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ABSTRACT

This paper addresses the problem of optimizing the play-
back delay experienced by a population of heterogeneous
clients, in video streaming applications. We consider a typ-
ical broadcast scenario, where clients subscribe to different
portions of a scalable video stream, depending on their ca-
pabilities. Clients share a common channel, whose limited
rate directly drives the playback delays imposed to the dif-
ferent groups of receivers. We derive an optimization prob-
lem, that targets a fair distribution of the playback delays
among heterogeneous clients. A server-based scheduling
strategy is then proposed, that takes into account the proper-
ties of the targeted clients, the channel status, and the struc-
ture of the media encoding. It is shown to offer significantly
reduced playback delays per client population, as compared
to traditional scheduling strategies. In the same time, PSNR
performance is not affected, which altogether leads to an
overall improvement of the quality of service.

1. INTRODUCTION

Internet video streaming applications usually make use of
client buffering capabilities to smooth the discrepancies be-
tween the video source rate, and the available channel band-
width. Buffering then allows for a smooth playback of the
stream, but it generally induces a playback delay at the client,
and thus impacts the general quality of service.

The particular problem we consider in this paper con-
sists in a broadcast scenario where scalable media is streamed
to a variety of heterogeneous clients, such as smart phones,
notebooks or workstations. Due to their different capabil-
ities, these clients subscribe to different resolutions of the
media stream. They however share a common broadcast
channel, whose limited rate directly affects the resolution
of the stream that can be sent, and the playback delay in-
duced by buffering at the client. The order in which data
from the different layers are sent by the server directly in-
fluences the distribution of the playback delay among the
different receivers groups. The server may decide to first
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send the lower resolution data, or base layer, and thus to
favor the least powerful clients, whose playback delay is
then minimal. Such a policy however highly penalizes the
other groups of clients, that receive an important share of
base layer before the enhancement layers, resulting in an
increased playback delay.

In this paper, we propose a server-based scheduling strat-
egy that targets a fair distribution of the playback delay
among the different groups of clients. It takes into account
the network status, the client capabilities, and the video
stream characteristics to optimize an average quality of ser-
vice for all the subscribers. To the best of our knowledge,
this work is a first effort to address the playback delay opti-
mization problem for heterogeneous clients.

The paper is organized as follows: we provide an overview
of the used system in Section 2. In Section 3 we formalize
the considered problem and discuss its implications. Sec-
tion 4 shows our simulation results. Finally we conclude
with Section 5.

2. SCALABLE VIDEO STREAMING
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Fig. 1. General overview of the system under consideration.

We consider L-layered hierarchically coded bitstreams
that are stored on a streaming server (see Figure 1). In such
coding scenarios, all inferior layers from 1 up to l must be
present at the decoder in order to decode layer l. Depend-
ing on the encoding choice, adding a layer may icrease the
PSNR of the decoded video, the framerate, or the framesize.
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Each layer is completely determined by its source trace, or
playout trace sl(t), 1 ≤ l ≤ L, indicating how many bits
the layer consumes at all time instants t. The channel con-
necting the server to the receivers is defined by its bitrate
c(t), indicating how many bits the channel is able to trans-
mit at any time t, and a potential network latency ∆. Gener-
ally, the server’s channel knowledge is extracted from client
or network feedback. In this paper we will assume perfect
channel knowledge at the server, as offered by guaranteed
services for example. For other types of service, it leads to
an upper bound on performance. L sets of receivers con-
nect simultaneously to the media stream, where each set
Rl, 1 ≤ l ≤ L groups clients that subscribe to all layers
up to l of the media stream.

In such scenarios, the most important logical part of the
streaming server is the scheduler: given the source trace and
the channel knowledge, it decides when to send data, in or-
der to meet criteria such as desired distortion or delay [1]
[2], or maximum utilization of the available channel bitrate.
The scheduler outputs a stream of rate x(t) ≤ c(t),∀t, the
sending rate, indicating how many bits are sent on the chan-
nel at a given time.

After the first bit of the stream is sent by the server, a
client in population Rl waits for a time Dl, during which it
buffers the data it receives, to ensure that its receiver buffer
will never underflow, i.e., the playback will not be disrupted.
We call D = {Dl}L

l=1 the set of playback delays at the
clients.

We will use capital letters (S,C,X) for the cumulative
rate functions, e.g., C(t) =

∫ t

0
c(u)du is the number of bits

the channel can transmit up to time t. Note that the cumu-
lative rate functions are all non-decreasing in t. Using this
notation [3][4], Figure 2 illustrates de concept of playback
delay. If the client starts playback at the reception of the first
bit, a buffer underflow occurs at time tc. Starting playback
at the client after D makes sure that the buffer underflow
does not occur. We say that a trace s(t) is schedulable over
a given channel c(t), with a playback delay D, if the fol-
lowing condition holds for all t:

S(t − D) ≤ C(t − ∆) (1)
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Fig. 2. Left: Playback delay and buffer underflow preven-
tion. Right: Schedulable play-out trace and a corresponding
sending rate trace.

If this condition is met, this implies that the server can find
a scheduling such that each of the following, necessary con-
ditions are satisfied for all t:

S(t − D) ≤ X(t − ∆) (2)

X(t) ≤ C(t) (3)

x(t) ≤ c(t). (4)

We will however not further discuss particular scheduling
solutions here. In the remainder, we choose to use the schedul-
ing policy that sends data at the latest possible opportunity
given their decoding deadline, so that the overall buffer oc-
cupancy is kept small. We also set ∆ = 0, without loss of
generality.

3. PLAYBACK DELAY OPTIMIZATION

3.1. Problem Formulation

Consider a channel given by its cumulative rate trace C(t),
and a set of L hierarchically coded layers given by their cu-
mulative source rate traces {Sl}L

l=1. The channel connects
a streaming server to L sets of receivers {Rl}L

l=1, that si-
multaneously subscribe to layers up to l. Our aim is to find
a set of playback delays D = {Dl}L

l=1, D1 ≤ D2 ≤ . . . ≤
DL ≤ Dmax, that minimizes a global metric ϕ(·) over the
set of possible playback delay sets:

Df = arg min
D

(
ϕ(D0, ...,DL)

)
(5)

such that for any l ≤ L, Sl
D(t) ≤ C(t), where Sl

D(t) =∑l
i=1 Si

(
t − Di

)
. This is, from (1), a sufficient condition

for the trace Sl
D(t) to be schedulable over the channel c(t).

Let Dl
min denote the smallest possible playback delay for

layers up to l. In order to have a fair distribution of the
penalty on the playback delay, we choose to minimize the
standard deviation of the relative penalties induced by a set
of playback delays D:

ϕ(D0, ...,DL) = σ
(
(D0 − D0

min), ..., (DL − DL
min)

)
. (6)

3.2. Playback Delay Analysis

Suppose we have two increasing non-zero functions F (t)
and G(t) such that limt→∞ F (t) ≥ limt→∞ G(t). We de-
fine the (maximum) horizontal distance between F (t) and
G(t) as follows:

h(G,F ) = sup
t

(
F−1 (G(t)) − t

)
, (7)

where F−1(t) = min {t : F (t) ≥ x} is a pseudo-inverse of
F (t). The following relations hold:

h(G,F ) = 0 ⇔ F (t) ≥ G(t),∀t and (8)

∃τ s.t. F (τ) = G(τ) (9)

h(G,F ) < 0 ⇔ F (t) > G(t),∀t (10)

h(G,F ) > 0 ⇔ ∃τ s.t. F (τ) < G(τ). (11)



Two useful properties of h(·) will be used in the optimiza-
tion :

1. If h(G,F ) > 0 and G′(t) = G(t − h(G,F )), then
h(G′, F ) = 0. In other words, h(G,F ) is the mini-
mum shift we need to apply on G(t), so that F (t) ≥
G′(t), ∀t.

2. Let F (t), G(t) and G′(t) be non-decreasing func-
tions such that G′(t) > G(t), ∀t. Then: h(G′, F ) >
h(G,F ). Indeed by the definition of h(·) and F−1(·),
and because F (t) is non-decreasing, the result fol-
lows immediately, as F−1 (G′(t)) > F−1 (G(t)),
∀t. Similarly, if G′(t) < G(t), ∀t then h(G′, F ) <
h(G,F ).

Let �δ denote any set of L decreasingly ordered positive val-
ues: �δ = {δ1, δ2, . . . , δL}, δ1 ≥ δ2 ≥ . . . ≥ δL ≥ 0. We
will use the following notation ∀l, 1 ≥ l ≥ L: Gl

�δ
(t) =∑l

i=1 Gi (t + δi) and Gl
0(t) =

∑l
i=1 Gi(t).

Lemma 3.1 Consider a set of L non-decreasing functions
{Gl(t)}L

l=1 and a non-decreasing function F (t), all defined
on the temporal axis. We have, ∀l, 1 ≥ l ≥ L and ∀�δ:

Dl
0 = h

(
Gl

0, F
)

< h
(
Gl

�δ
, F

)
= Dl

�δ
(12)

Proof As the functions {Gl(t)}L
l=1 are non-decreasing, we

have, ∀l, 1 ≥ l ≥ L and ∀δl > 0: Gl(t) < Gl (t + δl).
Thus, ∀l, 1 ≥ l ≥ L and ∀�δ:

Gl
0(t) < Gl

�δ
(t) ,∀t (13)

From above, it follows that Dl
0 < Dl

�δ
.

3.3. Discussion

Applying this property to cumulative source rate traces, we
derive a lower bound on the playback delay for the clients in
set Rl. If Sl

0(t) > C(t), for some t, the smallest playback
delay for layer l, is given by:

Dl
0 = h

(
Sl

0, C
)
, (14)

where Sl
0(t) =

∑l
i=1 Si(t) is the sum of all the layers

without relative shifts. Since layers are hierarchically or-
dered, we know, by application of Lemma 3.1, that Dl

0 is
the lower bound on all possible playback delays for layer
l, thus Dl

min = Dl
0. Furthermore, as all the rate traces

are positive valued functions, Sl+1
0 (t) ≥ Sl

0(t), ∀t, so from
(3.2) we have Dl+1

min ≥ Dl
min.

It is important to note that, by achieving the minimum
playback delay for a given layer l, we do not necessarily
achieve the minimum playback delay for any other layer.

This can be illustrated using a simple 2-layer example, de-
picted in Figure 3. In Figure 3-top, we set D1 = D1

min,
without considering higher layers. In that case playout of
layer 1 can begin after D1

min = 2 frames. If we consider
layer 2 (Figure 3-middle) without taking into account lower
layers individually, playout of layers 1 and 2 can begin af-
ter D2

min = 127 frames. Note the induced playback delay
penalty of 125 frames for clients in set R1. Figure 3-bottom:
in the case where D1 is fixed to D1

min the bitrate available
for layer 2 is given by C2(t) = C(t) − X1(t), X1(t) be-
ing the received rate, as computed by the scheduler. Under
these conditions, the playback delay for layer 2 grows to 219
frames, inducing a relative penalty of 92 frames. We are fi-
nally facing a typical tradeoff situation: as we increase the
relative playback delay penalty for lower layers, we leave
more available channel bits that can be used to decrease the
playback delay penalty for higher layers.

3.4. Optimization Algorithm

Finding Df = {Dl
f}L

l=1 is a combinatorial optimization
problem over the integer domain of delays, and solving it
generally implies a full search algorithm. Based on the ex-
ample introduced above we can however make the follow-
ing observations about the structure of the solution space.
First, from the greedy rate allocation scheme illustrated in
Figure 3, we see that we can easily compute the largest
(greedy) playback delay DL

g for the highest layer L. Indeed,
fixing each Dl

g, l < L to the shortest possible delay, given
the available bitrate Cl(t) which results from the same pro-
cedure on the previous layer, all the spare bitrate for layer L
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Fig. 3. Scheduling 300 frames of Foreman (QCIF). The 2
layers represent the MPEG-4 FGS base layer and the first
bitplane of the enhancement layer. The channel is available
for 450 time units, providing a mean rate of 128kbps, which
drops to 64kbps between times 100 and 200.



will be available at the latest possible instant in time. Then,
we also have seen that we can easily compute DL

min. We
can thus drastically limit the range of values in which DL

can evolve. Starting from there, we can loop through the
possible values of DL in the range [DL

min,DL
g ]. Fixing a

value DL, we compute the bitrate available for layers 1 to
L − 1 as: CL−1(t) = C(t) − XL

g (t). Given this chan-
nel bitrate, we then compute the range of possible delays
for layer L − 1, [DL−1

min ,DL], fix a value DL−1 and iterate
down through the lower layers. While searching, we fur-
ther use the fact that, for a fixed Dl we have Dl+1 ≥ Dl,
thus limiting the search space to only feasible solutions. We
can even reduce the number of iterations by using a simple
threshold on ϕ(·) to get an approximation of the minimum.

4. RESULTS

D2
min Df D2

min Df

D1 212 54 D1 241 59
D2 212 259 D2 241 297

Table 1. Fair playback delays Df in frame units, compared
to D2

min. Left: 2 layers of Foreman over a 100kbps channel.
Right: same channel, 2 layers of the composite sequence.

The video traces we used in our simulations are 300
frames of Foreman, and a composite sequence made up of
300 frames of Foreman, followed by 300 frames of Coast-
guard and 300 frames of News, all QCIF at 30 frames per
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Fig. 4. The channel can support 3 layers of the encoded
stream. The dashed curve shows the aggregate playout
curve of the 3 layers with playback delays Df . The ag-
gregate playout curve of the 3 layers using playback delay
D3

min is shown for reference (dotted line).

second. We used the MoMuSys MPEG-4 FGS [5] refer-
ence codec to encode the sequences into a base layer and
an enhancement layer. The GOP size is 150 frames, and
it only contains P-frames. The enhancement layer has been
cut along the bitplane boundaries to construct further layers.

Table 1 shows results for both sequences sent over a
channel of mean rate 100kbps. The channel can transmit
2 layers in both cases. The gain in playback delay for re-
ceivers of set R1 is of the order of seconds when using our
fair distribution. Figure 4 shows the results of another sim-
ulation run: we consider sending the composite sequence
over a piecewise CBR channel which provides a mean rate
of 128kbps at the beginning, then improves to 256kbps and
finally to 384kbps. Using a fair playback delay distribution
given by Df , playout can begin after a playback delay of
128 frames at receivers of set R1. Similarly the playback de-
lays for layer 2 and 3 are of 191 and 720 frames respectively.
Note the gain in delay for clients in sets R1 and R2, com-
pared to a playback delay of 594 frames if D3

min is used for
all clients (dotted line). The relative playback delay penalty
per client set, compared to their respective Dl

min value, is
of 126 frames each.

5. CONCLUSIONS

In this paper, we have outlined and formalized the prob-
lem of playback delay distribution in a scalable streaming
scenario, where a streaming server broadcasts to a hetero-
geneous set of clients. We have proposed a server-based
scheduling strategy, that targets a fair distribution of the
playback delays. It is shown to bring significant improve-
ments on the playback delays experienced by the clients,
since it takes into account the heterogeneities in the client
population, the structure of the encoded stream, and the
available channel knowledge.
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