256 represents the proposed
area-efficient design depicted in Fig. 4(b), while S/F/P/1,
S/F/P/4 and D/F/P/2 denote the three previous works [5], [6]
and [7] respectively. Data-serial architectures for the
separable and the direct 2-D fast algorithms are derived for
reference by applying ASAP operation scheduling and the
forward-backward register allocation with minimum registers
[8]. These two designs are S/F/S/64 and D/F/S/64, and both
of them only have a single adder as our proposed D/D/S/256.
An additional D/F/P/1 is designed to evaluate the architecture
shrinking of D/F/P/2 [7], and to provide a fair comparison
with S/F/P/1 [5]. Finally, D/D/S/128 is constructed to show
the performance scalability of our proposed architecture.

Table 2 List of compared architectures
Algorithm

2-D
Transform

Strength
Reduction

Architecture SF Notation

Parallel 1 S/F/P/1 [5]
Parallel 4 S/F/P/4 [6]Separable
Serial 64 S/F/S/64

Parallel 1 D/F/P/1
Parallel 2 D/F/P/2 [7]

Fast

Serial 64 D/F/S/64
Serial 128 D/D/S/128

Direct

Direct
Serial 256 D/D/S/256

The eight designs in Table 2 are first described in Verilog
RTL and synthesized using Synopsis Design Compiler. The
cell library is from Artisan and it is designed for the UMC
0.18µm CMOS technology. The clock period constraint is
derived from the required pixel processing rate. For example,
a D1-size image has 720×480×1.5=518,400 pixels in 4:2:0
color format. The pixel count amounts to 15,552,000 for 30
frames. D/D/S/256 processes 16 samples in 256 clock cycles,
and its allowable cycle period for D1@30fps is

019.4
256000,552,15

161
=

×
×

 ns.

The clock period constraints and the minimum area reported
by the Synopsys Design Compiler for the eight designs under
investigation are shown in Table 3. The designs are listed in
the descending order of their reported area.

Table 3 Synthesis results for D1@30fps
Architecture Clock Period Area
S/F/P/1 [5] 1,024 ns 199,323.1
D/F/P/1 1,024 ns 198,464.3
S/F/S/64 16 ns 179,337.8
D/F/S/64 16 ns 159,040.1
S/F/P/4 [6] 256 ns 158,051.3
D/F/P/2 [7] 512 ns 123,927.9
D/D/S/128 8 ns 107,794.5
D/D/S/256 4 ns 104,495.0

Thanks to the fast functional unit supported by the advanced
0.18µm technology and the regular data-serial architecture,
D/D/S/256 and D/D/S/128 are the two designs with the
smallest area, despite the required operations are 3.75 times
of those with fast algorithms. Both S/F/S/64 and D/F/S/64
have the same single adder, but their synthesis results are
even worsen than S/F/P/4 [6] and D/F/P/2 [7] with much
more functional units. In other words, the fast algorithms
reduce the operations at the cost of irregular dataflow, which
prevent their architectures from efficiently scaling down.

80

120

160

200

3.91 7.81 15.63 20.83

Throughput (M pixels/sec)

A
re

a
(1

0^
3)

D/F/P/1 D/F/P/2 [7] D/F/S/64 D/D/S/256
S/F/P/1 [5] S/F/P/4 [6] S/F/S/64 D/D/S/128

(D1@30fps)

Fig. 5. Comparison of DCT algorithms and architectures

Fig. 5 shows the minimum area for the eight designs under
different throughput requirements. The report numbers are
almost constants due to the loose synthesis constraints
derived from the pixel rates of interests, except D/D/S/256

and D/D/S/128. The processing capability of D/D/S/256 is
up to D1@30fps in the UMC 0.18µm technology, and it
stands for the most area-efficient design for the applications
with lower pixel rates. By the way, the separable 2-D
transform seems unable to perform well for small block sizes,
for D/F/P/1 and D/F/P/2 always outperform S/F/P/1 and
S/F/P/4 respectively.

5. Conclusions
This paper reviews the algorithms and architectures for the 4-
by-4 2-D forward transform in H.264/AVC and it describes
an area-efficient data-serial architecture for the transform.
Owing to the fast functional unit in the advanced 0.18µm
technology and the regular dataflow, the proposed design of
direct matrix multiplication without any fast algorithm or
separable 2-D operations stands for the most area-efficient
one for applications with lower pixel rates than D1@30fps.
It can save 48%, 34%, and 16% silicon area of the previous
works [5][6][7] respectively. Our experimental results in the
UMC 0.18µm CMOS technology show that separable 2-D
transform algorithms seem unable to perform well for small
block sizes. Therefore, high-performance applications such
as HDTV and cinema videos may adopt the direct 2-D and
fast forward transform algorithm [7]. For low-cost and area-
critical codec, the proposed data-serial architecture with the
direct 2-D and direct forward transform algorithm is an
effective alternative. By the way, although our proposed
design is the most area-efficient one for many practical
applications (throughput < D1@30fps), the required clock
rate (250MHz) is extremely high. It wastes significant power
and may not be acceptable in many embedded systems. We
are studying the power issues and trying to identify the
application ranges that our proposed approach has low-power
advantages. In the future, we will study circuit techniques to
reduce the clock overheads to broaden its applications.

References
[1] I. E. G. Richardson, H.264 and MPEG-4 Video Compression,

Wiley, 2003
[2] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms,

Advantage, Applications, Academic Press, 1990
[3] S. F. Hsiao and Y. H. Hu, “High-radix low-complexity

architectures for long-length DCT using conventional arithmetic
and ROM-based distributed arithmetic,” in Proc. VLSI-TSA, 2003

[4] M. Puchel, “Cooley-Tukey FFT like algorithms for the DCT,” in
Proc. ICASSP, 2003

[5] K. H. Chen, J. I. Guo, K. C. Chao, J. S. Wang and Y. S. Chu, “A
high performance low power direct 2-D transform coding IP
design for MPEG-4 AVC/H.264 with a switching power
suppression technique,” in Proc. VLSI-TSA-DAT, 2005

[6] T. C. Wang, Y. W. Huang, H. C. Fang, and L. G. Chen, “Parallel
4x4 2D transform and inverse transform architecture for MPEG-4
AVC/H.264,” in Proc. ISCAS, 2003

[7] Z. Y. Cheng, C. H. Chen, B. D. Liu, and J. F. Yang, “High
throughput 2-D transform architectures for H.264 advanced video
coders,” in Proc. APCCAS, 2004

[8] K. K. Parhi, VLSI Digital Signal Processing Systems Design and
Implementation, Wiley, 1999

	Index
	ICME 2005

	Conference Info
	Welcome Messages
	Venue Access
	Committees
	Sponsors
	Tutorials

	Sessions
	Wednesday, 6 July, 2005
	WedAmOR1-Action recognition
	WedAmOR2-Video conference applications
	WedAmOR3-Video indexing
	WedAmOR4-Concealment & information recovery
	WedAmPO1-Posters on Human machine interface, interactio ...
	WedAmOR5-Face detection & tracking
	WedAmOR6-Video conferencing & interaction
	WedAmOR7-Audio & video segmentation
	WedAmOR8-Security
	WedPmOR1-Video streaming
	WedPmOR2-Music
	WedPmOR3-H.264
	WedPmSS1-E-meetings & e-learning
	WedPmPO1-Posters on Content analysis and compressed dom ...
	WedPmOR4-Wireless multimedia streaming
	WedPmOR5-Audio processing & analysis
	WedPmOR6-Authentication, protection & DRM
	WedPmSS2-E-meetings & e-learning -cntd-

	Thursday, 7 July, 2005
	ThuAmOR1-3D
	ThuAmOR2-Video classification
	ThuAmOR3-Watermarking 1
	ThuAmSS1-Emotion detection
	ThuAmNT1-Expo
	ThuAmOR4-Multidimensional signal processing
	ThuAmOR5-Feature extraction
	ThuAmOR6-Coding
	ThuAmSS2-Emotion detection -cntd-
	ThuPmOR1-Home video analysis
	ThuPmOR2-Interactive retrieval & annotation
	ThuPmOR3-Multimedia hardware and software design
	ThuPmSS1-Enterprise streaming
	ThuPmNT1-Expo -cntd-
	ThuPmOR4-Faces
	ThuPmOR5-Audio event detection
	ThuPmOR6-Multimedia systems analysis
	ThuPmOR7-Media conversion
	ThuPmPS2-Keynote Gopal Pingali, IBM Research, "Ele ...

	Friday, 8 July, 2005
	FriAmOR1-Annotation & ontologies
	FriAmOR2-Interfaces for multimedia
	FriAmOR3-Hardware
	FriAmOR4-Motion estimation
	FriAmPO1-Posters on Architectures, security, systems &a ...
	FriAmOR5-Machine learning
	FriAmOR6-Multimedia traffic management
	FriAmOR7-CBIR
	FriAmOR8-Compression
	FriPmOR1-Speech processing & analysis
	FriPmSS1-Sports
	FriPmOR2-Hypermedia & internet
	FriPmOR3-Transcoding
	FriPmPO1-Posters on Applications, authoring & editi ...
	FriPmOR4-Multimedia communication & networking
	FriPmOR5-Watermarking 2
	FriPmSS2-Sports -cntd-
	FriPmOR6-Shape retrieval

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1 SIGNAL PROCESSING FOR MEDIA INTEGRATION
	1-CDOM Compressed Domain Processing
	1-CONV Media Conversion
	1-CPRS Media Compression
	1-ENCR Watermarking, Encryption and Data Hiding
	1-FILT Media Filtering and Enhancement
	1-JMEP Joint Media Processing
	1-PROC 3-D Processing
	1-SYNC Synchronization
	1-TCOD Transcoding of Compressed Multimedia Objects
	2 COMPONENTS AND TECHNOLOGIES FOR MULTIMEDIA SYSTEMS
	2-ALAR Algorithms/Architectures
	2-CIRC Low-Power Digital and Analog Circuits for Multim ...
	2-DISP Display Technology for Multimedia
	2-EXTN Signal and Data Processors for Multimedia Extens ...
	2-HDSO Hardware/Software Codesign
	2-PARA Parallel Architectures and Design Techniques
	2-PRES 3-D Presentation
	3 HUMAN-MACHINE INTERFACE AND INTERACTION
	3-AGNT Intelligent and Life-Like Agents
	3-CAMM Context-aware Multimedia
	3-CONT Presentation of Content in Multimedia Sessions
	3-DIAL Dialogue and Interactive Systems
	3-INTF User Interfaces
	3-MODA Multimodal Interaction
	3-QUAL Perceptual Quality and Human Factors
	3-VRAR Virtual Reality and Augmented Reality
	4 MULTIMEDIA CONTENT MANAGEMENT AND DELIVERY
	4-ANSY Content Analysis and Synthesis
	4-AUTH Authoring and Editing
	4-COMO Multimedia Content Modeling
	4-DESC Multimedia Content Descriptors
	4-DLIB Digital Libraries
	4-FEAT Feature Extraction and Representation
	4-KEEP Multimedia Indexing, Searching, Retrieving, Quer ...
	4-KNOW Content Recognition and Understanding
	4-MINI Multimedia Mining
	4-MMDB Multimedia Databases
	4-PERS Personalized Multimedia
	4-SEGM Image and Video Segmentation for Interactive Ser ...
	4-STRY Video Summaries and Storyboards
	5 MULTIMEDIA COMMUNICATION AND NETWORKING
	5-APDM Multimedia Authentication, Content Protection an ...
	5-BEEP Multimedia Traffic Management
	5-HIDE Error Concealment and Information Recovery
	5-QOSV Quality of Service
	5-SEND Transport Protocols
	5-STRM Multimedia Streaming
	5-WRLS Wireless Multimedia Communication
	6 SYSTEM INTEGRATION
	6-MMMR Multimedia Middleware
	6-OPTI System Optimization and Packaging
	6-SYSS Operating System Support for Multimedia
	6-WORK System Performance
	7 APPLICATIONS
	7-AMBI Ambient Intelligence
	7-CONF Videoconferencing and Collaboration Environment
	7-CONS Consumer Electronics and Entertainment
	7-EDUC Education and e-learning
	7-SECR Security
	7-STAN Multimedia Standards
	7-WEBS WWW, Hypermedia and Internet, Internet II

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Chein-Wei Jen
	Chih-Wei Liu
	Tay-Jyi Lin
	Yu-Ting Kuo

