
ADAPTIVE LIVE STREAMING OVER ENTERPRISE NETWORKS

D. S. Turaga1, A. Abd El Al2, C.Venkatramani1, O. Verscheure1
1IBM T.J. Watson Research Center, Hawthorne. 2City University of New York

{turaga, chitrav, ov1}@us.ibm.com aabdelal@ieee.org

ABSTRACT
In this paper we present multimedia adaptation strategies for
live video streams, at the streaming server, where we switch
among several versions of the coded multimedia to match the
available network bandwidth accurately, and meet client
delay constraints. We estimate information about the
available network bandwidth, at the server, by monitoring the
application buffer and then decide to adaptively switch up or
switch down the transmitted bit-rate. We use a piecewise
linear model for the network bandwidth to estimate the
current and future server buffer drain delay, and derive the
transmission rate to minimize client buffer starvation. We
implement these strategies in an enterprise streaming system
and verify the performance, in terms of the network fidelity
and received video quality, using both real as well as
simulated network traces.

1. INTRODUCTION
The streaming of multimedia over enterprise networks is
gaining momentum. While enterprise multimedia streaming
faces many challenges similar to internet multimedia
streaming, there are additional requirements and advantages
specific to it. Firstly, an enterprise owns and can control the
network, and thus issues of multimedia server placement,
content distribution, enforcement of network policy all are
specific to the enterprise network, and can differ significantly
from the internet case. Secondly, since data in enterprise
networks is commercially valuable, care needs to be taken to
ensure that the multimedia streams are “friendly” to other
streams, go through firewalls, and can be adapted to account
for varying bandwidths and user requirements. In this paper
we present server multimedia adaptation algorithms for
Adaptive Rich Media Streaming (ARMS) over enterprise
networks using TCP transport. TCP has been viewed as
unsuitable for real-time traffic due to its lack of throughput
guarantees and insistence on reliability [1] with an additive
increase multiplicative decrease (AIMD) flow control.
Recent work [2] has shown that TCP generally provides good
streaming performance when the achievable TCP throughput
is roughly twice the media bitrate, with only a few seconds of
startup delay Of course, with TCP, the transport is ensured to
be friendly to other flows sharing the same network, unlike
the TCP-friendly implementations of other protocols, that
cannot achieve friendliness at all time-scales. And more
importantly, in many situations streaming over TCP is
unavoidable, such as when the client machines are located

behind network firewalls permitting only inbound HTTP
traffic.

Multimedia adaptation has been studied for internet
applications, and the adaptive control schemes can be
classified into receiver-driven, sender-driven and
transcoder-based. Receiver driven schemes allow receivers
individually to tune the received transmission according to
their needs and capabilities. Mehra and Zakhor [8] modify
the TCP protocol at the receiver end to provide video
streams a nearly CBR connection over a bandwidth limited
access link. Hsiao et al [3] present Receiver-based Delay
Control (RDC) in which receivers delay TCP ACK packets
based on router feedback to provide constant bit rate for
streaming. While receiver buffers can be used for smoothing
out rate fluctuations, buffering is limited by the end-to-end
latency limit.

A majority of the sender-driven algorithms may be
grouped under quality adaptation schemes. Quality
adaptation techniques can further be classified into on-the-
fly encoding, adding/dropping layers, and switching among
multiple encoded versions. Kanakia et al [5] estimate the
buffer occupancy and the service rate received by the
connection at the bottleneck queue through periodic
feedback messages from the network. These estimates are
used to control the transmission rate of each video frame on-
the-fly by adjusting the encoder quantization factor.
However, in general, on-the-fly encoding is CPU intensive
and thus regarded as unsuitable for streaming live video.
This is especially true when the sender has to service many
different clients with different bandwidth requirements. In
the adding/dropping layers scheme, the video stream is
partitioned into several layers using scalable coding
schemes such as MPEG-4 FGS or interframe wavelet video
encoding. Video streaming applications can add or drop
enhancement layers to adjust the transmission rate to the
available bandwidth. In the switching-versions scheme, the
video is encoded at different rates, and therefore different
quality levels, and each of these versions is made available
to the streaming server as an independent stream. The server
detects changes in available bandwidth and switches among
the input streams, in order to adapt the transmission rate to
the available bandwidth. Quality adaptation that is based on
multiple encoded versions has been shown to provide better
viewing quality than adding/dropping layers, due to the
layering overhead [4].

Besides quality adaptation, scheduling algorithms
may also be used to improve the multimedia streaming

0-7803-9332-5/05/$20.00 ©2005 IEEE

adaptation. Saparilla and Ross [6] prefetch portions of the
video into the client buffer as bandwidth is available.
Transcoder-based schemes [9] decode and re-encode the
video at gateways placed at appropriate locations to deliver
different levels of quality to clients with different
bandwidths.

In this paper we focus on sender-driven quality
adaptation, for live video streams, to minimize any overheads
at the client. In particular, we focus on quality adaptation
using stream switching, as it has been shown to provide
better viewing quality than adding/dropping layers, due to the
layering overhead [4]. We introduce a mechanism for
adaptive stream switching for live video that does not require
either modifications to the network transport protocol at the
sender or at the receiver, or support from the network
infrastructure. The mechanism detects the variations of the
network bandwidth through monitoring the application buffer
occupancy, and accordingly adapts the video quality to
ensure that the client buffer does not underflow and that the
adaptation affects the perceptual quality at the client
minimally.

This paper is organized as follows. We describe our
system architecture in Section 2, and the adaptation
mechanisms, including the network bandwidth measurement,
switching down and switching up strategies in Section 3. We
finally present results in Section 4 to validate these
algorithms. We include a brief discussion on improving these
results by modifying TCP buffers in Section 5, and conclude
in Section 6.

2. SYSTEM ARCHITECTURE

We consider the live streaming of adaptive media streams
over enterprise networks with reliable transport. Our scenario
is illustrated by Figure 1. Multiple quality streams feed the
adaptive media server. These streams may be independent
encodings of the media at different bit-rates, resolutions,
frame rates etc. Also, additional streams may be derived from
each independent encoding by discarding parts of the stream.
For e.g., from a stream with a GOP structure, IBPBP we can
derive two additional sub-streams corresponding to lower
frame-rates by: a) dropping all B and P frames b) dropping
all B frames. The server selects one of those streams ()tr and
injects it into the server buffer. The server buffer is drained
as fast as the reliable network connection permits, i.e. ()tx .
The network output ()tx* is fed into the client buffer. The
media player starts emptying the client buffer at the encoding
rate ()tr after a playback delay of D units of time.

Switching
Strategy

Adaptive
Media Pump

Streaming Server/Proxy

TCP
Network

Client

Server
Buffer

Client
Buffer

()tx ()tx* ()tr

()tB D

Figure 1: Streaming System Architecture

In this paper we present an optimized switching strategy at
the streaming server that maximizes perceived quality at the
client under varying network bandwidth conditions, given N
constant bit rate (CBR) input media streams. We measure
quality in terms of the achieved average bit rate, variations
in the quality at the client, and data loss due to client buffer
starvation which can result in frame drops or freezes in the
video display, to allow for re-buffering.

3. STREAM SWITCHING STRATEGIES

A key requirement of our system is the estimation of
network bandwidth. In the case of TCP-based streaming,
this is not straightforward since TCP hides the network
congestion status from the application. In this work we
estimate the current available channel rate)(~

ktx at sampling

instant kt as the rate at which the server buffer empties.
Clearly this estimation is highly variable (noisy
measurements). Thus we calculate ()ktx as its exponential
average; i.e. ())(~)1()(1 kkk txtxtx ρρ −+= − .
Consider that we have N available video streams (different
encodings or derived sub-streams) with corresponding bit-
rates jV (Nj ,,2,1 …=) and we make the decision to

switch at discrete time instances kt . In this discussion we
have assumed that the stream bit rates do not change with
time. This is true when the encoder has effective rate
control, and all the data from the encoder reaches the server.
When these assumptions are violated, we need to estimate
these stream bit-rates. We present different strategies to
make this decision:
3.1. Switching Down Strategies
Let R, X, X* be the cumulative values of the flows r, x and

x*. That is, () ()∫=
T

dttrTR
0

 denotes the number of bits of the

media flow ()tr in [0, T].

3.1.1. Instantaneous Decision Strategy
Client buffer starvation is avoided if ())(* DtRtX −≥ , for all
time t. Thus, the condition on the media stream feeding the
server buffer can be written as).()(* DtXtR +≤ In general

)()()(* ttcpbuftXtX −= , where tcpbuf corresponds to
the TCP buffers as discussed in Section 5. We assume the
number of packets in-flight is small in comparison to the
server buffer size. Therefore, ())(* tXtX = and the no-
starvation condition becomes)()(DtXtR +≤ . So, by
monitoring the evolution of the network channel using ()tX
and by predicting the amount of data the network will
remove from the server buffer in the time interval (t, t+D],
we can derive an optimized switch-down strategy. This
prediction requires a model of the network channel
bandwidth process; e.g. Gaussian autoregressive [1],
fractional Brownian motion [2]. Here we adopt a very

simple, deterministic piecewise-linear model with
)()()(**

kkk txttXttX +=+ .
Note that our work can easily adopt a different

network model. We illustrate the switch-down strategy in
Figure 2.

)(ktB

D

()tX

()tR

()DtR −

kt Dtk +

()DtX k +
)(kt∆

D

time

bits

1+kt

)(kk tt ∆+

)(ktR

Figure 2: Decision for stream switching

We may equivalently formulate this decision
strategy in terms of the buffer drain delay)(kt∆ , defined as
()

)(k

k

tx
tB

 under our simple network model assumption (see

Figure 2). Hence, in order to prevent client buffer starvation,
we want Dtk <∆)(. Hence, whenever we
observe Dtk α>∆)(, we reduce the input rate to the largest
available rate smaller than)(ktx . The conservative factor
α (10 << α) is introduced to account for possible variations
in the input and output rates during sampling
interval [)1, +kk tt . Hence, we select { }j

txV
Nj

k Vtr
kj)(

,,1
max)(
<
=

=
…

. The

factor α should be selected based on the expected variations
in the rates.
3.1.2. Look Ahead Decision Strategy
Variations and inaccuracies in the measured rates can lead to
the instantaneous strategy being too conservative, and
switching down too aggressively, thereby under-utilizing the
available bandwidth. In order to avoid this, we additionally
look at the rate of change of)(t∆ . If the measured output rate
does not change significantly (especially as compared against
the difference in rate between the current input rate jV and

the next lower rate kV) and we observe that)(t∆ is
decreasing, then we would like to wait before switching

further down. Since
() ()

)(
)(

k

kk
k tx

tXtR
t

−
=∆ , we may compute

the rate of change
() ()

)(
)(

k

kk
k tx

txtr
t

−
≈∆′ (assuming that

() ()1−≈ kk txtx). Using this we may estimate the buffer drain
delay in the future as () () ()()kkkkk ttttt −∆′+∆=∆ ++ 11 . If
() Dtk β<∆ +1 , where β (10 << β) is another conservative

factor introduced to account for possible variations in the
input and output rates, we should not switch down any
further, otherwise we should continue to switch down. Using

the above equation, we can also determine the input rate to

switch down to as () () ()
() ()k

kk

kk
k tx

tt
tBtDx

tr +
−
−

≤
+1

β
. This

strategy can avoid unnecessarily aggressive reductions and
stream switches in the input rate by sometimes borrowing
from, and sometimes provisioning for the future. However,
it also makes assumptions that the output rate does not
change significantly over the interval [)1, +kk tt . Hence, when
the timescale of network variations is smaller than the
sampling interval (i.e. the network conditions change
rapidly) the instantaneous decision is likely to outperform
the look-ahead decision, and vice-versa.
3.1.3. Combined Decision Strategy
We may combine the benefits of these two decision
strategies, and the algorithm may be written as:
 1. Compute buffer fullness ()ktB and estimate ()ktx . Set () ()1−= kk trtr .

2. Estimate ()kt∆ and ()1+∆ kt

3. If Dtk α>∆)(and () Dtk β>∆ +1
Determine upper bound on input rate

() ()
() () ()

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

=
+

kk
kk

kkMax txtx
tt

tBtDx
r ,max

1

β

Select () { }j

rV
Njk Vtr

Max
j <
=

=
,,1

max
…

 Else
 Test whether we can switch up
4. Wait until next sampling interval. Goto Step 1.

Figure 3. Combined switching down decision strategy

3.2. Switching Up Decision Strategy
We cannot switch up the streaming rate rapidly as it can
actually create congestion in the network and thereby lead to
oscillations between switching up and switching down.
However, as there is no explicit signal indicating when the
server should switch up, our mechanism performs active
experiments by probing the network to ensure that there is
enough capacity for the next higher streaming rate. We call
these experiments, switch-experiments. The switch
experiment is triggered whenever the server does not
experience a congestion event for an interval i

ET referred to
as the Inter-Experiment timer.

The server then switches to the next higher
available streaming rate, such that ()

()
{ }j

trV
Njk Vtr
kj 1
,,1

min
−>

=
=

…
 and

each experiment lasts for a maximum duration of ST .
During the experiment the server continues to monitor the
network and if no congestion is caused, due to the
experiment, the server stays at the higher rate. However, if
congestion is detected, as indicated in Step 3 of the
combined switch down algorithm, the sender reverts to the
lower rate. The sender also learns from failed experiments
by exponentially backing off the i

ET for this rate, before
retrying the experiment. The exponential back-off is
performed as ()max11 ,min E

i
E

i
E TTT ++ = γ where max

ET is the

maximum Inter-Experiment timer, and γ is a back-off factor.
We clamp the back-off at a maximum to guarantee the sender
will periodically probe for spare bandwidth. The Inter-
Experiment timer of the new stream is reset to initial
value init

ET , when the switch experiment to this stream
succeeds. The switching experiment duration ST starts with

an initial value init
ST and is updated using an exponential

moving average of the time difference between starting a
switching experiment to the failure detection timeIn order to
summarize the description of our overall adaptation strategy,
we represented it as a flow diagram as in Figure 4.

Ongoing switch-
up experiment ?

Congestion
detected?

Switch Down

Ongoing switch-
up experiment?

Terminate Switch Up Expt.
Exponentially increase TE
Update Ts

Switch Up

Switch Up Expt. Successful.
Terminate Expt. Reset TE.

Time diff from prev.
switch time > TE?

Time diff from switch
up time > TS?

Yes

Yes

No

Yes

Yes

No

No

Yes

No

Start

No

Figure 4. Flow diagram for adaptation

In the flow diagram we omit details for simplicity.
For instance, we determine the rate to switch down to as in
Step 3 of the combined switch down algorithm.
3.3. Determining the Adaptation Parameters
The performance of our adaptation strategies is controlled by
a set of different parameters that include the sampling
interval, the buffer drain time parameters α and β, the switch
up times init

ST and init
ET , and the exponential back-off

parameter γ. We should keep our sampling interval small so
that we can effectively track the network bandwidth
variations. However, a small sampling interval leads to larger
overheads in system complexity and transmitted bandwidth
(packets within a sampling interval can be aggregated and
transmitted together to reduce network overheads.). In order
to tradeoff these conflicting goals, we select the sampling
interval based on the available network bandwidth; sample at
small intervals when the network bandwidth is high
(variations are likely to be more frequent) and sample at
larger intervals when the network bandwidth is low
(variations likely to be less frequent). We can do this by
sampling every time we transmit a fixed number of bytes.
Empirically, we have determined that sampling every time
we transmit ~16000 bytes (since we transmit complete
packets) provides a good tradeoff for the adaptation. The
other adaptation parameters have been tuned empirically to
provide a good visual quality, however we can derive
analytical bounds on their values based on the statistical
properties of the network and video bit-rates. This is a
direction of future research.

4. RESULTS
In order to examine our proposed mechanism, we
implemented the adaptation mechanism within the IBM’s
Adaptive Rich Media Streaming system [9]. Our testbed
consists of a live source attached to an ARMS broadcaster
that is connected to the video server via 100 Mbps Ethernet.
The client connects to the server via a NIST Net box which
is used to control the bandwidth between the server and the
client. The testbed is shown in Figure 5.

Video/Audio
Source

ARMS Broadcaster ARMS Video Server

100 Mbps

ARMS Video Player

100 Mbps

Nist Net

Video/Audio
Source

ARMS Broadcaster ARMS Video Server

100 Mbps

ARMS Video Player

100 Mbps

Nist Net

Figure 5. Performance study testbed

At the broadcaster, we use two independent
encodings of 320×240 video, one at 512 Kbps and 15
frames per second (fps), and the other at 260 Kbps at 10 fps.
From these we derive multiple sub-streams, by dropping
frames, with bit-rates jV (512, 417, 334, 255, 251, 213, 85
Kbps). The audio bit rate is fixed and equal to 32 Kbps. The
adaptation mechanism parameters are: N = 3, D = 3 sec , γ
= 2, 10=init

ET sec, 60max =ET sec, 10=init
ST sec.

Additionally, we select the parameters α = 0.4, and β = 0.5.
We generate random traces as sequences of

independent and identically distributed (iid) random
variables (each corresponding to a fixed bandwidth for a
duration of 15 seconds) generated from a uniform
distribution with values {200, 400, 600} corresponding to
intermediate bit-rates in our available streams. We present
sample results (~500 seconds) to highlight the performance
of our adaptation and compare the instantaneous and
combined decision strategies.

Figure 6. Adaptation performance for random trace

In the graphs we plot the network trace against the
measured bandwidth at the client that uses a 2 second
averaging moving window with overlaps of 1 second. As
expected, the instantaneous decision leads to over-
aggressive switching down, thereby not following the
network trace accurately, unlike the combined decision
strategy. However, as we have mentioned before, bandwidth
fidelity is not the only performance metric we evaluate. We
also measure the number of stream switches and the number
of dropped packets (due to server buffer overflow). The
combined adaptation outperforms the instantaneous

adaptation both in terms of the achieved bandwidth as well as
in terms of a smaller number of stream switches. However, it
has a larger number of lost packets. We quantify these results
for a real network trace that was collected over 70 minutes
with 50 active TCP connections and the bandwidth varied
between 700 Kbps and 120 Kbps. At the broadcaster, we
again create two independent encodings of 320×240 video,
one at 512 Kbps and 15 fps, and the other at 260 Kbps at 10
fps. The multiple sub-streams with bit-rates jV are shown in
Table 1.

Table 1. Generated streams for real trace experiment

Encoding

Sub-
Stream GOP Structure Bit-Rate

(kbps)
1 I B B B P B B B P… 255
2 I B X B P B X B P… 213
3 I X B X P X B X P…. 171
4 I X X X P X X X P… 129

1

5 I X X X X X X X P… 85
1 I B B P B B P… 512
2 I B X P B X P… 417 2
3 I X X P X X P… 334

The audio stream is again maintained at 32 Kbps.

We show the adaptation performance over 3000 seconds in
Figure 7.

Figure 7. Adaptation performance for real trace
Clearly, the instantaneous decision strategy is overly

conservative leading to many switches down and under-
utilization of the available bandwidth. We now present the
number of stream switches and the number of dropped
packets in Table 2.

Table 2. Adaptation performance results for real trace
 Inst.

Adapt.
Comb.
Adapt.

Achieved Average Bit-Rate
(kbps) 355 380

Number of Stream Switches 324 118
Number of Lost Packets
(Audio and Video)

65
(0.14%)

459
(0.8%) Data

Loss
Number of lost video frames 7 92

The combined strategy has better achieved
bandwidth as well as fewer stream switches, but has more
lost frames. However, a majority of frames lost are B frames,
and hence do not contribute to any error propagation. The
number of lost P frames (37) is smaller than the number of
times that the instantaneous decision switches down to an all
I channel, or worse to only audio, which means that the
visual interruptions for the combined decision are fewer than
for the instantaneous strategy. We also use subjective quality
assessments to validate these observations. A direction of
further research is combining these numbers into one visual
quality metric.

5. CONTROLLING TCP BUFFERS

Buffers that the TCP implementation maintains lead to the
adaptation mechanism getting delayed feedback from the
network. The TCP sender uses a congestion window
indicated by the variable cwnd to estimate the appropriate
congestion window size and also a fixed size send buffer
(sendbuf) to store application data before the data is
transmitted. We propose to dynamically limit the TCP
sendbuf size. This is possible on Linux and Windows using
the setsockopt system call. We chose to set it to be 2*cwnd,
which ensures that the TCP has a window worth of unsent
data to keep the self-clock of acknowledgments flowing.
The proposed modification can be implemented at the
application level by monitoring cwnd and adapting sendbuf
size and ensuring that the sending buffer occupancy does
not exceed 2*cwnd. This enables us to adapt more
accurately to network conditions. To examine the combined
adaptation mechanism with the sender buffer scaling
optimization, we implemented the mechanism in Opnet
network simulation tool [14]. We chose to add this feature
to the TCP implementation and determined that it does not
affect the TCP throughput for other connections, as also
shown by other authors [13]. We used a topology where the
server streams to a client over a bottleneck link of 5Mbps
bandwidth and 10ms round trip time, shared with n other
TCP sources.

We examined the adaptability of our proposed
mechanism. To vary the bandwidth between server and
client, we used different number of TCP connections (20-
40) for simulation times varying between 0 and 70 minutes.
The figure above shows the available TCP bandwidth and
the video stream rate received at the client. We compared
the stream rate achieved by the proposed adaptation
mechanism with and without the TCP sender buffer scaling.
The results show that although the adaptation mechanism
without the buffer scaling is able to track the available
bandwidth, using the buffer scaling will allow the
application to track the available bandwidth more
accurately, validating our hypothesis.

6. CONCLUSIONS

We develop server adaptation mechanisms, for live
multimedia streaming over enterprise networks (using TCP

0
20
40
60
80

100
120
140
160
180
200
220

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

Time (Sec.)

Th
ro

ug
hp

ut
 (K

bp
s)

Bandwidth
Combined adaptation
Combined adaptation + Buffer scaling

Figure 8. Stream-rate with adaptive TCP buffers.

for transport). The server estimates information about the
available network bandwidth by monitoring the application
buffer and performs stream switching to meet bandwidth and
delay constraints. We investigate instantaneous and look-
ahead strategies for switching down the transmission rate,
and switch up the rate in a controlled manner after observing
periods of no congestion. We use a piecewise linear model
for the network bandwidth to estimate the current and future
server buffer drain delay, and derive the transmission rate to
minimize client buffer starvation. We evaluate these
algorithms over an enterprise video streaming system based
on the IBM VideoCharger platform. We compare the
performance of these algorithms in terms of their effect on
the decoded video quality by measuring the average
streaming bandwidth achieved by the algorithm, the number
of stream switches, and the data loss (caused due to server
buffer overflow). The strategy with combined look-ahead and
instantaneous decisions can follow the network bandwidth
accurately, while minimizing stream switches, and providing
high visual quality.

Directions for future research include developing
analytical methods to determine the parameters of our
adaptation algorithms, including α, β, the switch up times

init
ST and init

ET , and the exponential back-off parameter γ. We
are also tuning the parameters of the adaptation to be able to
receive information from TCP with less of a delay. Finally,
we are investigating methods of integrating these different
performance metrics into one visual quality metric that is
consistent with subjective quality evaluations.

REFERENCES

[1] C. Krasic, K. Li, J. Wapole, “The case of streaming
Multimedia with TCP”, Proceedings of the 8th
International Workshop on Interactive Distributed
Multimedia Systems (IDMS), 2001.

[2] B. Wang, J. Kurose, P. Shenoy and D. Towsley,
“Multimedia Streaming via TCP: An analytic
performance study,” Proceedings of ACM Multimedia,
New York, October 2004.

[3] P. Hsiao, H. Kung, K. Tan, “Streaming Video over TCP
Receiver-based Delay Control”, Proceedings of ACM
NOSSDAV, 2001.

[4] P. Cuetos, D. Saparilla, K. Ross, “Adaptive Streaming of
Stored Video in a TCP –Friendly Context: Multiple
Versions or Multiple Layers?”, International Packet
Video Workshop, Korea, April 2001.

[5] H. Kanakia, P. Mishra, A. Reibman, “An adaptive
congestion control scheme for real-time packet video
transport”, SIGCOMM Symposium on Communications
Architectures and Protocols, California, Sep. 1993.

[6] D. Saparilla and K. Ross, “Streaming Stored Continuous
Media over Fair-Share Bandwidth”, NOSSDAV 2000,
Chapel Hill, 2000.

[7] M. Jain, C. Dovrolis, “End-to-End Available Bandwidth:
Measurement, Methodology, Dynamics, and Relation

with TCP Throughput”, Proceedings of SIGCOMM,
Pennsylvania, 2002.

[8] P. Mehra and A. Zakhor, "TCP-Based Video Streaming
Using Receiver-Driven Bandwidth Sharing",
Proceedings of the 13th International Packet Video
Workshop, France, April 2003.

[9] E. Amir, S. McCanne, H. Zhang, “An application level
video gateway“, Proceedings of ACM Multimedia, San
Francisco, Nov. 1995.

[10] C. Venkatramani, P. Westerink, O. Verscheure, P.
Frossard, “Securing Media for Adaptive Streaming”,
Proceedings of ACM Multimedia, California, Nov.
2003.

[11] Nist Net Network Emulator,
http://snad.ncsl.nist.gov/itg/nistnet/.

[12] H. Radha, M. van der Schaar, Y. Chen, “The
MPEG-4 Fine-Grained Scalable video coding method
for multimedia streaming over IP,” IEEE Transactions
on Multimedia, vol. 3, no. 1, pp. 53-68, March 2001.

[13] J. Semke, J. Mahdavi, M. Mathis, "Automatic TCP
Buffer Tuning," Computer Communication Review,
ACM SIGCOMM, volume 28, number 4, Oct. 1998.

[14] Opnet Network Simulator, www.opnet.com

	Index
	ICME 2005

	Conference Info
	Welcome Messages
	Venue Access
	Committees
	Sponsors
	Tutorials

	Sessions
	Wednesday, 6 July, 2005
	WedAmOR1-Action recognition
	WedAmOR2-Video conference applications
	WedAmOR3-Video indexing
	WedAmOR4-Concealment & information recovery
	WedAmPO1-Posters on Human machine interface, interactio ...
	WedAmOR5-Face detection & tracking
	WedAmOR6-Video conferencing & interaction
	WedAmOR7-Audio & video segmentation
	WedAmOR8-Security
	WedPmOR1-Video streaming
	WedPmOR2-Music
	WedPmOR3-H.264
	WedPmSS1-E-meetings & e-learning
	WedPmPO1-Posters on Content analysis and compressed dom ...
	WedPmOR4-Wireless multimedia streaming
	WedPmOR5-Audio processing & analysis
	WedPmOR6-Authentication, protection & DRM
	WedPmSS2-E-meetings & e-learning -cntd-

	Thursday, 7 July, 2005
	ThuAmOR1-3D
	ThuAmOR2-Video classification
	ThuAmOR3-Watermarking 1
	ThuAmSS1-Emotion detection
	ThuAmNT1-Expo
	ThuAmOR4-Multidimensional signal processing
	ThuAmOR5-Feature extraction
	ThuAmOR6-Coding
	ThuAmSS2-Emotion detection -cntd-
	ThuPmOR1-Home video analysis
	ThuPmOR2-Interactive retrieval & annotation
	ThuPmOR3-Multimedia hardware and software design
	ThuPmSS1-Enterprise streaming
	ThuPmNT1-Expo -cntd-
	ThuPmOR4-Faces
	ThuPmOR5-Audio event detection
	ThuPmOR6-Multimedia systems analysis
	ThuPmOR7-Media conversion
	ThuPmPS2-Keynote Gopal Pingali, IBM Research, "Ele ...

	Friday, 8 July, 2005
	FriAmOR1-Annotation & ontologies
	FriAmOR2-Interfaces for multimedia
	FriAmOR3-Hardware
	FriAmOR4-Motion estimation
	FriAmPO1-Posters on Architectures, security, systems &a ...
	FriAmOR5-Machine learning
	FriAmOR6-Multimedia traffic management
	FriAmOR7-CBIR
	FriAmOR8-Compression
	FriPmOR1-Speech processing & analysis
	FriPmSS1-Sports
	FriPmOR2-Hypermedia & internet
	FriPmOR3-Transcoding
	FriPmPO1-Posters on Applications, authoring & editi ...
	FriPmOR4-Multimedia communication & networking
	FriPmOR5-Watermarking 2
	FriPmSS2-Sports -cntd-
	FriPmOR6-Shape retrieval

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1 SIGNAL PROCESSING FOR MEDIA INTEGRATION
	1-CDOM Compressed Domain Processing
	1-CONV Media Conversion
	1-CPRS Media Compression
	1-ENCR Watermarking, Encryption and Data Hiding
	1-FILT Media Filtering and Enhancement
	1-JMEP Joint Media Processing
	1-PROC 3-D Processing
	1-SYNC Synchronization
	1-TCOD Transcoding of Compressed Multimedia Objects
	2 COMPONENTS AND TECHNOLOGIES FOR MULTIMEDIA SYSTEMS
	2-ALAR Algorithms/Architectures
	2-CIRC Low-Power Digital and Analog Circuits for Multim ...
	2-DISP Display Technology for Multimedia
	2-EXTN Signal and Data Processors for Multimedia Extens ...
	2-HDSO Hardware/Software Codesign
	2-PARA Parallel Architectures and Design Techniques
	2-PRES 3-D Presentation
	3 HUMAN-MACHINE INTERFACE AND INTERACTION
	3-AGNT Intelligent and Life-Like Agents
	3-CAMM Context-aware Multimedia
	3-CONT Presentation of Content in Multimedia Sessions
	3-DIAL Dialogue and Interactive Systems
	3-INTF User Interfaces
	3-MODA Multimodal Interaction
	3-QUAL Perceptual Quality and Human Factors
	3-VRAR Virtual Reality and Augmented Reality
	4 MULTIMEDIA CONTENT MANAGEMENT AND DELIVERY
	4-ANSY Content Analysis and Synthesis
	4-AUTH Authoring and Editing
	4-COMO Multimedia Content Modeling
	4-DESC Multimedia Content Descriptors
	4-DLIB Digital Libraries
	4-FEAT Feature Extraction and Representation
	4-KEEP Multimedia Indexing, Searching, Retrieving, Quer ...
	4-KNOW Content Recognition and Understanding
	4-MINI Multimedia Mining
	4-MMDB Multimedia Databases
	4-PERS Personalized Multimedia
	4-SEGM Image and Video Segmentation for Interactive Ser ...
	4-STRY Video Summaries and Storyboards
	5 MULTIMEDIA COMMUNICATION AND NETWORKING
	5-APDM Multimedia Authentication, Content Protection an ...
	5-BEEP Multimedia Traffic Management
	5-HIDE Error Concealment and Information Recovery
	5-QOSV Quality of Service
	5-SEND Transport Protocols
	5-STRM Multimedia Streaming
	5-WRLS Wireless Multimedia Communication
	6 SYSTEM INTEGRATION
	6-MMMR Multimedia Middleware
	6-OPTI System Optimization and Packaging
	6-SYSS Operating System Support for Multimedia
	6-WORK System Performance
	7 APPLICATIONS
	7-AMBI Ambient Intelligence
	7-CONF Videoconferencing and Collaboration Environment
	7-CONS Consumer Electronics and Entertainment
	7-EDUC Education and e-learning
	7-SECR Security
	7-STAN Multimedia Standards
	7-WEBS WWW, Hypermedia and Internet, Internet II

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Deepak Turaga
	Ahmed Abd El Al
	Chitra Venkatramani
	Olivier Verscheure

