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ABSTRACT

To support various bandwidth requirements for mobile
multimedia services for future heterogeneous mobile
environments, a transcoding video proxy is usually
necessary to provide adapting video streams to mobile
clients by not only transcoding videos to meet different
needs on demand, but also caching them for later use.
Traditional proxy technology is not applicable to a video
proxy because it is less cost-effective to cache the
complete videos to fit all kind of clients in the proxy
server. In this paper, we propose the object relation graph
(ORG) to manage the static relationships between video
versions, and utilize the cached object relation tree
(CORT) and replacement algorithm to manage video
segments cached in the proxy dynamically. Experimental
results show that the proposed algorithm significantly
outperforms companion schemes in terms of the byte hit
ratios.
.

1. INTRODUCTION

Requests for multimedia contents over the web have
become more and more popular. A proxy performs an
important service provider between content servers and
clients on reducing response time and network traffic.
With mobile technology grows quickly, more mobile
devices have the capability of playing low-quality videos.
So, transcoding video proxy would become more and
more important.

The function of a video transcoding proxy is the same
with a general media transcoding proxy (e.g. image
transcoding, document distiller) to help mobile clients to
reduce the file size and to fit to mobile device capabilities.
Although we can extend the traditional caching model to
support streaming media, it usually does not take
advantages of streaming characteristics. For example, it is
too large to cache the entire video objects. In addition, the
transmission of streaming objects needs to be rate
regulated and these timing constraints need to be
considered in the design of a proxy for streaming media.

Streaming video playback usually face some problems,
such as insufficiency of server-proxy bandwidth,

transcoding delay, the proxy-client bandwidth for the
proxy to receive video on time, and limited capability of
mobile devices. In order to solve these problems, it can
cache objects in the proxy either for transcoding to other
format on the fly or for future use directly. The proxy does
not cache entire videos, but some important video versions
that can be transcoded to other versions with low quality to
reduce the network traffic from video server and save the
storage of the proxy. Several caching strategies for
streaming media [3, 5, 6, 8] have been proposed in recent
years by caching a portion of a video file at the proxy. In
particular, caching an initial pre-fix of a video [4, 7, 9] has
a number of advantages including shielding clients from
delays and jitters on the path from the server to the proxy,
while reducing traffic along the path.

In this paper, we examine the trade-off of caching
frequently used video objects for on-the-fly transcoding
video objects to fit the network, CPU and storage
requirements in the proxy. The motivation for this work is
mainly due to the new emerging factors in the environment
of transcoding proxies. First, we should consider the
reference rates to different versions of a video object
separately because the distribution of them could affect the
caching decision. Second, the traditional cache
replacement algorithms could make a wrong replacement
decision without considering the transcoding delay. We
use the object relation graph to manage the static
relationships between video versions, and utilize the
cached object relation tree to manage video objects
cached in the proxy dynamically. The objective of the
proxy is to store the most valued video objects that have
the most related transcoding profits to improve the proxy
byte hit ratio and reduce the retransmission times from
video servers.

The rest of this paper is organized as follows: In Section
2 we present our proposed method of the transcoding
proxy including the cache management and the
replacement policy. Section 3 shows experimental results
of our method. Finally, Section 4 concludes the paper.

2. OUR PROPOSED METHOD

In this section, we describe the system architecture of the
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transcoding proxy, and discuss the cache management and
replacement policy.

2.1. System environment
Figure 1 is the architecture of our proposed transcoding
proxy server that consists of a request manager and a
cache manager. The request manager is in charge of
finding out the proper video format for different kinds of
client devices. Moreover, the request manager also
controls the transcoder to choice a suitable video version
based on user preferences, client device capacities, and
network characteristics. The cache manager manages
video versions and cached objects. It decides which object
should be cached, and which object should be replaced
when the cache space is full. It also manages transcoded
video objects and original video objects that can be
transcoded to other video versions. The video buffer stores
video objects transmitted from the server when the proxy
cache missed. The transcoded buffer is a space that stores
transcoded video objects ready to send to clients. A media
file contains multiple equal-sized blocks that are the
smallest unit of transfer. A segment contains multiple
blocks, and the cache admission and replacement policies
will attach different caching values to each segment. The
user request will be accepted while the network and CPU
resource are available. Otherwise, the request is blocked.

Fig. 1. Transcoding proxy architecture

2.2. Cache management

2.2.1. Video object versions
When the proxy transcodes a video version to another
video version with lower quality, it must reference more
detailed resolution videos to perform the transformation.
We depict the dependent relationships of transcoding
video versions by the object relation graph (ORG), shown
as Figure 2. We define the object relation graph as
following:

Definition 2.1 (Object Relation Graph) The object
relation graph, G, is a directed graph with a transcoding
delay weight function w. G depicts the static transcoding
relationships among transcodable versions of a video.
1. For each vertex v ∈ V[G] represents a transcoded

version of a video with different quality, and it keeps
the information of the frame rate and the frame size.

2. For each directed edge e(u, v) ∈ E[G] represents the
transcoding delay weight. Let e(u, v) = (transcoding

time from v to u / playback time of u )≈ {(F(u)×R(u)) /
ERvu }, where the F(u) represents the frame size of u,
the R(u) represents the frame rate of u and the ERvu

represents the encoding rate (e.g. [12]) from v to u.
The transcoding delay weights of dotted edge are less
or equal than one. It represents that version u can be
transcoded from version v in reasonable transcoding
time.

Fig. 2. Object relation graph with transcoding delay

Figure 2(a) shows the example of the ORG, and we
represent video versions as numbers instead of detailed
video information, shown as Figure 2(b). The CPU time
required for encoding is proportional to the image
resolution, and the encoding time dominates the overall
transcoding time. Let version(q) represents the version
number of the object with quality q. If version(u) ≤
version(v), the version u can be transcoded to version v.
For example, in Figure 2(b), objects 2, 3, 4, 5, 6 dependent
on object 1 and they can be transcoded from object 1.
Object 4 can also be transcoded from objects 1, 2 and 3,
and object 6 can be transcoded from objects 1, 2, 3, 4, 5.

A vertex with at least one dotted link connecting to other
vertices represents that this video version could be
transcoded from other video versions. From the object
relation graph, we can find the static dependent
relationships between video versions. We can use the
dependent relationships to find out which video versions
can be transcoded from other video versions cached in the
proxy. If the video version can be transcoded to several
video versions in a reasonable transcoding time, it is a
valuable video version. For example, the directed edge
e(V (Q, 25), V (C, 25)) = 1.37 indicates that
transforming format CIF with 25 fps video to QCIF with
25 fps video requires transcoding time more than playback
time 1.37 times, shown as Figure 2(a). Therefore, node V
(Q, 25) is not worth transcoded, and we should cache it in
the proxy.

2.2.2. Cache admission policy
The goal of caching video objects in a proxy is to reduce
network latency of clients and to reduce the load of video
servers. However, video objects are always larger than
traditional text and image objects. With limited storage
constraints, the video proxy usually cannot cache all
versions of all videos. The proxy only caches the
requested and the valuable segments, and we use a tree



structure to store these cached segments. The object
relation graph, which shows static relation information of
different video versions, it cannot reveal the actual
information of objects cached in the proxy. Therefore, we
use the cached object relation tree (CORT) to represents
the dynamic information of cached video objects in the
proxy and defined as following:

Definition 2.2 (Cached Object Relation Tree) The
cached object relation tree, Ti, is a tree structure with
segment id, popularity and video version information. Ti
depicts the actual relationships among a related group of
the cached objects of video i at run time.

1. For each node v ∈ V[Ti] represents a cached
segment of video i. It keeps the video format,
popularity, caching profit and segment information.
We use the exponential-sized segmentation [10] to
save the media objects. The root node represents the
conceptual node that represents video i. It is designed
just for video indexing, and it can be kept in a hash
table for searching quickly.

2. For each edge e ∈ E [Ti] represents the transcoding
delay weight previously defined in object relation
graph. The edge from root to the node u of next layer
is ((F (u) × R (u)) / Server-proxy network bandwidth).

Figure 3 shows an example of the cached object relation
tree. Node a, b, c, and d are full version and cached in the
proxy. Node e, f, g, h and i may be transcoded from their
parent objects. When we insert, remove or retrieve a node,
we will update the tree and the node information.

2.3. Replacement policy
When the proxy space is full, we have to select the useless
objects as victims. In this section, we propose a CPU-time
constrained replacement policy. The popularity is decided
by the access rate which is estimated as f = 1 / (T −T’),
where T is the current time and T’is the last access time.
A value of f close to one represents that the object is
requested recently. The more popular video object has
higher priority to be cached. However, it is not enough in
our method. The main decisions are calculated from the
object transcoding delay and the popularity. If an object is
cached, it saves its transcoding time and may save other
relative object’s transcoding time. We define the function 
of cache object profit to each object as following:

Definition 2.3 (CPUCacheProfit) Let Oi,j denotes the
version j of object i. Let fi,j denotes the reference rate of
Oi,j . We define the CPUCacheProfit(Oi,j ) function for the
profit of caching Oi,j as following:

where eg represents the edge in the ORG, M represents the
vertex that has a link entering vertex j in the ORG, Pj

represents the parent vertex of j in the CORT and Cj

represents the child vertices of j in the CORT.
The first part of the equation represents the gain which

caching object version j can save the cost transcoded from
other object versions. The second part of the equation
represents the gain which caching object version j can
save the transocding time of other relative object versions
that can be transcoded from version j.

Fig. 3. Example of the cached object relation tree

Figure 4 shows an example of the CPUCacheProfit
calculation. The cost of caching node 3 would save the
transcoding time for itself and node 4. The cost of caching
node 4 can only save the transcoding time for itself. In this
example, we can see that the cache profit of node 2 is
more than that of node 3. It means that cache node 2 is
more useful than node 3. Figure 5 is the CPU-time
constrained replacement algorithm.

Fig. 4. CacheProfit calculation example

Algorithm CPU-time_Constrained_Algorithm(v)
v : the requested version object
If (the request if not blocked) {

While (there is not enough free space for v) {
look for idle object u in the cache with the lowest

CPUCacheProfit(u);
if (CPUCacheProfit(u) ≧ CPUCacheProfit(v)) {

return;
} else {

remove u;
update the CPUCacheProfit of u, child(u) and parent(u)

}
}
cache v;
update the CPUCacheProfit of v and parent(v)

}

Fig. 5. CPU constrained replacement algorithm



3. EXPERIMENTAL RESULTS

In our experiment environments, we use the exponentially
sized segment approach [10] to define the storage unit of
the video object. The popularity of video objects follows
Zipf-like distribution Zipf(x, M) [11], where M is total
distinct video titles. The distribution is given by pi = (c /

i1−x) for each i ∈ 1, . . . M, where c = , is a
normalization constant. We set M = 2000 and x = 0.2 for
video popularity.

The interarrival time between two consecutive access
sequences is modeled by an exponential distribution with
the mean value of 0.5 seconds. The client’s silent time
between two successive requests within an access
sequence is modeled by a Pareto distribution with the
mean value of 60 seconds. The video size is distributed
between 1000B and 3000B, where B is the block size. The
playing time for a block B is assumed 1.8 seconds. In
other words, the playing time for a video is between 30
minutes and 90 minutes. The cache size is expressed in
terms of number of media blocks, and the default cache
size is 400,000 blocks.

For the client model, as in [1], we classify the mobile
appliances into five classes. The distribution of these five
classes of mobile clients is modeled as a device vector
including 15%, 20%, 30%, 20% and 15%. The size of five
versions of each object are assumed to be 100%, 80%,
60%, 40% and 20% of the original object size (frame rate
x frame size).

The main performance metric in our experiments is byte
hit ratio. The byte hit ratio represents the ratio of the total
bytes accessed from cached objects directly (Exact Hit) or
transcoding from relative objects (Related Hit) over the
total bytes of objects requested. In Figure 6, we can see
that the related hit ratio of the CPU-time constrained
policy is much higher than that of LRU (Least Recently
Used) [2] in Figure 6(b). This is because that LRU does
not consider the transcoding relationships between cached
objects to decide the right victims. Our cache management
will replace the less related objects that cannot be
transcoded to other versions.

4. CONCLUSIONS

In this paper, we construct an interesting model caching
different versions of video objects to serve variant types of
client devices. We consider that the lower resolution video
objects can be transcoded from other appropriate related
objects to speedup the response time to mobile clients in
heterogeneous network environments. In the experimental
results, we can see that our replacement policy will take
the transcoding time as the key decision consider to select
the right objects as victims. In the future, we will
cooperate with client buffer to dynamic adjust the
transmission rate according to the client, the server and the
network characteristics.
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Fig. 6. Hit ratios of five classes of client.
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