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ABSTRACT 
 

Semantic region labeling in outdoor scenes, e.g., identifying 
sky, grass, foliage, water, and snow, facilitates content-based 
image retrieval, organization, and enhancement. A major 
limitation of current object detectors is the significant number of 
misclassifications due to the similarities in color and texture 
characteristics of various object types and lack of context 
information. Building on previous work of spatial context-aware 
object detection, we have developed a further improved system 
by modeling and enforcing spatial context constraints specific to 
individual scene type. In particular, the scene context, in the 
form of factor graphs, is obtained by learning and subsequently 
used via MAP estimation to reduce misclassification by 
constraining the object detection beliefs to conform to the spatial 
context models. Experimental results show that the richer spatial 
context models improve the accuracy of object detection over the 
individual object detectors and the general outdoor scene model. 
 

1. INTRODUCTION 
 
Object detection can facilitate a number of image 

understanding applications, such as content-based image 
retrieval (CBIR). For example, Naphade and Huang use 
semantic features, such as the presence of sky, rock, snow, and 
water, to index and retrieve video [1]. Intuitively, these semantic 
features help bridge the so-called semantic gap between pixels 
and the desired understanding of the image, causing many 
researchers to look beyond traditional low-level features, such as 
color, texture, and edges. 

Color and texture have been the central features of existing 
work on natural object detection. For example, Saber et al. [2] 
used color classification to detect sky by assuming a 2-D 
Gaussian probability density function. More recently, location 
(knowing correct image orientation) has been used to boost 
accuracy: Smith and Li [3] assumed that a blue, extended patch 
at the top of an image is likely to represent clear sky, while 
Vailaya and Jain [4] presented an exemplar-based approach that 
uses a combination of color, texture, and location features to 
classify sub-blocks (16 × 16 pixels) in an outdoor scene.  

However, even with all this work on object and material 
detection, detectors are still not perfect. How can one improve 
them further? An idea that we can take from humans is that they 
use context. One type of context is spatial context. Whereas 
individual detectors only use isolated patches of pixels (which is 
difficult even for humans, as shown in [5]), spatial context refers 
to the spatial relationships between objects in the scene, and is 
often useful to reduce ambiguity among conflicting detectors and 
to remove improbable spatial configurations of objects. For 

example, while snow and cloudy sky can be confusing without 
context, sky tends to occur above foliage, while snow occurs below 
foliage. Singhal, et al. [5] successfully used spatial context models 
to improve material detectors for natural scenes. They first 
combined the output of the individual object detectors to produce a 
belief vector for the objects potentially present in an image. They 
then imposed spatial context constraints, in the form of learned 
probability density functions (pdfs), for spatial relations. These pdfs 
were learned from a large set of general outdoor scenes. 

However, another type of context that has been little exploited 
is scene context. Knowing what type of scene (e.g., beach, field) 
one is viewing lends specific evidence both toward the type of 
objects to expect and the spatial configuration in which they occur. 
Configurations of objects can vary greatly from scene to scene. For 
example, in beach scenes, sand regions tend to occur in the 
foreground of the image, leading to the relation, sand below water, 
while in open water scenes, when sand-like regions (such as land on 
the horizon) occur, they occur in the background, yielding sand 
above water. Hereafter, we refer to this scene-type specific spatial 
context as scene context for conciseness and to differentiate it from 
the general spatial context in [5]. An overview of our system, 
similar to that in [5], is shown in Figure 1, with the main difference 
being that the spatial context models are now scene-specific. 

 

 

Fig. 1. Architecture of the holistic object-detection system. 
 
Some psychophysical research has shown that humans can 

discern the gist of a scene very quickly (before they recognize 
objects) [6], so it is plausible that humans have access to scene 
information as well before they completely determine the identity of 
every object in the scene. With image understanding, semantic 
scene classification [8][9] may be performed prior to semantic 
region labeling. We envision two use scenarios. In the first, 
automatic algorithms are used to determine the scene classification, 
although scene classification errors could affect region labeling 
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performance. In the second, the scene labels are pre-assigned. 
This is particularly appropriate if the photographer has already 
organized her images into albums and labeled them; in any case, 
labeling an album or each image is much easier than labeling 
each region in each image. 

In this paper, we extend the system introduced in [5] in three 
ways. First, we augment the spatial context module shown in 
Figure 1 with scene context. Second, we double the number of 
semantic materials detected to ten. Third, we use a single, 
integrated model, a factor graph, as a means to propagate object 
beliefs between image regions.  
 

2. SCENE-CONTEXT MODEL 
 
We now discuss the details of our scene context model and 

the spatial relations it encompasses, and compare it with other 
models using general, non-scene-specific spatial context only.  

 
2.1. Probabilistic model 

 
There is existing work on using high-level scene models for 

spatial context-based object detection. Batlle et al. [13] provide a 
comprehensive review of most of the early work related to 
building scene models for specific image types. They describe 
techniques where spatial models (e.g., rules) can be constructed 
for scene types, such as a house scene, a road scene, and an 
urban scene. In each of these scene types, there is a strong 
expectation regarding the occurrence and location of various 
object types in the image. Lipson et al. [14] present a spatial 
context modeling approach, called configuration-based scene 
modeling, for content-based indexing and retrieval applications. 
They model the qualitative and photometric relationships 
between various objects in a scene in a spatial sense and use 
these relationships to extract other scenes with semantically 
similar content. The scene models are extremely specific to the 
layout of a scene, e.g., ocean on top of sand is different from 
ocean beside sand.  

One principled method of using spatial context is within the 
framework of a probabilistic graphical model, such as a 
Bayesian network (BN) or a Markov Random Field (MRF) 
[1][5][6]. These systems have the following advantages (vs. 
heuristic-based ones, such as [7]). First, they are built on a strong 
theoretical framework. Second, they are highly modular; the 
detectors are decoupled from each other and from the context 
model, which is an important concern in a large system with 
many components, and each expected to improve over time.  

We use the factor graph shown in Figure 2 as a context 
model, because it is more general than BN or MRF. The graph 
has a single scene variable, S, which can take on a scene type, 
e.g. beach or field, and a region variable, Ri, for each region in 
the scene, which takes on the values of the region labels, e.g., 
sky, water, or foliage. We learn pairwise spatial relationships for 
each scene type. These spatial relationships are encoded in the 
factors, Fij connecting the scene node with each pair of region 
nodes. The detector factors, Di, encode the detector evidence, 
and provide the likelihood of each region label, given the belief 
with which each detector fires; these factors are set at run-time. 
We could have detector variables for each detector for each 
region, but these can be absorbed in the detector factor. The 
structure of the scene is also determined at run-time because the 
number of regions, n, is unknown a priori. Finally, the prior 
factor, Pi, allows one to specify the prior probability in each 

scene type, although we do not make use of it in this study (i.e., all 
scene types are assumed equally probable).  

Our factor graph encodes two independence assumptions. 
First, the scene is independent of the detector output, given the true 
label of each region. Second, a detector's output on a region 
depends only on the object present in that region and not on other 
objects or the class of the scene. Each detector’s characteristics 
P(Di|Ri) can be learned by counting detection frequencies on a 
training set of regions or specified using domain knowledge. 

However, there is one assumption that we cannot make. At this 
coarse segmentation, even distant regions (in the underlying image) 
may be strongly correlated, e.g., sky and pavement in urban scenes.  
Thus, we cannot factorize the scene structure (as could be done in 
low-level vision problems) and instead assume a fully-connected, 
pairwise scene structure with nC2 relation factors. However, for the 
types of materials presently of interest, n is generally small (n<7). 

We can find the most likely labels for each region by setting 
the values of the detector factors, fixing the value of the scene 
variable with the known scene and using loopy belief propagation 
for inference. After convergence, each region node will have a 
vectors of beliefs (one entry per label); taking the argmax yields the 
most likely label, given the known scene and the detector output. 

Fig. 2. Factor graph encoding scene- and spatial-context, 
shown with 3 regions. P = prior factor, S= scene variable, Fij 
= spatial factor for regions i and j, Ri = region variable 
1<=i<=n, Di = detector factor for region i. See text for 
discussion. 

 
2.2. Spatial relations  

 
Pairwise spatial relations in our model are encoded as 

probability density functions of the two regions and the scene. In 
[5], the seven spatial relations above, far above, beside, enclosing, 
enclosed, below, and far below were shown to be effective for 
spatial context-aware material detection within outdoor scenes. A 
threshold on the distance between the nearest pixels of two regions 
is used to discriminate between above and far above (and below and 
far below).  

In this study, we adopt the same spatial relations and same ways 
of computing them. One is by checking the bounding boxes of the 
regions and the other is by using a computationally efficient version 
of the “weighted walk-through'” approach [5]. The bounding box 
method is easy to implement, but may encounter difficulties when 
the bounding boxes of the regions overlap. The lookup table method 
is robust to the size and location of regions, but is computationally 
more complex than the bounding box method. We use a hybrid 
scheme to determine the spatial relationship of two regions in an 
image. First, we check the bounding boxes of the regions. If the 
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bounding boxes are not overlapping, we can use their 
coordinates to quickly derive the spatial relationship. 

The spatial context models are built by learning probability 
density functions corresponding to the spatial relationships 
described above, as opposed to handcrafted rules. A simple 
frequency counting approach suffices to generate all the discrete 
pdfs. Example pdfs for the relationship above are shown in 
Tables 1 and 2 for beach and open-water. For example, the sixth 
row in Table 1 shows that any region above a water region is 
most likely to be sky or cloud; snow and pavement do not occur 
at all. Note that the relationship between sand and water is much 
different for open-water scenes and beach scenes; for beach 
scenes, water almost always occurs above sand, while for open-
water scenes, sand, when it occurs, occurs above water (as 
discussed in the Introduction). 

 
Table 1: Beach-specific pdf for B above A for ten 
materials for which we have detectors: Blue Sky, 
Clouds, Grass, Foliage, Snow, Water, Sand, Pavement, 
Rocks, and Manmade structures. 

A\B Sky Clo Gra Fol Sno Wat San Pav Roc Man 

Sky 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Clo 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Gra 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fol 0.02 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Sno 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Wat 0.12 0.14 0.00 0.03 0.00 0.00 0.01 0.00 0.01 0.02 

San 0.03 0.04 0.00 0.04 0.00 0.17 0.01 0.00 0.03 0.03 

Pav 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Roc 0.01 0.02 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 

Man 0.03 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

 
Table 2: Open-water-specific pdf for B above A. 

 A\B Sky Clo Gra Fol Sno Wat San Pav Roc Man 

Sky 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Clo 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Gra 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fol 0.03 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sno 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Wat 0.01 0.24 0.00 0.07 0.00 0.00 0.01 0.00 0.01 0.20 

San 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pav 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Roc 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Man 0.03 0.19 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 

 
2.3. Comparison with other spatial models 

 
In previous work [9], we used a full spatial configuration 

model, equivalent to replacing the pairwise spatial factor with a 
single factor connecting the scene with all n regions. The 
advantage was that we obtained an exact representation of the 
probability density over scenes and regions and inference was 
guaranteed to converge. Graph-based smoothing was used to 
populate the high-dimensional pdf. However, a different pdf was 
needed for each spatial arrangement and each number of regions, 
which can preclude this model’s use in real applications. 

Pairwise approximations of spatial relationships can alleviate the 
problem. 

Singhal, et al. [5] approximated spatial constraints using a 
series of non-loopy Bayesian networks, solved iteratively. Our 
single factor graph eliminates the need for a series of models. While 
loopy belief propagation is not guaranteed to converge, it has been 
shown to have nice properties [10]. While our topology is different, 
it is still symmetric, as was in [5]. 

Markov Random Fields also have been used to incorporate 
spatial context in low-level vision applications (e.g., [10]). For a 
pairwise spatial-context only model, we could take a similar 
approach; in fact, removing the scene node from the factor graph 
yields a graph equivalent to a typical two-level MRF used in [10] 
but with a fully-connected scene structure. However, without a 
scene node, we would be required to have an MRF for each scene 
type. The factor graph provides a unified model for both scene 
context and spatial context. 
 

3. EXPERIMENTAL RESULTS 
 

We have a database composed of 865 consumer and stock 
photo images in six classes: Beach, Field, Mountain, Open-water, 
Urban-street, and Suburban. Note that this database is not the same 
as the one used in [5] because it only contains these scene types. 

Each image in the database is automatically segmented [11], 
and the semantically-critical regions are manually labeled with their 
true materials (i.e., ground truth). The ground truth labels 
correspond to those ten materials for which we have detectors, 
listed in the caption to Table 1. Other regions are left unlabeled. 

Our baseline detectors are based on color and texture features, 
similar to the common approach used in [1-4]. First, color (LUV) 
and texture (6 high-frequency coefficients from a 2-level wavelet 
transform) features are computed on the input image. The features 
are fed to trained neural-networks, which produce a probability or 
belief value for each pixel in the image according to the color and 
texture characteristics. The collection of pixel belief values forms a 
pixel belief map. After pixel classification, spatially contiguous 
regions are obtained from the raw pixel belief map after 
thresholding the belief values. The belief value of each region is the 
average belief values of all pixels in the region.  

While we have actual detectors, we are also interested in 
determining the usefulness of the context models on a wider range 
of detector performance. To simulate different faulty detectors, we 
randomly perturbed the ground truth to create simulated detector 
responses. We set the detection rates of individual material 
detectors on each true material (both true positive rates, e.g., how 
often the grass detector fires on grass regions, and false positive 
rates, e.g., how often the grass detector fires on water regions) by 
counting performance of corresponding actual detectors on a 
validation set (or estimating them in the case of detectors to be 
developed in the future). When they fire, they are assigned a belief 
that is distributed normally with mean µ. The parameter µ can be 
set differently for true and false positive detections; varying the 
ratio between the two is a convenient way to simulate detectors with 
different operating characteristics. 

Table 3 shows the comparison between material detection 
accuracy in two cases (average 67% and 75% baselines); we 
compare the proposed scene context model (MAP), with the 
baseline - a context-free model (MLE), and the previous general 
spatial context model (MAPGen). We use cross validation, learning 
the pdfs (e.g. Tables 1 and 2) from part of the database while testing 
on the remainder. Note that we simulate the general spatial context 



model by fixing the scene variable so that each scene is equally 
likely. (This has the same effect as replacing the scene-specific 
pdfs with a general pdf obtained by averaging the scene-specific 
pdfs.) Therefore, it is not identical to the one in [5], which was 
derived from more than the six scene types in this study and 
encoded using a Bayes network. We intend to perform a more 
rigorous comparison in the near future.  

 
Table 3: Improvement due to scene-context model (MAP) vs. 

spatial-only context (MAPGen) and no context (MLE). 
Class Scene-

context 
(MAP) 

Spatial-only 
context 

(MAPGen) 

Context-free 
(MLE) 

Beach 78.7 53.2 75.6 
Field 86.0 84.7 76.2 

Mountain 75.1 45.3 74.8 
Open-water 87.9 86.7 62.6 

Street 81.2 78.8 76.5 
Suburban 79.6 73.6 77.3 

All 80.5 66.8 75.3 
 
Figure 3 shows an example where scene context corrects a 

mislabeling due to misdetection and due to a spatial-only model. 
The ground truth consists of clouds, sky, and grass. In the MLE 
case, the snow detector fires, and the cloud is mislabeled as 
snow (a common error due to the similar characteristics of 
clouds and snow), whereas the field-specific spatial model 
corrects it, as snow is unlikely in field scenes. For the grass 
region, both the grass and foliage detectors fired, giving 
approximately equal belief in each label. The general spatial 
model changed the labeling to foliage, as foliage occurs below 
sky more often in the data set as a whole (particularly in 
suburban and mountain images). However, grass more 
commonly occurs under sky in Field scenes, so the field-specific 
spatial model retains the original belief in grass. 

 
4. CONCLUSIONS AND FUTURE WORK 

 
We have demonstrated a context-based approach to 

improved object detection. In particular, the scene type-specific 
context, in the form of factor graphs, is obtained by learning and 
subsequently used via MAP estimation to reduce 
misclassification by constraining the object detection beliefs to 
conform to the spatial context models. Experimental results 
show that the richer spatial context models improve the accuracy 
of object detection over the individual object detectors and the 
general outdoor scene model. 

One obvious area of improvement in the future is in the 
individual natural object detectors. Our current sky detector 
performs well individually with mid-90% accuracy [12], even 
without orientation. However, the remaining detectors have 
accuracies of in the range of 50 to 85% and can be substantially 
improved. However, we are keenly aware of the fact that, with 
improved individual detectors, the benefit of spatial context 
diminishes; with near perfect detectors, at which point there is 
no need for improvement, the use of spatial context is expected 
to hurt the performance. 
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Fig. 3. A field example showing improvement due to scene-
specific spatial model over both baselines. 
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