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ABSTRACT 

A video Cut Detector (CD), a member of the Shot 
Boundary Detector (SBD) group, is an essential element 
for spatio-temporal audiovisual (AV) segmentation and 
various video-processing technologies. Platform, 
processing and performance constraints forced the 
development of various dedicated CDs. Future platforms 
allow the usage of advanced CD algorithms with higher 
reliability. In order to enable an appropriate trade-off 
decision to be made between reliability and the required 
processing power, benchmarking of four CD algorithms 
has taken place on bases of a generic, culture-diverse 
multi-genre AV corpus. In terms of complexity / 
performance trade-off, a field-difference-based CD proved 
to be optimal. 

1. INTRODUCTION 

Nowadays, terabytes of storage capacity on Consumer 
Electronic (CE) In-Home networks no longer belong to the 
realm of fiction. Consequently, users of such networks are 
confronted with a content management problem e.g. to 
retrieve desired AV content within the network. This 
problem can partially be solved by means of content 
descriptors, so called metadata, which can be either 
provided by content producers or, alternatively, by Video 
Content Analysis (VCA) algorithms. Today, the latter 
reaches even semantically meaningful levels (e.g. mood 
interpretation) enabled by the available processing power 
of current CE platforms. Consequently, those solutions 
have reached such a level of complexity, that 
modularization of the components into so-called Service 
Units (SU) is both required and desirable for reasons of 
reusability [1][2][3].  

In this paper we describe and benchmark four CD 
algorithms jointly developed in e.g. [4]. In general there are 
two SBDs, the so-called CD, identifying abrupt cut 
transitions, and the so-called Gradual Transition Detector 
(GTD), for gradual transitions such as dissolves and fades. 
In literature CD instances are also often referred to as shot 
boundaries (SB) or shot cuts separating AV content items 
into individual video shots, which is further used for e.g. 
AV Scene Boundary Detection (ScBD) [5]. 

Despite a rich variety of CDs reported by instance in 
TRECVideo [6] the problem still remains open [7]. A 
literature survey of relevant AV-content segmentation 
methods - including CDs - can be found in [8]. 
This paper is structured as follows: Section 2 describes an 
CD based on a MacroBlock (MB) correlation factor called 
Mean Absolute Difference (MAD). Section 3 presents a 
field-difference-based CD. Section 4 introduces a spatio-
temporal frame-segmentation-based CD. Section 5 
describes a rough-indexing-based CD. Section 6 
summarizes the detection results and error function graphs. 
Final conclusions are drawn in Section 7. 

2. MACROBLOCK CORRELATION CD (MBC CD) 

State-of-the-art compression systems such as AV encoders 
contain among others a video compression block with 
Motion Estimator (ME) as further explained in [9][10]. The 
ME identifies the best matching MB of the current frame in 
the successor (or predecessor) frame by means of 
minimizing the MAD value [10], which can be seen as 
motion compensated MB inter-frame correlation factor. 
Consecutively, the total sum (further called MADtotal) of all 
MBs of all slices over the entire frame is normalized with 
the maximal achievable value 

MAD_max_frame=(nr_MB/slice)*nr_slices*MAD_max_MB (1) 

with MAD_max_MB representing the maximal reachable 
MAD value, nr_MB/slice the number of MBs per slice and 
nr_slices the number of slices per frame.  Consecutively, 
Norm_MAD can be calculated by  
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Hereon, Norm_MAD of the current frame (Norm_MADn) is 
compared to a mean-value-based adaptive threshold A_Thn,  
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with T being a factor by which Norm_MADn has to 
minimally exceed the averaged Norm_MAD, with W 
representing the window length in number of frames, n 
being the index of the current frame investigated and x 
being an inner window. Instances, at which Norm_MADn 
exceeds A_Thn, are indexed as SBs. 
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3. FIELD DIFFERENCE CD (FD CD) 
The FD CD calculates for each field in an interlaced video 
signal, an Inter-Field Dissimilarity (IFD[n]) of the current 
field (n) and the predecessor field n-1. The luminance 
signal I(x,y,n), with the spatial coordinates (x,y) and the 
field index n, cannot be directly compared with the 
predecessor-field luminance value I(x,y,n-1), at the same 
spatial position (x,y), due to the different interlace phases of 
the two fields. Instead, I(x,y,n) is compared with de-
interlaced luminance value Idei(x,y,n-1), which is equal to  

( ) ( ) (( )1,1,,1,1,,,, −−−+ nyxInyxInyxImedian )  (4), 

using vertical temporal median as de-interlacing method. 
The resulting IFD[n] is defined as 
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with P[n] representing a pixel set with size N, containing 
the spatial positions in field with index n, and where Tdis is 
a preset threshold. I.e., the number of dissimilar pixels is 
counted. Finally, instances at which the local IFD[n] 
exceeds the maximum IFD value of the past W fields, 
increased by a preset threshold value T, as defined in  

{ WWmTmnIFDnIFD ,1,,3,2,1,][][ −∈∀+−> L }

}

 (6), 

are marked as a cut. The result is a field accurate CD. 

4. COLOR SEGMENTATION CD (CS CD) 

The MBC CD and FD CD compare frames on pixel level. 
Histogram-based approaches compare frames on frame 
level. The third CD resides on an intermediate level: it is 
based on color segmentation. Here, we use a watershed-like 
segmentation [11]. This is not intended to be object 
segmentation, as objects may have widely varying colors. 
As similar frames have similar segmentations, the 
dissimilarity of segmentations can be used in a CD. Figure 
1 shows frame segmentations around an abrupt transition.  

The similarity of consecutive segmentations is quantified 
by a consistency measure. It compares segment maps Sn-

1(x,y) and Sn(x,y), where Sn-1 and Sn are segment labels. Sn-

1(x,y) is motion compensated to handle object motion. We 
define an overlap matrix A, where Aij is the number of 
pixels that were in segment i in the previous frame and are 
now in segment j: 

{ jyxSiyxSyxA nnij =∧== − ),(),(:),( 1
 (7). 

For each segment in one frame, we define the segment in 
the other frame it maps to as that segment with which it has 
the most overlapping pixels: Segment p maps to segment q  
if Apq ≥ Apr for all r. We now define two consistency 
measures CAND(n) and COR(n) as: 

},{ qpAC pqAND ∀= ∑ : sAArAA sqpqprpq ∀≥∧∀≥  (8), 

   :},{ qpAC pqOR ∀= ∑  sAArAA sqpqprpq ∀≥∨∀≥  (9). 

 

 

Figure 1: Top : Frames around an abrupt transition. 
Bottom : Corresponding segmentation. 

CAND measures the area of all segments which map bi-
directionally onto each other, whereas COR measures the 
area of all unidirectional mappings. Notches in the 
consistency measures indicate a cut. CAND proved to be the 
most accurate indicator of a cut. However, as any 
segmentation algorithm requires a threshold, image noise or 
texture may cause segments to be split up or merged in 
subsequent frames. This decreases CAND, as for a split 
segment it only counts the area of the largest of the newly 
generated smaller segments. COR is insensitive to this effect 
as all smaller segments map uni-directionally to the big 
segment. Hence, we combine the two consistency 
measures: 
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The notches in C representing transitions become more 
exposed in comparison to CAND, but for notches caused by 
segment splitting, C remains more or less constant due to 
the insensitivity of COR to this particular cause. Especially 
for content with large textured areas, such as the grass in a 
football field or water surfaces such as the sea, the 
performance of the detector improves.  

CS CD uses an adaptive threshold method [12] with a 
sliding window of size W+1 and checks for a cut transition 
in the middle of the window for each frame: 
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The parameter T determines the required depth of the 
notch. W should be smaller than the minimal duration 
between two consecutive cuts, as only one cut per window 
can be detected. An analysis of shot lengths of the corpus 
material [8] of Section 6 has shown that a window size of 
10 frames does not lead to a large amount of missed 
transitions. 
 



5. ROUGH INDEXING CD (RI CD) 
The RI CD copes with cut- and gradual transitions. RI 
means using noisy and incomplete- “rough” -data for fast 
indexing of AV content. Such data can be extracted from 
MPEG streams when decoding, or collected during the 
MPEG encoding process. The method is based on two 
assumptions: presence of i) motion changes and ii) spatial 
content changes at cuts. The first one does not always hold 
in real content, but is realistic in MPEG encoded motion. RI 
CD consists of two cooperative processes running on an 
MPEG stream: change detection in P-frames and I-frames.  
In P-frames, we suppose that the MB motion vectors (dxi, 
dyi)T follow a single affine motion model for the frame: 
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with (xi,yi) coordinates of the MB centers. Normalized 
absolute differences of estimated motion parameters for 
consecutive P-frames ∆*an(t) and an absolute difference of 
the number of intra-coded MBs ∆Q(t) form a multiplicative 
mixture D(t) used to detect a cut transition: 
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with β between 0 and 1, and set to 0.8 by default. 
Supposing a Gaussian distribution N(µ,σ  of D(t) inside 
each shot, we train it during the W first P-frames and 
compute a shot–adaptive detection threshold 
λ = µ(D,W) + Tσ(D,W).  

)

For I-frames, the change can be detected by matching of 
spatial content. To do this, we warp consecutive I-Frames 
by motion compensation with estimated models [13]. Here 
only rough low-resolution versions of images, the “DC 
frames” consisting of DC coefficients of DCT in MPEG I-
frames, are used. After warping we use a mean squared 
error as a similarity measure weighted by the inverse of the 
energy of the local image gradient in order to reduce the 
contribution of errors on image contours WMSE(k). An 
extended experimental study of WMSE in TRECVideo 
experiments [13] allowed us to establish a threshold based 
on a histogram. If WMSE(k) > αµ(WMSE, W)( α=2,3,4,5 
for the experiments in this paper relatively to  
T=1.5,1.8,2.2,2.5), then a SB is detected at I-frame I(tk+1). 
In this paper SBD has been restricted to video cuts only, 
therefore detected changes had to be classified as “gradual” 
or “cut”. At cut instances, D(t) exhibits narrow peaks with 
consistency check of the sign of ∆Q(t) - from positive to 
negative. 

6. COMPARISON OF CDs 
All four CDs were tested on a corpus of 8 hours [8] of AV 
content captured from TV broadcast. The content was 
chosen carefully to adequately represent real-world 
broadcasting material containing a variety of genres, such 
as Series, Magazines, Commercials and Sports. The CD’s 

performance was evaluated for each genre separately in 
terms of precision (related to false positives) and recall 
(related to false negatives) [6] to assess the CD’s 
effectiveness according to the different video features of 
each genre. The performance of the CDs relies on two 
parameters: a threshold T, defining the (relative) difference 
of the sample with neighboring samples required to be 
indexed as a cut, and a window size W, defining the number 
of neighboring samples. Each detector was tested with 
several settings, where one of the parameters was fixed at 
an optimal default value and the other one was varied. 
Figure 2 displays the CD’s performance on three of the 
tested genres. By selecting the adequate detector or settings, 
one can tune the recall and precision according to one’s 
preferences. 
We now compare the CDs on several criteria, which may 
indicate their suitability for specific situations. 
Performance. All CDs reach comparable levels. The RI 
CD scores lower on recall (Figure 2a), whereas the MBC 
CD scores lower on precision (e.g. Figure 2c). The CS CD 
can reach high precision, but has a lower recall limit (e.g. 
Figure 2b). The FD CD is overall the most reliable. Only RI 
CD was tested on the TREC Video Corpus in the 
TRECVID2004 campaign. As it uses motion vectors and 
spatial information extracted from compressed streams, its 
performance depends on the accuracy of the encoder’s 
motion compensation. On TRECVID2004, RI CD showed 
lower performance with recall of 86.8 and precision of 77.8, 
as the TRECVID Corpus was MPEG1 encoded. 
Complexity. The FD CD has the lowest complexity, as for 
each pixel only a median and an absolute difference value 
have to be computed. The MBC CD computes an absolute 
difference as well, but it requires motion estimation. The RI 
CD has intermediate complexity, as it requires motion 
vectors and it makes a robust estimate of an affine motion 
model. The measure ∆Q requires only computations on MB 
resolution. The CSB CD exceeds all others in complexity, 
as it requires image segmentation.  
Latency. Both the FD and RI CD have zero-frame latency, 
as the cut detection result is immediately available for the 
current frame, making them suitable for on-line detection. 
The other two CDs use a symmetric window surrounding 
the current frame, resulting in latencies of several frames.  
Robustness. All CDs except the FD CD require motion 
estimation (ME). Depending on the amount of motion and 
the quality of the ME, ME errors may propagate into the 
CD result. As the FD CD does not require ME, it is the 
most robust one. Furthermore, it requires no parameters 
other than T and W . Through the use of segmentation, the 
CS CD is relatively robust to small errors in ME. The other 
two CDs are more critically relying on accurate ME. 
Overall. Considering the properties of the CDs, the FD CD 
is the best general solution in terms of trade-off between 
complexity and performance. 
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Figure 2: Precision / recall performance of all four CDs according to the genre of the analyzed video content 

 
Depending on requirements (e.g. low latency, low 
complexity) and available side information (motion vectors, 
segmentation, etc.), one of the other CDs may be optimal 
for specific applications. 

7. CONCLUSIONS 
We have benchmarked four CDs in terms of precision and 
recall. All CDs are obtained as byproducts of other video 
processing operations such as MPEG encoding. The results 
on an AV corpus show that all CDs reach comparable levels 
for detecting video cuts. Differences across genres are more 
pronounced than differences within genres for different 
detectors. FD CD shows a good performance and has low 
complexity. Hence, the FD CD is in general preferred. The 
user can control the precision/recall trade-off through a 
combination of threshold T and window size W (tuneable 
precision). A topic for future research is a SBD for gradual 
transitions. Whereas the MBC CD and FD CD detectors 
compare subsequent frames, the CS CD (through segment 
tracking) and RI CD can handle larger inter-frame spacing, 
and as such may be more suitable for GTD. 
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