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ABSTRACT 
 
An intelligent emotion recognition system, interweaving 
psychological findings about emotion representation with 
analysis and evaluation of facial expressions has been gen-
erated and its performance has been investigated with ex-
perimental real data. Additionally, a fuzzy rule based sys-
tem has been created for classifying facial expressions to 
the six archetypal emotion categories. The continuous 2-D 
emotion space was then examined and a pool of known 
and novel classification and clustering techniques have 
been applied to our data obtaining high rates in classifica-
tion and clustering into quadrants of the emotion represen-
tation space. 
 
 

1. INTRODUCTION 
 
Despite common belief, social psychology research has 
shown that conversations are usually dominated by facial 
expressions, and not spoken words, indicating the 
speaker’s predisposition towards the listener. Mehrabian 
indicated that the linguistic part of a message, that is the 
actual wording, contributes for seven percent to the effect 
of the message as a whole, the paralinguistic part, that is 
how text is vocalized, contributes for thirty eight percent, 
while a speaker’s facial expression contributes for fifty 
five percent to the effect of the spoken message [1]. This 
implies that facial expressions form a major modality in 
human communication, and need to be considered by 
HCI/MMI systems. 

Several steps have been made towards an recognition 
of facial expression [9],[4] either by considering and mod-

eling facial deformations globally (holistic methods) or by 
measuring specific facial feature deformations (e.g. eye-
brows, eyes, mouth) and creating appropriate descriptive 
expression models (analytic approach). We have chosen 
the latter approach and have created a system capable of 
analyzing image frames from a video stream of a speaker 
into MPEG-4 compliant Facial Definition Parameters 
(FDPs). FDPs are in turn used to calculate the Facial Ani-
mation Parameters (FAPs). The FAPs can correlate 
strongly with emotionality and can be used to classify a 
face with respect to the emotional state it expresses.  
 

2. A RULE-BASED SYSTEM 
 
In our research, a rule-based system for emotion recogni-
tion was created, characterising a user’s emotional state in 
terms of the six universal, or archetypal, expressions (joy, 
surprise, fear, anger, disgust, sadness). A set of rules has 
been created in terms of the MPEG-4 FAPs for each of 
these expressions, by analysing the FAPS extracted from 
the facial expressions of the Ekman dataset. This dataset 
contains several images for every one of the six archetypal 
expressions, which, however, are rather exaggerated. A 
result of this fact is that the rules extracted from this data-
set if used in real data, cannot have accurate results, espe-
cially if the subject is not very expressive. Table 1 illus-
trates the confusion matrix of the mean degree of beliefs 
for each of the archetypal emotions anger, joy, disgust, 
surprise and the neutral condition, computed over the 
EKMAN dataset [10], while Table 2 shows the more often 
activated rule for each of the above-mentioned expres-
sions. 
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Table 1: Results in images of different expressions 

 Anger Joy Disgust Surprise Neutral 
Anger 0.611 0.01 0.068 0 0 

Joy 0.006 0.757 0.009 0 0.024 
Disgust 0.061 0.007 0.635 0 0 
Surprise 0 0.004 0 0.605 0.001 
Neutral 0 0.123 0 0 0.83 

 

Table 2: Activated rules 

Expressions Rule more often activated 
 (% of examined frames) 

Anger 47% 
Joy 39% 

Disgust 33% 
Surprise 71% 

 
 

3.  FEATURE EXTRACTION 
 
Automatic recognition of facial parameters is a difficult 
problem, and relatively little work has been reported [13]. 
Most expression evaluation systems either require facial 
markers [4] or manual initialization [3]. Automatic detec-
tion of the exact border of facial features is a much more 
difficult problem than detecting the presense of a feature 
in an image area especially in real-life applications. In our 
approach extraction is performed, resulting in a set of bi-
nary maps, indicating the position and extent of each facial 
feature (i.e. eyebrows, eyes, mouth and nose). The left, 
right, top and bottom–most coordinates of the eye and 
mouth masks, the left right and top coordinates of the eye-
brow masks as well as the nose coordinates, are the facial 
feature points (FPs) which are used for defining the FAP 
values to be used as inputs to the emotion recognition sys-
tem.  

In most real-life applications nearly all video media 
have reduced vertical and horizontal color resolutions; 
moreover, the face occupies only a small percentage of the 
whole frame and illumination is far from perfect. While it 
is feasible to detect the face and all facial features, it is 
very difficult to find the exact boundary of each one (eye, 
eyebrow, mouth) in order to estimate its deformation from 
the neutral-expression frame. To overcome this limitation 
we have created a novel system that combines the result of 
multiple feature extractors into a final result, based on the 
evaluation of their performance on each frame; the fusion 
method is based on the observation that having multiple 
masks for each feature lowers the probability that all of 
them are invalid since each of the feature extractors usu-
ally produces different error patterns. An example showing 
the result of the eye mask extractors along with the fusion 
result in a single frame is depicted in Figure 1. 

The feature masks have to be calculated in near-real 
time; the feature extractors which have been used for ex-
traction of these masks, include: 
1. A feed-forward back propagation neural network 

trained to identify eye and non-eye facial area. The 
network has thirteen inputs; for each pixel on the fa-
cial region the NN inputs are luminance Y, chromi-
nance values Cr & Cb and the ten most important 
DCT coefficients (with zigzag selection) of the 
neighboring 8x8 pixel area. 

2. A second neural network, with similar architecture to 
the first one, trained to identify mouth regions. 

3. Luminance based masks, which identify eyelid and 
sclera regions. 

4. Edge-based masks. 
5. A region growing approach to detect regions of high 

texture based on standard deviation 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 
(g) 

 
(f) 

Figure 1: (a):original frame, (b),(c),(d),(e): the four de-
tected masks, related to extractors based on (4),(5),(3),(1) 
correspondingly  (f):fusion result mask for the eyes, (g):all 

detected feature points from the final masks 

The mask fusion approach described in the following 
is not bound to specific feature extractors; more and dif-
ferent extractors than those described above can be devel-
oped for each feature, as long as they provide better results 
in difficult situations where other extractors fail. The fu-
sion algorithm is based on a Dynamic Committee Machine 
(DCM) structure that combines the masks based on their 
validity confidence, producing a final mask together with 
the corresponding estimated confidence for each facial 
feature. Each of those masks represents the best-effort 
result of the corresponding mask-extraction method used. 
The most common problems, especially encountered in 
low quality input images, are connection with other feature 
boundaries or mask dislocation due to noise. If comby  is 
the combined machine output and t the desired output it 



has been proven in the committee machine (CM) theory 
[1] that the combination error comby t− from different 
machines fi is guaranteed to be lower than the average er-
ror: 

2 2 21 1( ) ( ) ( )comb i i comb
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In a Static CM, the voting weight for a component is pro-
portional to its error on a validation set. In DCMs, (Figure 
2) input is directly involved in the combining mechanism 
through a Gating Network (GN), which is used to modify 
those weights dynamically. 
 

 
Figure 2: Dynamic Committee Machine Architecture 

In our case, the final masks for the left eye, right eye 
and mouth, L Re e m, ,f f fM M M are considered as the machine 
output and the final confidence values of each mask for 
feature x fc

xM are considered as the confidence of each 

machine. Therefore, for feature x, each element x
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where x
im  is the element of mask x

iM , ic,x
fM  the valida-

tion value of mask i and ih is used to prevent the masks 

with ( )vd q
< tk kc,x c,x

f qM M⋅  to contribute to the final 

mask. A sufficient value for vdt  is 0.8.  

The role of the gating variable ig is to favor the color-

based feature extraction methods ( e
1M , m

1M ) in images of 
high color and resolution. In this stage, two variables are 
taken into account: image resolution and color quality. 
More information about the used expression profiles can 
be found in [2]. 

The final feature masks are used to extract the Feature 
Points (FPs) considered in the definition of the FAPs. The 
latter are used as input features to the recognition system. 
Each FP inherits the confidence level of the final mask 
from which it derives; for example, the four FPs (top, bot-
tom, left and right) of the left eye share the same confi-
dence as the left eye final mask. FAPs can be estimated via 
the comparison of the FPs of the examined frame to the 
FPs of a frame that is known to be neutral, i.e. a frame 
which displays no facial deformations. 
 

4. EMOTION RECOGNITION 
 
Data showing facial expressions in normal (non extreme) 
interactions were generated and annotated (feeltraced in 
the continuous 2-D activation/evaluation space [12]) by 
Queens University of Belfast, using the Sensitive Artificial 
Listener framework (SAL), an environment where people 
can engage in genuine emotional expression. 

The aim of the emotion recognition is to identify the 
quadrant [12] to which each analyzed data belongs, as an 
indicator of the emotional state of the person involved in 
the interaction (positive/negative, active/passive). At this 
point, we should notice that the feeltrace ratings produced 
by QUB were based on all three different modalities, e.g. 
linguistic and paralinguistic speech and facial, aiming at 
multimodal emotion recognition. In this paper, we de-
scribe the creation of an emotion recognition system, 
which is able to operate based on analysis of the recorded 
facial expressions. We consider three primary classes cor-
responding to the active quadrants of the 2-D space; the 
positive-passive quadrant was excluded, since no exam-
ples were generated in it. 

The data examined in this research were 2 x 50.000 
frames extracted from two subjects from the available 
datasets [6]. All frames were processed and the FAP val-
ues for each one were calculated and stored. Confidence 
values were created for all frames and those with low con-
fidence were not considered further in the analysis. Next, 
the frames were separated in about 280 time intervals (per 
data set) corresponding to tunes [5] (i.e. segments of the 
pitch contour bounded at either end, by a pause of 180 ms 
or more) identified by the audio analysis of the respective 
speech recordings. The frame which was the most ‘facially 
expressive’ (with large FAP values) in each tune was then 
selected, thus generating a set of 280 frames per dataset, 
which was used for training purposes. A second data set of 
about 930 frames was also created and used for testing. 

 
5.  CLUSTERING RESULTS 

 
A variety of techniques were used to recognize the under-
lying emotional states, based on FAP feature analysis. 
These included neural network classifiers, clustering tech-
niques and neurofuzzy networks. 
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Of significant interest is usage of unsupervised hierar-
chical clustering (we developed a methodology for cluster-
ing with high–dimensional extensions and probabilistic 
refinement [11]), since this can form a basis for future 
merging of different emotional representations (i.e. differ-
ent hierarchical levels), and categorization in either 
coarser or more detailed classes (half-plane, quadrants, 
discrete emotions).  

Hierarchical Agglomerative Clustering (HAC) is a 
clustering approach that is ideal for cases in which the 
count of clusters in the data is not known before hand. On 
the other hand, drawbacks for HAC algorithms include 
high complexity and susceptibility to errors in the initial 
steps.  

 
Figure 3: FAP vector clustering results; x denotes the 

number of clusters and y its performance on the dataset 
 

Hierarchical clustering was used first on the generated 
data set to produce clusters of similar data samples. An 
aggregating distance function, such as the Euclidean, or 
Mahalanobis, distance, was used to identify the underlying 
patterns and produce clusters of similar data samples. Fig-
ure 3 indicates the results of the clustering procedure, over 
the datasets of FAP vectors (consisting of 16 values each); 
x denotes the number of clusters and y its performance on 
the dataset after the above procedure is completed. It can 
be seen that the obtained results, can include about 10 
clusters with very good performance, i.e.; when comparing 
the matching of data included in the extracted clusters with 
their original ratings, they are in the range of 78%, which 
is quite high for the non-extreme emotion recognition 
problem we are facing. By training a neural network with 
the 280 FAP sets and testing generalisation on the rest of 
the 930 FAP sets respectively, the success rate was in-
creased to 84,7%. Similar results have been obtained when 
using the Falcon-Art neurofuzzy network [8]. 

 
6. CONCLUSIONS 

 
An emotion recognition system, combining psychological 
findings about emotion representation, with automatic 
analysis and evaluation of facial expressions, has been 

generated and actual performance has been investigated 
with experimental real data. FAP extraction based on a 
novel confidence-based feature extraction system was used 
to feed a fuzzy rule based system to classify facial expres-
sions to six archetypal emotion categories. The continuous 
2-D emotion space was then examined and a pool of 
known and novel classification and clustering techniques 
have been applied to the SAL data obtaining high rates in 
classification and clustering of data to quadrants of the 
emotion representation space.  
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