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ABSTRACT

This paper proposes a two-step methodology for improving the
discriminatory power of Linear Discriminant Analysis (LDA) for
video-based human face recognition. Results indicate that, under
real-world video capture conditions, face images extracted from
a video sequence have enough 3D rotations, illumination changes
and background variations to reduce the discriminatory power of
an LDA classifier. The proposed method involves deriving an LDA
subspace from carefully selected subsets of face images that fall
within a narrow range of pose angles, and then growing the clas-
sification regions in the LDA subspace using face images with
a wider range of pose angle changes, illumination changes, and
background variations. Polynomial Support Vector Machines (SVM)
are shown to provide better recognition rates by defining the bound-
aries between clusters that represent the faces of different subjects.
Results show that there is an improvement in the recognition rate
when the LDA subspace is derived with this methodology than
when it is derived with a set of face images with a widely diver-
gent set pose angles, illumination variations, and backgrounds.

1. INTRODUCTION

Recently, with the availability of more powerful computers, real
time processing of every frame in a video sequence has become
possible. Taking advantage of this, face recognition researchers
have started processing video sequences in an attempt to provide
more reliable face recognition algorithms [1]. A few seconds of
video contain considerably more information than a single face im-
age. Within a single video sequence, it is possible to see multiple
views of a face from various pose angles, and with a variety of il-
luminations, in addition to changes in the background. Even when
the camera is stationary, 3D rotations of the face cause pose angle
and illumination changes. Although these changes seem subtle to
humans, they significantly affect the performance of face recogni-
tion algorithms.

This paper demonstrates how the learning characteristics of
LDA changes for video-based face recognition due to the varia-
tions in pose, illumination and background, and substantiates the
necessity for the new methodology. Our choice of LDA is based on
a recent study [2], where the authors have shown that LDA-based
face recognition is more robust to pose and illumination changes
than three other widely used face recognition algorithms (Princi-
ple Component Analysis, Bayesian Intra-personal Classifier and
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Hidden Markov Model).

The rest of the paper is organized as follows: Section 2 reviews
the work that has gone into using LDA and SVM with face recog-
nition. Section 3 details the data set used for this study. Section
4 describes the proposed methodology for improving video-based
face recognition rates. Section 5 presents the results, and Section
6 discusses those results. Section 7 presents conclusions and dis-
cusses future work.

2. RELATED WORK

LDA was introduced to the domain of face recognition with the
seminal paper by Etemad et al. [3] (Extension of this work in-
cludes [4] [S]). Here the authors generate a face class by adding
Gaussian noise, and by taking the mirror image of the existing face
images. Though this provided a means for generalizing face recog-
nition around a limited set of face images, the resulting LDA sub-
space is not based on the types of variability that are encountered in
video-sequence-based face recognition. Jonsson et al. [6] also re-
ported on the performance of SVM for face recognition when used
directly on the image set, and when used on an LDA-derived sub-
space, and concluded that there was no improvement in the recog-
nition rate by using SVM. However, that work was also based on
an artificial method of face class representation. In fact, most of
the face recognition algorithms based on SVM [7] [8] [9] are based
on standard face databases such as FERET, XM2VTS, the CMU
PIE Database, AT&T, Oulu Physics Database, Yale Face Database,
Yale B Database and MIT Database. None of these standard face
databases include faces with the subtle variations in pose and il-
lumination changes that are typical of face images extracted from
video sequences. We have taken into consideration, in our data
set, this important but ignored facet of the problems associated
with face recognition and we show that our methodology performs
much better than traditional LDA for video-based face recognition.

3. DATA SET

The proposed methodology for enhancing video-based face recog-
nition was tested with images extracted from video sequences cap-
tured from 10 subjects. Each video sequence was captured while
subjects looked into a camera, as both the camera and the subject
moved. (This movement provided variations in background, pose
and illumination - the latter of which were produced due to shad-
owing effects on the face). These video sequences were collected
in an office environment, without any special lighting conditions.



Subtle changes in pose angle were captured by asking the subjects
to rotate their head slightly in arbitrary directions. The video se-
quences were collected over a time period of 1 minute at a capture
rate of 10 frames per second, thus producing 600 images per sub-
ject. Fig.1 shows a sample set of 30 images extracted from one of

these video sequences.

Fig. 1. Sample set of face images extracted from a video sequence
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4. METHODOLOGY

4.1. Step 1: Generating the LDA face subspace

LDA is a subspace analysis method which projects high dimen-
sional data into a lower dimensional space, the lower dimensions
chosen such that data belonging to different classes are maximally
separated. The LDA space is constructed from dominant eigen
vectors of a separability matrix, S, which is the ratio of aver-
age between-class covariance and average within-class covariance.
These eigen vectors represent the LDA space where the projected
face images of different classes are best separated. The first step
in the proposed method involves building such an LDA subspace
from a compact set of images from each subject in the data set.
From the 600 images of each subject, 10 frontal images were se-
lected for each of the 10 subjects. (Fig.2 shows the set of 10 frontal
images for one subject.) The resulting training set for the 10 sub-
jects contained 100 frontal images. A high-dimensional feature
vector was then generated for each of these frontal images by un-
wrapping them in a column-wise manner. These vectors were used
to derive an N-dimensional LDA subspace that preserved the clus-
tering (For our experiment, we found that a 6 dimensional LDA
space was sufficient). Unfortunately, it is not possible to present
this N-dimensional configuration in this paper, so Fig.3 shows a
2D LDA-based cluster plot for 3 subjects (3 * 10 frontal faces = 30
face images). To clearly define boundaries between the three clus-
ters, Support Vector Machines were individually trained for each
subject’s 10 frontal images. The resulting boundaries are depicted

in the Fig.3.
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Fig. 2. 10 frontal images hand picked from the data set of a single
subject

Fig.4 shows an LDA subspace generated for the same 3 sub-
jects as in Fig.3, but derived from a subset of 10 randomly selected
images per subject. There is no clear separation between the LDA
face class of the 3 subjects. Contrast this with Fig.3, where the
LDA subspace was derived from 10 frontal images of each sub-
ject, and where the separation between the clusters is clearly seen.
In essence, training an LDA with frontal images alone provides
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Fig. 3. LDA Subspace for 3 subjects trained with 10 frontal images
per subject

better discrimination between classes. But deriving an LDA sub-
space from only frontal images does not produce a classification
that reliably recognizes non-frontal face images, or images with
other types of illumination, because the training data does not con-
tain enough variations in these parameters. To allow the classifier
to better distinguish between face images containing these types
of variations, the regions of the LDA subspace representing each
subject must be expanded around the frontal images as explained
in Section 4.2.

Fig. 4. LDA Subspace for 3 subjects trained with 10 randomly
picked images per subject

4.2. Step 2: Expanding the face class in the LDA space

To expand the region for each subject, a set of face images can be
randomly selected from that subject’s video, a high-dimensional
feature vector can be generated for each of these face images.
These vectors can then be projected onto the lower dimensional
LDA subspace, and associated with the corresponding frontal face
clusters. Fig.5 shows the projection of 40 randomly selected im-
ages per subject on an LDA subspace that was derived from 10



frontal images per subject. It can be seen that the randomly se-
lected images project into the LDA space near the original clus-
ters, in contrast to Fig.6, which shows the projection of the same
40 images on an LDA subspace derived from 10 randomly selected
images per subject.
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Fig. 5. LDA subspace trained with frontal images, with 40 random
face images per subject projected into it

The expanded clusters need clearly defined boundaries, which
can be provided by SVM. The kernel used for the SVM is a poly-
nomial of degree 5. Fig.7 shows the resulting class boundaries
formed with the 40 additional faces projected onto an LDA sub-
space derived from 10 frontal images per subject. For comparison,
Fig.8 shows the SVM boundaries formed when the same 40 ad-
ditional face images are projected onto an LDA subspace derived
from 10 random images per subject.
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Fig. 6. LDA subspace trained on 10 random images per subject,
with 40 random face images per subject projected into it

5. RESULTS

To test the recognition accuracy, test images were randomly se-
lected, feature vectors were generated, and those feature vectors
were then projected into the lower-dimensional LDA subspace to
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Fig. 7. SVM class boundaries for the new training method

determine how close each was to the correct subject cluster. Two
tests were conducted - one with 50 randomly selected images per
subject, and the other with 100 randomly selected images per sub-
ject. Fig.9 shows the recognition rates when an MSE classifier
was used with the subspace produced by (1) the proposed method
of using frontal images, followed by random images, and (2) the
traditional method of using frontal and random images indiscrim-
inantly. Fig.10 shows the recognition rates with an SVM classifier
on LDA subspace derived with (1) the proposed method of using
frontal images followed by random images, and (2) the traditional
method of using both the frontal and random images.
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Fig. 8. SVM class boundaries for the regular LDA training proce-
dure

6. DISCUSSION OF THE RESULTS

Visual inspection of Fig.9 and Fig.10 suggests that there is an im-
provement in the recognition rate when the LDA subspace is de-
rived with the proposed method. It is also evident that there is an
improvement in the recognition rate as the algorithm experiences
more variations in the training images.

Fig.11 compares the performance of SVM and MSE classi-
fiers for different size training image sets. (In both cases the LDA
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Fig. 9. Recognition rates with MSE classifier

subspace was derived using the proposed frontal-face method). It
is evident that the SVM classifier performance is slightly better.
When the LDA subspace was derived with only 20 images, SVM
performed similar to MSE. An examination of the 20 frontal faces
used in this case showed that there was little variation between the
images, and thus the face clusters in the LDA subspace remained
linearly separable.

Support Vector Machine classification on 50 test image set
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Fig. 10. Recognition rates with SVM classifier

7. CONCLUSION AND FUTURE WORK

This paper has presented a methodology to improve the recogni-
tion rate obtained from LDA-derived subspaces for video-based
face recognition by using SVM. When the LDA subspace was de-
rived from a relatively similar set of face images (all frontal) it
provided better recognition performance than when the subspace
was derived from a set of widely divergent (randomly selected) im-
ages. Work is in progress to develop algorithms that can learn the
face class boundaries on the LDA subspace automatically as they
experience varying images of a subject during the classification
phase.

Comparison of MSE and SVM classifiers with the new training method
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Fig. 11. Comparison of recognition rates with MSE and SVM
classifiers
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