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Abstract 
In this paper an optimized and efficient technique for key-

frames extraction of video sequences is proposed, which leads to 
selection of a meaningful set of video frames for each given shot. 
Initially for each frame the Singular Value Decomposition method 
is applied and a diagonal matrix is produced, containing the sin-
gular values of the frame. Afterwards, a feature vector is created 
for each frame, by gathering the respective singular values. Next 
all feature vectors of the shot are collected to form the feature 
vectors basin of this shot. Finally a genetic algorithm approach is 
proposed and applied to the vectors basin, for locating frames of 
minimally correlated feature vectors, which are selected as key-
frames. Experimental results indicate the promising performance 
of the proposed scheme on real life video shots. 

 
Keywords: key-frames extraction, Singular Value Decomposition, 
correlation criterion, genetic algorithm. 

1. Introduction 
Recent progress in the fields of video analysis and processing 

has led to a significant increase in the amount of visual informa-
tion being stored, accessed and transmitted. This tremendous in-
crease has stimulated the invention of new technologies for effi-
cient searching, indexing and content-based retrieving. Towards 
this direction several methods for key-frames extraction, video 
summarization, content personalization and relevance feedback 
have been proposed. This paper focuses on the technology of key-
frames extraction, which aims at providing compact representa-
tions of video shots / sequences. Key-frames extraction algorithms 
usually result in the selection of a small but meaningful number of 
characteristic frames from a shot, enabling the fast access to 
frames, shots, or events in video sequences. For example, in case 
of a 30-min video stream consisting of approximately 200 shots, a 
user can locate video segments of interest or compare video shots 
by examining only 1,000 out of 45,000 frames, if five key-frames 
per shot are extracted (on average). 

Recently, some approaches have been proposed for non-linear 
content representation. Shot-cut detection algorithms [1] can be 
considered as early attempts. In [2] frames of a video sequence are 
chosen at regular time intervals, leading to a storyboard presenta-
tion. Selection of a single key-frame for each shot has been pre-
sented in [3], while in [4] three-dimensional iconic cubes are con-
structed, which contain the representative frame of a shot, together 
with camera breaks and relative duration (depth of the cube). 
However both approaches cannot provide sufficient information 
about the video content, especially for shots of long duration and 
high motion activity. In [5] construction of compact image maps is 
employed, while in [6] the video shot content is represented using 
image mosaics. However, although such approaches can be effi-
cient for specific applications, such as sports programs, studio 
productions and other cases with specific motion characteristics, 
they cannot provide satisfactory results in real world complex 

shots where background / foreground changes or complex camera 
effects usually appear. Video abstraction using unsupervised clus-
ter-validity analysis has been reported in [7]. In [8] a method for 
analyzing video and building a pictorial summary has been pre-
sented, while in [9] a fuzzy visual content representation scheme 
has been proposed with application to video summarization and 
content based indexing and retrieval. Another scheme for video 
summarization of three-dimensional video sequences has been 
reported in [10], where content description is accomplished using 
global and object-based characteristics. 

However, common problems of the aforementioned techniques 
are that advanced schemes have high complexity, while simpler 
schemes do not provide enough visual information of each shot. 
To overcome these drawbacks, in this paper an SVD-based gener-
alized framework for non-linear representation of video shots is 
proposed, regardless of the scene complexity. Towards this direc-
tion a content-based sampling algorithm is used, which extracts 
multiple representative frames (key-frames) for a given shot. This 
approach leads to summarization of visual information, in similar-
ity to current document search engines. Thus, it is possible to 
automatically generate low-resolution video clip previews (trail-
ers) or still image tabloids. 

For this purpose and since video sequences usually contain 
large amounts of mostly redundant data, the Singular Value De-
composition method is incorporated [11]. The SVD method helps 
removing redundancy while retaining as much information from 
the data as possible, as it has optimal decorrelation and subrank 
approximation properties. In particular initially the SVD method is 
applied on each frame of a shot and the singular values are gath-
ered to form a feature vector that compactly describes the content 
of the frame. The set of all feature vectors of each shot constructs 
a feature vectors’ basin and in this paper key-frames are extracted 
from each basin (and consequently from each shot). Towards this 
direction a cross correlation criterion that measures correlation 
among sets of feature vectors is formulated and key-frames are 
extracted by minimizing this criterion. However as the computa-
tional complexity of a full search can be extremely large, a genetic 
algorithm approach is proposed to carry out the minimization task. 
Experimental results show that meaningful sets of key-frames are 
extracted, which provide a rough approximation of the visual con-
tent of each shot. 

2. SVD and Feature Vector Formulation 
The SVD is closely linked to the concepts of principal compo-

nent analysis (PCA) and Karhunen–Loeve transform (KLT) and 
the relationships among them are discussed in detail in [12], [13]. 
In the context of key-frames extraction SVD can be very efficient 
in providing compact and meaningful representation of frame 
content. 

Towards this direction let us denote by sj the j-th shot of a 
video sequence and by Fi,j the i-th frame of the j-th shot. Then the 
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singular value decomposition (SVD) of a real-valued M × N frame 
Fi,j, with M ≤ N can be written as 
Fi,j = U Si,j Vt                                                                                 (1) 
where, U is an orthogonal M × M matrix whose columns (called 
the “left singular vectors”) are the eigenvectors of Fi,jFi,j

t, V is an 
N × N matrix whose columns (the “right singular vectors”) are 
eigenvectors of Fi,j

t Fi,j, and Si,j is the M × N diagonal matrix whose 
diagonal elements (the “singular values”) are the square roots of 
the corresponding eigenvalues of Fi,jFi,j

t, which are ordered in 
descending order 
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Letting 
jiF ,

ˆ = UtFi,j = Si,jVt, the SVD may also be written as Fi,j = 

U
jiF ,

ˆ . 

In the proposed scheme the SVD method is applied on each 
frame and the resulting eigenvalues are used for construction of 
the feature vectors. In particular feature vector fi,j of frame Fi,j is 
given by: 
fi,j = diag(UTFi,jV) = ]...[ ,
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,
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,
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where diag(⋅) denotes a vector whose elements are the main di-
agonal elements of the argument. As it can be observed by Equa-
tion (3), for given matrices U and V both having orthogonal col-
umns, a feature vector can be produced for each frame Fi,j of a 
specific shot sj. Gathering all these vectors for shot sj a feature 
vectors basin Bj is produced: 
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Now the problem of key-frames extraction reduces to selection of 
key-feature-vectors from each basin (each shot) and the proposed 
solution is described next. 

3. Key-Frames Extraction 
In the proposed scheme key-frames are extracted by minimiz-

ing a cross correlation criterion, using a genetic algorithm. Cross 
correlation formulation and genetic minimization are discussed in 
the following subsections. 

3.1 Cross Correlation and Problem Formulation 
In this paper extraction of key-frames within each given shot 

is achieved by minimizing a correlation criterion, so that the se-
lected key-frames do not contain similar visual content. In particu-
lar, selected key-frames are those with the minimum correlation 
among the frames of a shot. Let us denote by fi,j ∈ RN, i ∈ D = {1, 
…, NF} the feature vector of the i-th frame of a given shot sj, 
where NF is the total number of frames of this shot and N is the 
length of the feature vector. Let us also suppose that the KF most 
characteristic ones should be selected. KF can be provided by the 
user interactively (according to the complexity of the shot), can be 
a priori set, or can be automatically set, expressing the minimum 
correlation between frames. In the following for simplicity pur-
poses and without loss of generality we assume that shot sj is se-
lected and for each feature vector f the shot index j is omitted. 
Then the correlation coefficient of the feature vectors fi, fj is de-
fined as ρij = Cij /(σiσj) where Cij = (fi - m)T(fi - m) is the covariance 

of the two vectors, F

N

i
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F

/
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=
= fm  is the average feature vector of 

the shot and σi
2 = Cii is the variance of fi. In order to define a 

measure of correlation between KF feature vectors, we first define 
the index vector a = (a1, …, 

FKa ) ∈ X ⊂ FKD  where 
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X is the subset of FKD  that contains all sorted index vectors a. 
Thus, each index vector a = (a1, …, 

FKa ) corresponds to a set of 

frame numbers. The correlation measure of the feature vectors fi, i 
= a1, …, 

FKa  is then defined as 
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Based on the above definitions, it is clear that searching for a 
set of KF minimally correlated feature vectors is equivalent to 
searching for an index vector a that minimizes RF(a). Searching is 
limited in the subset X, since index vectors are used in order to 
construct sets of feature vectors, therefore any permutations of the 
elements of a will result in the same sets. The set of the KF least 
correlated feature vectors, corresponding to the KF key-frames is 
thus represented by 
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3.2 The Genetic Algorithm Approach 
In order to find the solution of the previous problem (Eq. (7)), 

all different combinations of feature vectors should be examined. 
Unfortunately, the complexity of an exhaustive search for the 
minimum value of RF(a) is such that a direct implementation 
would be practically infeasible, since the multidimensional space 
X includes all possible sets (combinations) of frames. A dramatic 
reduction in complexity can be achieved through logarithmic 
search [14], which provides very fast convergence to sub-optimal 
solutions. However, since the search procedure is by definition 
confined to a very small, pre-defined subset of the search space U, 
there is always a significant possibility of converging to a local 
minimum of RF(a), resulting in poor performance. For this reason, 
a genetic algorithm (GA) [15] approach is adopted in this paper. 
This approach seems to be very efficient for the particular optimi-
zation problem, given the size and dimensionality of the search 
space and the multimodal nature of the objective function. Possi-
ble solutions of the optimization problem, i.e., sets of frames, are 
represented by chromosomes whose genetic material consists of 
frame numbers (indices). Chromosomes are thus represented by 
index vectors a = (a1, …, 

FKa ) ∈ FKD  following an integer 

number encoding scheme, that is, using integer numbers for the 
representation of genes ai ∈ D, i = 1, …, KF. 

 
An initial population of P chromosomes, A(0) = (a1, …, ap) is 

produced and used for the creation of new generation populations 
A(n), n>0. The creation of A(n) at generation (or GA cycle) n is 
performed by applying a set of operations on population A(n-1), 
described below. This procedure is repeated until A(n) converges 
to an optimal solution. Traditionally initial populations are ran-
domly generated, but in this paper a temporal variation approach is 
used, where the temporal relation of feature vectors is exploited, 
increasing the possibility of locating sets of feature vectors with 
small correlation within the first few GA cycles. According to this 



temporal variation approach, sets of frames are selected whose 
feature vectors reside in extreme locations of the feature vector 
trajectory. This selection is accomplished by locating points where 
the magnitude of the second-order derivative of feature vector 
trajectory is locally maximized. 

The correlation measure RF (a) is used as an objective func-
tion to estimate the performance of all chromosomes ai, i = 1, …, 
P in a given population. However, a fitness function is used to map 
objective values to fitness values, following a linear normalization 
scheme. In particular, chromosomes ai are ranked in ascending 
order of RF (ai), since the objective function is to be minimized. 
Let r(ai) ∈ {1, …, P} be the rank of chromosome ai, i = 1, …, P. 
Defining an arbitrary fitness value fB for the best chromosome, the 
fitness of the i-th chromosome is given by the linear function 
f(ai) = fB – [r(ai -1)]fD,  i = 1, …, P                                               (8) 
where fD is a decrement rate. Thus, the average objective value of 
the population is mapped into the average fitness [16]. After fit-
ness values, f(ai), i = 1, …, P, have been calculated for all mem-
bers of the current population, parent selection is then applied so 
that a fitter chromosome gives a higher number of offspring and 
thus has a higher chance of survival in the next generation. A pro-
portionate scheme, implemented by the roulette wheel selection 
procedure [17] is used for parent selection, ensuring that each 
chromosome has a growth rate proportional to its fitness value. 
 

Crossover Points

OffspringParents
 

Figure 1: Example of the crossover operator with four crossover 
points. 

 
A set of new chromosomes (offspring) is then produced by 

mating the selected parent chromosomes and applying a crossover 
operator. The genetic material of the parents is combined in a 
random way in order to produce the genetic material of the off-
spring. An example of the crossover operator with four crossover 
points used for exchanging genes is depicted in Figure 1. A gener-
alized uniform crossover scheme is employed in the context of this 
paper, by considering each parent gene to be a potential crossover 
point. Mutation is then applied to the newly created chromosomes, 
introducing random gene variations that are useful for restoring 
lost genetic material, or for producing new material that corre-
sponds to new search areas. In particular, each offspring gene ai is 
replaced by a randomly generated one ai

΄∈ D = {1, …, NF}, if a 
probability test is passed. A small mutation probability ensures 
that only a small gene proportion is altered in each generation. 

Once new chromosomes have been generated for a given 
population A(n), n ≥ 0, the next generation population, A(n +1), is 
formed by inserting those new chromosomes into A(n) and delet-
ing an appropriate number of older chromosomes, so that each 
population consists of P members. The exact number of old chro-
mosomes to be replaced by new ones defines the replacement 
strategy of the GA and greatly affects its convergence rate [15]. 
All steps of the above description refer to a simple GA cycle. Sev-

eral cycles need to take place, that is, several generations A(n), n > 
0 need to be produced until the population converges to an optimal 
solution. For this reason, the procedures of fitness evaluation, 
parent selection, crossover and mutation are repeated until a ter-
mination criterion is reached. Usually the GA terminates when the 
best chromosome fitness remains constant for a large number of 
generations, indicating that further optimization is unlikely. 
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Figure 2: One shot from a real-world sequence, consisting of 182 
frames. One every 14 frames is depicted. 

 
The above algorithm, as well as the logarithmic search algo-

rithm, are based on the assumption that frames which are close to 
each other (in time) should have similar properties, and therefore 
indices which are close to each other (in X) should have similar 
correlation measures. However, the proposed technique performs 
equally well even in the case of random feature vectors. 

4. Experimental Results 
In this section, the performance of the proposed key-frames 

extraction scheme is evaluated, using a real-world video sequence. 
As a result, very complicated content, with zooming, panning, 
complex camera effects and motion are encountered. Shot detec-
tion has been performed manually, while the SVD approach for 
feature extraction has been applied offline. After preprocessing, all 
information regarding shot change instances as well as feature 
vector representation of all frames is stored in a database and is 
readily available. Hence, key-frames extraction can be separately 
performed for each shot, using directly the feature vectors of all 
frames within the respective shot. 

Afterwards one shot of the sequence is used for demonstra-
tion of the performance of the proposed technique. The shot de-
picts two persons walking through a crowd, consists of NF = 182 
frames and it is illustrated in Figure 2. For presentation purposes 
one every 14 frames is depicted, resulting in 14 frame thumbnails, 
so that an idea of the entire content is provided. Furthermore in 
order to determine KF (the number of key-frames to be extracted) 
for the cross-correlation minimization method, a temporal varia-
tion approach is adopted [10], where information of the trajectory 
formed by the vectors of all frames in the shot is exploited. Based 
on this approach, the number of key-frames is estimated to be KF 
= 4 for the selected shot. 



Next, the correlation minimization approach is activated. In 
particular the minimum value of the correlation measure (over the 
whole population) versus the cycle of the genetic algorithm is 
shown in Figure 3. As expected, RF (a) decreases as the GA cycle 
increases, until it reaches a minimum at generation 274. Since in 
the specific experiment half of the chromosomes are replaced by 
new ones at each generation, there are cases where all generated 
offspring have lower fitness than their parents. In these cases the 
value of the correlation measure remains at the same level, hence 
the “stepwise” appearance of the curve in Figure 3. Note that the 
step “width” generally increases with the GA cycle, since it is 
directly related to the probability of further optimization. The four 
extracted key-frames of the selected shot are shown in Figure 4. 
As it can be observed although a very small percentage of frames 
is retained (~2 %), it is clear that the selected four frames provide 
sufficient visualization of the total 182 frames, providing a mean-
ingful representation of the content of the video shot. 

 

 
 
Figure 3: Minimum value of the correlation measure RF(a) versus 
cycle of the genetic algorithm. 
 

5. Conclusion 
In this paper a novel content-based key-frames extraction 

scheme has been proposed. Since video sequences usually contain 
large amounts of mostly redundant data, the Singular Value De-
composition method is incorporated, which helps removing re-
dundancy while retaining as much information of the data as pos-
sible. In particular initially the SVD method is applied on each 
frame of a shot and the singular values (eigenvalues) are gathered 
to form a feature vector that compactly describes frame content. 
Then, key-frames are optimally extracted for each shot, based on 
the minimization of an objective numerical criterion, i.e., the cross 
correlation function of frame feature vectors. Other criteria, which 
take into account human perception, can also be used by the pro-
posed scheme. In this case extracted frames could be compared to 
those selected by several humans and examine which criterion is 
closer to human subjectivity. The formulated minimization prob-
lem is solved using a genetic algorithm approach. 

 
In future works other ways of compactly and/or meaningfully 

representing visual information should also be examined. Fur-
thermore other minimization methods could be incorporated to 
provide faster convergence to optimal solutions. 
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Figure 4: Extracted key-frames for the selected shot. 
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