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ABSTRACT 
 

The topic of this communication is shape-similarity search 

for 3D-mesh models. We present and evaluate a composite 

3D-shape feature vector (DESIRE), which is formed using 

depth buffer images, silhouettes, and ray-extents of a 

polygonal mesh. We contrast our method with the 

approach that is declared the best in the recent study. Our 

experiments suggest that the composite feature vector, 

which is extracted in a canonical coordinate frame, 

generally outperforms the competing method, which relies 

upon pairwise alignment of models. We also provide a 

Web-based retrieval system as well as publicly available 

executables for verifying the results. 

 

1. MOTIVATION 
 

The area of 3D-model retrieval attracts more and more 

researchers. A variety of methods for characterizing 3D-

shape have been proposed in recent years. Several surveys 

of 3D-shape description techniques (e.g., [7]) summarize 

used ideas, without comparing competing methods 

quantitatively. In [1], 12 different methods for describing 

shape are compared on the PSB (Princeton Shape 

Benchmark) set of 3D-objects, presented by the Princeton 

Shape Retrieval and Analysis Group. The LightField 

descriptor (LFD) [2] is declared as superior method in [1]. 

In [5], 19 different 3D-shape feature vectors are compared 

on four different test sets (including the PSB), and a 

composite feature vector outperforms all competitors. 

Unfortunately, neither the LFD is tested in [5] nor the 

composite descriptor is tested in [1]. Therefore, the main 

objective of this paper is to try to find out which of the 

two approaches is better. In order to enable verification of 

our results, we provide executables for extracting feature 

vectors and source code for performance analysis [8]. 

 

2. RELATED WORK 
 

In this section, we describe the LightField descriptor [2], 

which is used in the experiments and discussion (sections 

4 and 5). For descriptions of several dozens of 3D-shape 

retrieval techniques, we refer to [1,5,7]. 

The extraction of the LFD begins with normalization 

step in which translation (the center of gravity becomes 

the origin) and scale (the maximum distance of a point on 

the surface of the model to the origin becomes 1) are 

fixed. Then, 100 silhouette images from predefined 

viewpoints are generated. The 100 cameras are positioned 

at vertices of 10 dodecahedrons. The distribution of the 

cameras is nearly uniform. Each of 100 silhouette images 

is described by 35 coefficients for Zernike moments (also 

used in MPEG-7) and 10 for Fourier coefficients as 

proposed in [6]. Thus, the LFD descriptor consists of 4500 

components. Rotation invariance is achieved by aligning 

two models (a query and a candidate) by finding the best 

correspondence of 10 sets of silhouette images taking into 

account all possible rotations of dodecahedrons. There are 

5460 different rotations, which are necessary to examine 

in order to align a pair of 3D-objects. When the models 

are aligned, the dissimilarities between 10 most-

corresponding silhouette descriptors are summed-up and 

regarded as dissimilarity between the models. 

Since the maximal distance is used for fixing the 

scale, we expect potential problems with outliers. In order 

to demonstrate the problem, we used a model of car with a 

long outlying antenna as the query and the original 

executables provided by the authors of the LFD to retrieve 

(extract features and compute distances) similar models 

from the PSB set [1]. As displayed in figure 1, the best 

match is the original model of car (before adding the 

antenna), while the second and third matches are 

absolutely irrelevant. Hence, the LFD is not sufficiently 

robust with respect to outliers. The shown example is an 

extreme case. Generally, the LFD is one of the most 

effective 3D-shape descriptors [1].  
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Figure 1. Retrieval using the LightField descriptor. 
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3. “DESIRE” DESCRIPTOR 

 

As stated in [5], more powerful 3D-shape descriptors can 

be obtained by combining fundamentally different features 

aimed at characterizing 3D-shape. The combined features 

should be effective and “orthogonal” (complementary) to 

each other. In this section, we present a composite shape 

descriptor, obtained from the depth buffer-based (DE) 

feature vector presented in [4,5], the silhouette-based (SI) 

descriptor [4,5], and the ray-extent (RE) feature vector 

[3,5]. We call the composite descriptor “DESIRE”. 

The DE feature vector describes how distant is the 

object from a face of a canonical cube by measuring the 

distance along directions that are perpendicular to the face 

of the cube. The SI descriptor characterizes contour points 

of orthogonal projections of the model on a bounding 

cube. The RE feature vector gives information about the 

extent of an object from the center of gravity along radial 

directions. As demonstrated in [5], the retrieval 

effectiveness of an appropriate composition of descriptors 

significantly outperforms the original approaches. The 

feature extraction of the DESIRE descriptor proceeds in 

five steps: model normalization, extraction of the DE, SI, 

and RE descriptors, and composition. 

In order to secure translation, rotation, scale, and 

flipping invariance of descriptors, 3D-mesh models are 

normalized [3,5]. Each triangle mesh model is transformed 

into a canonical coordinate frame by translating (the center 

of gravity becomes the origin), rotating (using the 

Continuous Principal Analysis - CPCA), scaling (the 

average distance of a point on the surface of the model to 

the origin becomes 1), and flipping (using a test based on 

moments) the set of vertices. Complete analytical 

expressions for transforming a mesh model into canonical 

coordinates are given in [5]. The CPCA is rather efficient 

and effective for most categories of 3D-objects. However, 

certain categories of 3D-models (e.g., cups) are sub-

classified by the normalization step. Nevertheless, in spite 

of known drawbacks, the most effective shape descriptors 

extracted in the canonical frame outperform competing 

descriptors obtained by avoiding the PCA [5].  

The idea to use depth-buffers for characterizing 3D-

shape is introduced in [4], while detailed analysis and 

exploration of variances of the method are presented in 

[5]. Briefly, six depth-buffer images of the underlying 3D-

object are formed using the canonical cube (CC), i.e., a 

cube in the canonical frame whose faces are parallel to the 

coordinate planes, with the center at the origin, and the 

length of the edge w. Each depth-buffer images serves as 

the input for the 2D-FFT. Appropriate magnitudes of the 

obtained Fourier coefficients are used for forming the 

feature vector d=(d1,…,dD ), where d1+…+dD=D. In [5], 

the value of w is set to 4. Our additional statistical analysis 

showed that slightly better results could be obtained by 

setting w to 3.6. Note that certain parts of 3D-models lay 

outside the CC and are ignored as outliers.  

The SI descriptor is extracted using the canonical 

bounding cube (CBC) of a 3D-object. The contours of 

three silhouette images obtained by projecting a 3D-model 

on the CBC are processed further. Each contour is 

sampled so that furthest points of intersection between the 

contour and rays emanated from the origin of the 

silhouette image and traveling in equiangular radial 

directions. The distances of the sample points to the origin 

of the silhouette image serve as the input for FFT, and 

magnitudes of the obtained coefficients generate the 

feature vector s=(s1,…,sS ), where s1+…+sS=S.  

The RE descriptor is extracted by forming a function 

on a sphere, by applying the FFT on the sphere, and by 

using the magnitudes of obtained coefficients as 

components of the feature vector r=(r1,…,rR ), where 

r1+…+rR=R. The value of the function on the sphere at the 

point u is equal to the extent of the model in the direction 

u, i.e., the distance between the origin and the furthest 

point of intersections of the ray traveling in the direction u 

and the polygonal mesh.  

The composite feature vector c is formed by 

concatenating the basic feature vectors, c=( d | s | r ), 

whence the dimension of the DESIRE descriptor is 

C=D+S+R. Note that the l1 norm of c is equal C. Based on 

analysis presented in [5], the DE is more effective than the 

SI descriptor, while the RE is less effective than the SI 

descriptor. Therefore, the dimensions are chosen so that 

D>S>R, i.e., the “importance” of combined descriptors is 

fixed according to their performance. We use D=186, 

S=150, and R=136, whence C=472. For detailed 

explanation how the DE, SI, and RE descriptors are 

extracted, discussions about existing constraints, desirable 

properties of feature vectors that are secured, and tested 

variances (alternatives) of the methods, we refer to [5].  

To demonstrate robustness with respect to outliers, we 

use the same query as in figure 1. All top three matches 

(figure 2) are reasonably relevant to the query, when the 

DESIRE descriptor and the l1 norm as dissimilarity 

measure are used. We stress that the depicted models are 

visualized in scaled canonical coordinates so that all parts 

of models are captured. 
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Figure 2. Retrieval using the DESIRE descriptor. 



4. EXPERIMENTS 
 

We tested the LFD and DESIRE descriptor using the PSB 

[1] models (1814 meshes), which are classified into 161 

categories. We use standard tools for measuring retrieval 

effectiveness, precision-recall (PR) diagrams, relevant 

nearest neighbors (NN), R-precision (RP) (first tier), and 

Bull-Eye performance (BEP) (second tier) (see [1,5] for 

details). Firstly, we present PR curves averaged over all 

models. In figures 3-5, dimensions of the feature vectors 

are given in the square brackets, while the average 

precision for recall great or equal 50%, the average 

precision, BEP, RP, and NN are given in parentheses.  
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Figure 3. Average precision vs. recall. 

 

Since categories consist of different number of 

models, we averaged PR diagrams for each category and 

found the average over categories (figure 4). We also 

considered a coarser categorization of the PSB set obtained 

by merging categories with more than two class-keywords 

and averaged PR curves for all models (figure 5). 
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Figure 4. Precision vs. recall averaged over categories. 
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Figure 5. Avg. prec. vs. recall for coarser categorization. 

 

Results shown in figures 3-5 demonstrate that the 

DESIRE descriptor generally outperforms the LFD. This 

does not mean that the DESIRE is more suitable descriptor 

for each category of models. In order to summarize 

category-wise comparison of the competing descriptors, 

we found differences between NN, RP, and BEP for 

DESIRE and LFD (for each of 161 categories), sorted all 

three sequences in the non-increasing order and displayed 

them in figure 6. We read that the BEP score is for 90 

categories better when DESIRE is engaged, for 57 

categories LFD leads to better BEP values, while for 14 

(161-90-57) categories both descriptors have the same 

BEP, and BEP of DESIRE is 4.65% higher on average. As 

expected from the global results, the DESIRE descriptor is 

more suitable for most categories. All LFD descriptors are 

extracted and distances between two LFD descriptors are 

computed using the original executables provided by 

authors. The l1 norm is used as metric for the DESIRE. 
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Figure 6. Category-wise comparison for nearest neighbors 

(recognition), R-precision, and Bull-Eye performance. 



We also confronted the two descriptors on our own 

collection of 3D-models, and the obtained results [8] are 

even more in favor of the DESIRE descriptor.  

Note that the precision–recall curves for the LFD 

descriptor from [1] and figure 3 are significantly different 

although the same test set (PSB) is used. The extreme high 

precision for low recall values in [1] is caused by treating 

the query model as the best match. Besides, since the 

original LFD extractor uses OpenGL, the obtained 

descriptors differ slightly on different PC systems causing 

additional minor differences in precision-recall curves.  

Average feature extraction of the DESIRE descriptor 

from a normalized model is 135ms. If model loading, 

checking, and normalization are included, the extraction 

takes 211ms on a PC with 1 GB RAM and a 3 GHz 

Pentium 4 processor running Windows XP SP1. The 

average extraction time for the LFD is 2.3 seconds. 

 

5. DISCUSSION 

 

Results from section 4 suggest that the DESIRE is more 

effective than the LFD. However, the effectiveness is one 

of numerous advantages of the DESIRE. If we consider 

the vector dimensions (DESIRE 472, LFD 4500), the 

number of necessary rotations of models (DESIRE 1, LFD 

5460), the average extraction time (DESIRE 0.2s, LFD 

2.3s), and the complexity of computing the dissimilarity 

measure (matching procedure), then the DESIRE 

descriptor is a significantly better technique.  

The only common aspect of the DESIRE and LFD is 

the usage of silhouettes. The LFD relies upon results 

presented in [6], where the centroid distance is compared 

to several inferior features of contour points. However, the 

sample contour points, whose centroid distances serve as 

the input for the FFT, are selected using equal arc length 

distance. The analysis in [5] states that selecting sample 

contour points so that their vectors lay on equiangular 

radial directions (see SI descriptor in section 3) is a more 

robust approach. Thus, in the trade-off between lost details 

introduced by using equal angle (only the furthest point of 

intersection is considered) and the lost of correspondence 

between similar contours introduced by using equal arc 

length (an outlier causes a shifting), the preservation of 

correspondence is more important. Another advantage of 

using the approach presented in [5] is its applicability in 

(rare) cases when a 3D-object consists of disjoint parts, 

whence the silhouette image consists of more than one 

contour. The method that uses arc length parameterization 

[6] is restricted to single contour. 

Potentially, the performance of the LFD might be 

improved by changing the method for securing the scale 

invariance, by characterizing silhouette images in a more 

suitable manner, by using sets of 10 images for aligning a 

pair of 3D-models but using fewer images for computing 

distances (we expect that some of 10 views may represent 

a “noise” to the overall dissimilarity), or by considering 

depth buffer images instead of silhouettes (for alignment 

or for distance computation).  

We consider that the most significant weakness of our 

approach lies in the non-optimal canonical positioning 

(normalization) of a model. In a forthcoming paper, we 

will compare the effect of the CPCA [3,5] and the 

orientation normalization using spherical harmonics [9].  

 

6. CONCLUSION 

 

In summary we have compared two 3D-shape descriptors 

that are declared the best in recent studies. The 

comparison is based on the PSB set of 3D-models. We 

have found that the retrieval effectiveness and the 

complexity in time and space suggest that the composite 

descriptor DESIRE outperforms the competing LightField 

descriptor. In order to enable verification of our results, 

we provide executables for extracting feature vectors and 

source code used for presented analysis. A Web-based 

retrieval system for testing both methods is also available. 
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