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ABSTRACT 
In this paper we present multimedia adaptation strategies for 
live video streams, at the streaming server, where we switch 
among several versions of the coded multimedia to match the 
available network bandwidth accurately, and meet client 
delay constraints. We estimate information about the 
available network bandwidth, at the server, by monitoring the 
application buffer and then decide to adaptively switch up or 
switch down the transmitted bit-rate. We use a piecewise 
linear model for the network bandwidth to estimate the 
current and future server buffer drain delay, and derive the 
transmission rate to minimize client buffer starvation. We 
implement these strategies in an enterprise streaming system 
and verify the performance, in terms of the network fidelity 
and received video quality, using both real as well as 
simulated network traces.  
 

1. INTRODUCTION 
The streaming of multimedia over enterprise networks is 
gaining momentum. While enterprise multimedia streaming 
faces many challenges similar to internet multimedia 
streaming, there are additional requirements and advantages 
specific to it. Firstly, an enterprise owns and can control the 
network, and thus issues of multimedia server placement, 
content distribution, enforcement of network policy all are 
specific to the enterprise network, and can differ significantly 
from the internet case. Secondly, since data in enterprise 
networks is commercially valuable, care needs to be taken to 
ensure that the multimedia streams are “friendly” to other 
streams, go through firewalls, and can be adapted to account 
for varying bandwidths and user requirements. In this paper 
we present server multimedia adaptation algorithms for 
Adaptive Rich Media Streaming (ARMS) over enterprise 
networks using TCP transport. TCP has been viewed as 
unsuitable for real-time traffic due to its lack of throughput 
guarantees and insistence on reliability [1] with an additive 
increase multiplicative decrease (AIMD) flow control. 
Recent work [2] has shown that TCP generally provides good 
streaming performance when the achievable TCP throughput 
is roughly twice the media bitrate, with only a few seconds of 
startup delay Of course, with TCP, the transport is ensured to 
be friendly to other flows sharing the same network, unlike 
the TCP-friendly implementations of other protocols, that 
cannot achieve friendliness at all time-scales. And more 
importantly, in many situations streaming over TCP is 
unavoidable, such as when the client machines are located 

behind network firewalls permitting only inbound HTTP 
traffic. 

Multimedia adaptation has been studied for internet 
applications, and the adaptive control schemes can be 
classified into receiver-driven, sender-driven and 
transcoder-based. Receiver driven schemes allow receivers 
individually to tune the received transmission according to 
their needs and capabilities. Mehra and Zakhor [8] modify 
the TCP protocol at the receiver end to provide video 
streams a nearly CBR connection over a bandwidth limited 
access link. Hsiao et al [3] present Receiver-based Delay 
Control (RDC) in which receivers delay TCP ACK packets 
based on router feedback to provide constant bit rate for 
streaming. While receiver buffers can be used for smoothing 
out rate fluctuations, buffering is limited by the end-to-end 
latency limit.  

A majority of the sender-driven algorithms may be 
grouped under quality adaptation schemes. Quality 
adaptation techniques can further be classified into on-the-
fly encoding, adding/dropping layers, and switching among 
multiple encoded versions. Kanakia et al [5] estimate the 
buffer occupancy and the service rate received by the 
connection at the bottleneck queue through periodic 
feedback messages from the network. These estimates are 
used to control the transmission rate of each video frame on-
the-fly by adjusting the encoder quantization factor. 
However, in general, on-the-fly encoding is CPU intensive 
and thus regarded as unsuitable for streaming live video. 
This is especially true when the sender has to service many 
different clients with different bandwidth requirements. In 
the adding/dropping layers scheme, the video stream is 
partitioned into several layers using scalable coding 
schemes such as MPEG-4 FGS or interframe wavelet video 
encoding. Video streaming applications can add or drop 
enhancement layers to adjust the transmission rate to the 
available bandwidth. In the switching-versions scheme, the 
video is encoded at different rates, and therefore different 
quality levels, and each of these versions is made available 
to the streaming server as an independent stream. The server 
detects changes in available bandwidth and switches among 
the input streams, in order to adapt the transmission rate to 
the available bandwidth. Quality adaptation that is based on 
multiple encoded versions has been shown to provide better 
viewing quality than adding/dropping layers, due to the 
layering overhead [4].   

Besides quality adaptation, scheduling algorithms 
may also be used to improve the multimedia streaming 
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adaptation. Saparilla and Ross [6] prefetch portions of the 
video into the client buffer as bandwidth is available.  
Transcoder-based schemes [9] decode and re-encode the 
video at gateways placed at appropriate locations to deliver 
different levels of quality to clients with different 
bandwidths.  

In this paper we focus on sender-driven quality 
adaptation, for live video streams, to minimize any overheads 
at the client. In particular, we focus on quality adaptation 
using stream switching, as it has been shown to provide 
better viewing quality than adding/dropping layers, due to the 
layering overhead [4]. We introduce a mechanism for 
adaptive stream switching for live video that does not require 
either modifications to the network transport protocol at the 
sender or at the receiver, or support from the network 
infrastructure. The mechanism detects the variations of the 
network bandwidth through monitoring the application buffer 
occupancy, and accordingly adapts the video quality to 
ensure that the client buffer does not underflow and that the 
adaptation affects the perceptual quality at the client 
minimally. 

This paper is organized as follows. We describe our 
system architecture in Section 2, and the adaptation 
mechanisms, including the network bandwidth measurement, 
switching down and switching up strategies in Section 3. We 
finally present results in Section 4 to validate these 
algorithms. We include a brief discussion on improving these 
results by modifying TCP buffers in Section 5, and conclude 
in Section 6. 

 
2. SYSTEM ARCHITECTURE 

We consider the live streaming of adaptive media streams 
over enterprise networks with reliable transport. Our scenario 
is illustrated by Figure 1. Multiple quality streams feed the 
adaptive media server. These streams may be independent 
encodings of the media at different bit-rates, resolutions, 
frame rates etc. Also, additional streams may be derived from 
each independent encoding by discarding parts of the stream. 
For e.g., from a stream with a GOP structure, IBPBP we can 
derive two additional sub-streams corresponding to lower 
frame-rates by: a) dropping all B and P frames b) dropping 
all B frames. The server selects one of those streams ( )tr  and 
injects it into the server buffer. The server buffer is drained 
as fast as the reliable network connection permits, i.e. ( )tx . 
The network output ( )tx*  is fed into the client buffer. The 
media player starts emptying the client buffer at the encoding 
rate ( )tr  after a playback delay of D units of time. 
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Figure 1: Streaming System Architecture 

In this paper we present an optimized switching strategy at 
the streaming server that maximizes perceived quality at the 
client under varying network bandwidth conditions, given N 
constant bit rate (CBR) input media streams. We measure 
quality in terms of the achieved average bit rate, variations 
in the quality at the client, and data loss due to client buffer 
starvation which can result in frame drops or freezes in the 
video display, to allow for re-buffering.  

 
3. STREAM SWITCHING STRATEGIES 

A key requirement of our system is the estimation of 
network bandwidth. In the case of TCP-based streaming, 
this is not straightforward since TCP hides the network 
congestion status from the application. In this work we 
estimate the current available channel rate )(~

ktx  at sampling 

instant kt  as the rate at which the server buffer empties. 
Clearly this estimation is highly variable (noisy 
measurements). Thus we calculate ( )ktx  as its exponential 
average; i.e. ( ) )(~)1()( 1 kkk txtxtx ρρ −+= − . 
Consider that we have N available video streams (different 
encodings or derived sub-streams) with corresponding bit-
rates jV  ( Nj ,,2,1 …= ) and we make the decision to 

switch at discrete time instances kt . In this discussion we 
have assumed that the stream bit rates do not change with 
time. This is true when the encoder has effective rate 
control, and all the data from the encoder reaches the server. 
When these assumptions are violated, we need to estimate 
these stream bit-rates. We present different strategies to 
make this decision: 
3.1. Switching Down Strategies 
Let R, X, X* be the cumulative values of the flows r, x and 

x*. That is, ( ) ( )∫=
T

dttrTR
0

 denotes the number of bits of the 

media flow ( )tr  in [0, T]. 

3.1.1. Instantaneous Decision Strategy 
Client buffer starvation is avoided if ( ) )(* DtRtX −≥ , for all 
time t. Thus, the condition on the media stream feeding the 
server buffer can be written as ).()( * DtXtR +≤  In general 

)()()(* ttcpbuftXtX −= , where tcpbuf corresponds to 
the TCP buffers as discussed in Section 5. We assume the 
number of packets in-flight is small in comparison to the 
server buffer size. Therefore, ( ) )(* tXtX = and the no-
starvation condition becomes )()( DtXtR +≤ . So, by 
monitoring the evolution of the network channel using ( )tX  
and by predicting the amount of data the network will 
remove from the server buffer in the time interval (t, t+D], 
we can derive an optimized switch-down strategy. This 
prediction requires a model of the network channel 
bandwidth process; e.g. Gaussian autoregressive [1], 
fractional Brownian motion [2]. Here we adopt a very 



simple, deterministic piecewise-linear model with 
)()()( **

kkk txttXttX +=+ . 
Note that our work can easily adopt a different 

network model. We illustrate the switch-down strategy in 
Figure 2.  
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Figure 2: Decision for stream switching 

We may equivalently formulate this decision 
strategy in terms of the buffer drain delay )( kt∆ , defined as 
( )

)( k

k

tx
tB

 under our simple network model assumption (see 

Figure 2). Hence, in order to prevent client buffer starvation, 
we want Dtk <∆ )( . Hence, whenever we 
observe Dtk α>∆ )( , we reduce the input rate to the largest 
available rate smaller than )( ktx . The conservative factor 
α ( 10 << α ) is introduced to account for possible variations 
in the input and output rates during sampling 
interval [ )1, +kk tt . Hence, we select { }j

txV
Nj

k Vtr
kj )(

,,1
max)(
<
=

=
…

. The 

factor α should be selected based on the expected variations 
in the rates. 
3.1.2. Look Ahead Decision Strategy 
Variations and inaccuracies in the measured rates can lead to 
the instantaneous strategy being too conservative, and 
switching down too aggressively, thereby under-utilizing the 
available bandwidth. In order to avoid this, we additionally 
look at the rate of change of )(t∆ . If the measured output rate 
does not change significantly (especially as compared against 
the difference in rate between the current input rate jV  and 

the next lower rate kV ) and we observe that  )(t∆  is 
decreasing, then we would like to wait before switching 

further down. Since 
( ) ( )

)(
)(

k

kk
k tx

tXtR
t

−
=∆ , we may compute 

the rate of change 
( ) ( )

)(
)(

k

kk
k tx

txtr
t

−
≈∆′  (assuming that 

( ) ( )1−≈ kk txtx ). Using this we may estimate the buffer drain 
delay in the future as ( ) ( ) ( )( )kkkkk ttttt −∆′+∆=∆ ++ 11 . If 
( ) Dtk β<∆ +1 , where β  ( 10 << β ) is another conservative 

factor introduced to account for possible variations in the 
input and output rates, we should not switch down any 
further, otherwise we should continue to switch down. Using 

the above equation, we can also determine the input rate to 

switch down to as ( ) ( ) ( )
( ) ( )k

kk

kk
k tx

tt
tBtDx

tr +
−
−

≤
+1

β
. This 

strategy can avoid unnecessarily aggressive reductions and 
stream switches in the input rate by sometimes borrowing 
from, and sometimes provisioning for the future. However, 
it also makes assumptions that the output rate does not 
change significantly over the interval [ )1, +kk tt . Hence, when 
the timescale of network variations is smaller than the 
sampling interval (i.e. the network conditions change 
rapidly) the instantaneous decision is likely to outperform 
the look-ahead decision, and vice-versa. 
3.1.3. Combined Decision Strategy 
We may combine the benefits of these two decision 
strategies, and the algorithm may be written as: 
 1. Compute buffer fullness ( )ktB  and estimate ( )ktx . Set ( ) ( )1−= kk trtr . 

2. Estimate ( )kt∆  and  ( )1+∆ kt   

3. If  Dtk α>∆ )(  and ( ) Dtk β>∆ +1  
Determine upper bound on input rate 
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Figure 3. Combined switching down decision strategy 

3.2. Switching Up Decision Strategy 
We cannot switch up the streaming rate rapidly as it can 
actually create congestion in the network and thereby lead to 
oscillations between switching up and switching down. 
However, as there is no explicit signal indicating when the 
server should switch up, our mechanism performs active 
experiments by probing the network to ensure that there is 
enough capacity for the next higher streaming rate. We call 
these experiments, switch-experiments. The switch 
experiment is triggered whenever the server does not 
experience a congestion event for an interval i

ET  referred to 
as the Inter-Experiment timer. 

The server then switches to the next higher 
available streaming rate, such that ( )

( )
{ }j

trV
Njk Vtr
kj 1
,,1

min
−>

=
=

…
 and 

each experiment lasts for a maximum duration of ST . 
During the experiment the server continues to monitor the 
network and if no congestion is caused, due to the 
experiment, the server stays at the higher rate. However, if 
congestion is detected, as indicated in Step 3 of the 
combined switch down algorithm, the sender reverts to the 
lower rate. The sender also learns from failed experiments 
by exponentially backing off the i

ET  for this rate, before 
retrying the experiment. The exponential back-off is 
performed as ( )max11 ,min E

i
E

i
E TTT ++ = γ  where max

ET  is the 



maximum Inter-Experiment timer, and γ is a back-off factor. 
We clamp the back-off at a maximum to guarantee the sender 
will periodically probe for spare bandwidth. The Inter-
Experiment timer of the new stream is reset to initial 
value init

ET , when the switch experiment to this stream 
succeeds. The switching experiment duration ST  starts with 

an initial value init
ST and is updated using an exponential 

moving average of the time difference between starting a 
switching experiment to the failure detection timeIn order to 
summarize the description of our overall adaptation strategy, 
we represented it as a flow diagram as in Figure 4.  
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Figure 4. Flow diagram for adaptation 

In the flow diagram we omit details for simplicity. 
For instance, we determine the rate to switch down to as in 
Step 3 of the combined switch down algorithm.  
3.3. Determining the Adaptation Parameters 
The performance of our adaptation strategies is controlled by 
a set of different parameters that include the sampling 
interval, the buffer drain time parameters α and β, the switch 
up times init

ST  and init
ET , and the exponential back-off 

parameter γ. We should keep our sampling interval small so 
that we can effectively track the network bandwidth 
variations. However, a small sampling interval leads to larger 
overheads in system complexity and transmitted bandwidth 
(packets within a sampling interval can be aggregated and 
transmitted together to reduce network overheads.). In order 
to tradeoff these conflicting goals, we select the sampling 
interval based on the available network bandwidth; sample at 
small intervals when the network bandwidth is high 
(variations are likely to be more frequent) and sample at 
larger intervals when the network bandwidth is low 
(variations likely to be less frequent). We can do this by 
sampling every time we transmit a fixed number of bytes. 
Empirically, we have determined that sampling every time 
we transmit ~16000 bytes (since we transmit complete 
packets) provides a good tradeoff for the adaptation. The 
other adaptation parameters have been tuned empirically to 
provide a good visual quality, however we can derive 
analytical bounds on their values based on the statistical 
properties of the network and video bit-rates. This is a 
direction of future research. 
 

4. RESULTS 
In order to examine our proposed mechanism, we 
implemented the adaptation mechanism within the IBM’s 
Adaptive Rich Media Streaming system [9]. Our testbed 
consists of a live source attached to an ARMS broadcaster 
that is connected to the video server via 100 Mbps Ethernet. 
The client connects to the server via a NIST Net box which 
is used to control the bandwidth between the server and the 
client. The testbed is shown in Figure 5. 
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Figure 5. Performance study testbed 

At the broadcaster, we use two independent 
encodings of 320×240 video, one at 512 Kbps and 15 
frames per second (fps), and the other at 260 Kbps at 10 fps. 
From these we derive multiple sub-streams, by dropping 
frames, with bit-rates jV  (512, 417, 334, 255, 251, 213, 85 
Kbps). The audio bit rate is fixed and equal to 32 Kbps. The 
adaptation mechanism parameters are:  N = 3, D = 3 sec , γ 
= 2, 10=init

ET  sec, 60max =ET sec, 10=init
ST sec. 

Additionally, we select the parameters α = 0.4, and β = 0.5. 
We generate random traces as sequences of 

independent and identically distributed (iid) random 
variables (each corresponding to a fixed bandwidth for a 
duration of 15 seconds) generated from a uniform 
distribution with values {200, 400, 600} corresponding to 
intermediate bit-rates in our available streams. We present 
sample results (~500 seconds) to highlight the performance 
of our adaptation and compare the instantaneous and 
combined decision strategies. 

 
Figure 6. Adaptation performance for random trace 

In the graphs we plot the network trace against the 
measured bandwidth at the client that uses a 2 second 
averaging moving window with overlaps of 1 second. As 
expected, the instantaneous decision leads to over-
aggressive switching down, thereby not following the 
network trace accurately, unlike the combined decision 
strategy. However, as we have mentioned before, bandwidth 
fidelity is not the only performance metric we evaluate. We 
also measure the number of stream switches and the number 
of dropped packets (due to server buffer overflow). The 
combined adaptation outperforms the instantaneous 



adaptation both in terms of the achieved bandwidth as well as 
in terms of a smaller number of stream switches. However, it 
has a larger number of lost packets. We quantify these results 
for a real network trace that was collected over 70 minutes 
with 50 active TCP connections and the bandwidth varied 
between 700 Kbps and 120 Kbps. At the broadcaster, we 
again create two independent encodings of 320×240 video, 
one at 512 Kbps and 15 fps, and the other at 260 Kbps at 10 
fps. The multiple sub-streams with bit-rates jV  are shown in 
Table 1. 

Table 1. Generated streams for real trace experiment 
 
Encoding 

Sub-
Stream GOP Structure Bit-Rate 

(kbps) 
1 I B B B P B B B P… 255 
2 I B X B P B X B P… 213 
3 I X B X P X B X P…. 171 
4 I X X X P X X X P… 129 

1 

5 I X X X X X X X P… 85 
1 I B B P B B P… 512 
2 I B X P B X P… 417 2 
3 I X X P X X P… 334 

 
The audio stream is again maintained at 32 Kbps. 

We show the adaptation performance over 3000 seconds in 
Figure 7. 

 
Figure 7. Adaptation performance for real trace 
Clearly, the instantaneous decision strategy is overly 

conservative leading to many switches down and under-
utilization of the available bandwidth. We now present the 
number of stream switches and the number of dropped 
packets in Table 2. 

Table 2. Adaptation performance results for real trace 
 Inst. 

Adapt. 
Comb. 
Adapt. 

Achieved Average Bit-Rate 
(kbps) 355 380 

Number of Stream Switches 324 118 
Number of Lost Packets 
(Audio and Video) 

65 
(0.14%) 

459 
(0.8%) Data 

Loss 
Number of lost video frames 7 92 

The combined strategy has better achieved 
bandwidth as well as fewer stream switches, but has more 
lost frames. However, a majority of frames lost are B frames, 
and hence do not contribute to any error propagation. The 
number of lost P frames (37) is smaller than the number of 
times that the instantaneous decision switches down to an all 
I channel, or worse to only audio, which means that the 
visual interruptions for the combined decision are fewer than 
for the instantaneous strategy. We also use subjective quality 
assessments to validate these observations. A direction of 
further research is combining these numbers into one visual 
quality metric. 

 
5. CONTROLLING TCP BUFFERS 

Buffers that the TCP implementation maintains lead to the 
adaptation mechanism getting delayed feedback from the 
network. The TCP sender uses a congestion window 
indicated by the variable cwnd to estimate the appropriate 
congestion window size and also a fixed size send buffer 
(sendbuf) to store application data before the data is 
transmitted. We propose to dynamically limit the TCP 
sendbuf size. This is possible on Linux and Windows using 
the setsockopt system call. We chose to set it to be 2*cwnd, 
which ensures that the TCP has a window worth of unsent 
data to keep the self-clock of acknowledgments flowing. 
The proposed modification can be implemented at the 
application level by monitoring cwnd and adapting sendbuf 
size and ensuring that the sending buffer occupancy does 
not exceed 2*cwnd. This enables us to adapt more 
accurately to network conditions. To examine the combined 
adaptation mechanism with the sender buffer scaling 
optimization, we implemented the mechanism in Opnet 
network simulation tool [14]. We chose to add this feature 
to the TCP implementation and determined that it does not 
affect the TCP throughput for other connections, as also 
shown by other authors [13]. We used a topology where the 
server streams to a client over a bottleneck link of 5Mbps 
bandwidth and 10ms round trip time, shared with n other 
TCP sources.  
 
 
 
 
 
 
 
 
 
 
 
 
 

We examined the adaptability of our proposed 
mechanism. To vary the bandwidth between server and 
client, we used different number of TCP connections (20-
40) for simulation times varying between 0 and 70 minutes. 
The figure above shows the available TCP bandwidth and 
the video stream rate received at the client. We compared 
the stream rate achieved by the proposed adaptation 
mechanism with and without the TCP sender buffer scaling. 
The results show that although the adaptation mechanism 
without the buffer scaling is able to track the available 
bandwidth, using the buffer scaling will allow the 
application to track the available bandwidth more 
accurately, validating our hypothesis. 

 
6. CONCLUSIONS 

We develop server adaptation mechanisms, for live 
multimedia streaming over enterprise networks (using TCP 
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Figure 8. Stream-rate with adaptive TCP buffers. 



for transport). The server estimates information about the 
available network bandwidth by monitoring the application 
buffer and performs stream switching to meet bandwidth and 
delay constraints. We investigate instantaneous and look-
ahead strategies for switching down the transmission rate, 
and switch up the rate in a controlled manner after observing 
periods of no congestion. We use a piecewise linear model 
for the network bandwidth to estimate the current and future 
server buffer drain delay, and derive the transmission rate to 
minimize client buffer starvation. We evaluate these 
algorithms over an enterprise video streaming system based 
on the IBM VideoCharger platform. We compare the 
performance of these algorithms in terms of their effect on 
the decoded video quality by measuring the average 
streaming bandwidth achieved by the algorithm, the number 
of stream switches, and the data loss (caused due to server 
buffer overflow). The strategy with combined look-ahead and 
instantaneous decisions can follow the network bandwidth 
accurately, while minimizing stream switches, and providing 
high visual quality. 

Directions for future research include developing 
analytical methods to determine the parameters of our 
adaptation algorithms, including α, β, the switch up times 

init
ST  and init

ET , and the exponential back-off parameter γ. We 
are also tuning the parameters of the adaptation to be able to 
receive information from TCP with less of a delay. Finally, 
we are investigating methods of integrating these different 
performance metrics into one visual quality metric that is 
consistent with subjective quality evaluations.  
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