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ABSTRACT

We consider the problem of packetizing a variable length

coded Markov sequence into fixed length packets, while be-

ing protected by variable rate channel code. Given the to-

tal transmission bit budget, a joint source-channel coding

problem is how to partition the input sequence and how to

determine the coding rates of individual packets for min-

imum expected distortion when the sequence is sent over

binary symmetric channel. Three methods are proposed to

estimate the performance of a sequence when transmitted

through the system, based on which we convert the joint

source-channel coding problem into a shortest path problem

in a weighted directed acyclic graph which can be solved

by using dynamic programming. Simulation shows that the

overall performance of the system can be improved by 10-

30% compared with the performance of the fixed rate pack-

etization scheme.

1. INTRODUCTION

Maximum a posteriori (MAP) decoding is a joint source-

channel decoding technique that exploits the residual re-

dundancy of a source code stream. A common structure

of source redundancy to be exploited by a MAP decoder is

that of a Markov sequence. If a Markov sequence is coded

by a fixed-length code the MAP decoding is quite straight-

forward. The problem gets more complex if the source code

is of variable length. This is because channel errors can eas-

ily cause loss of synchronization on a variable-length code

(VLC). Since most entropy codes are of variable length,

MAP decoding of VLC Markov sequence is of greater prac-

tical interest and importance.

The idea of MAP decoding seems to contradict Shan-

non’s classic separation theorem [1], in which known mem-

ory of the source should be utilized thoroughly by entropy

coding, and the input sequence of the channel encoder is al-

ways assumed memoryless. However, situations exist where

leaving the memory in the source is more practical and ad-

vantageous to the overall performance of the system [2].

Data packetization is a must in packet switched net-

works. Besides making efficient and flexible use of the net-

work, it provides a means of error resilience. The phys-

ical boundaries of N packets can prevent the propagation

of loss of synchronization. MAP makes use of the corre-

lations between symbols to correct errors. Setting packet

boundaries at locations where the Markov transition prob-

ability is small and hence the error correcting capability is

weak, can improve the performance of MAP decoding. In a

coding perspective, the packet header, which consumes bits

to encode the packet number (sequencing information), the

number of source symbols and the channel code rate for the

packet, is redundancy in the form of side information. This

redundancy should be exploited by the joint source-channel

decoding process. Therefore, MAP and packetization can

work jointly to achieve better overall performance.

To be more practical, this paper considers the scenario

where all packets are protected by a variable rate channel

code after the packetization. All packets are then sent

through a binary symmetric channel (BSC). Given a source

code, a set of channel codes with different rates, a BSC, the

total number of packets and the length of a single packet, we

aim to find the optimal packtization scheme that minimizes

the decoding errors.

This paper is organized as follows. Section 2 gives the

formal formulation of the problem. Two graph based rep-

resentations and solutions of the problem are given in Sec-

tion 3. Section 4 discusses some methods of the estimation

of error propagation length. The experimental results are

presented and analyzed in Section 5.

2. PROBLEM FORMULATION

We consider the following packetized communication sce-

nario. An input sequence of M symbols x = x0x1 · · ·xM−1,

is generated from a first-order discrete Markov source with

alphabet A = {α0, α1, · · · , αK−1}. The Markov source is

characterized by transition probabilities p(αj |αk) =
Pr(xt = αj |xt−1 = αk) for all αj , αk ∈ A, and the prior

probability distribution p(αk) = Pr(x0 = αk), αk ∈ A.

Before transmission, the input sequence x is partitioned into

N subsequences:

x = x0 · ·xm1−1, xm1
· ·xm2−1, · · · , xmN−1

· ·xM−1
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one for each of the N packets. For the sake of cleaner nota-

tion, we write x[mi, mi+1) = xmi
· ·xmi+1−1, where m0 =

0 and mN = M . The vector m = (m1, m2, · · · , mN−1) is

called packetization vector because it uniquely determines

a packetization scheme of x. Note that in the above formu-

lation we require each packet to contain an integer number

of source symbols.

Given a packetization m, each subsequence x[mi, mi+1)
is encoded by a VLC source encoder, such as a Huffman

encoder, whose codebook is C = {c0, c1, · · · , cK−1} with

ck for αk. K is the number of codewords and the length

(in bits) of a codeword ck is denoted by |ck|. When the

input is x[mi, mi+1), the output of the source encoder is

b[mi, mi+1). For convenience, we will use xi and bi as

shorthands for x[mi, mi+1) and b[mi, mi+1) in the sequel

of this paper. The length (in bits) of bi is expressed by |bi|.

All the VLC-coded sequences bi, i = 0, · · · , N − 1,

are then protected by a variable rate channel code (such as a

variable rate convolutional code), with rate r[mi, mi+1) ∈
R, whereR = {R1, R2, · · · , RB} is the set of all available

channel code rates. We use ri as a shorthand for r[mi, mi+1),
and call r = (r1, r2, · · · , rN ) the channel rate vector. After

bi is channel encoded, the length of the output bit stream is

|bi|/ri.

These N source-channel encoded bit streams are placed

into N packets. If the length of each packet is L bits, we

have the constraint |bi|/ri ≤ L for all i’s. All N packets are

then transmitted through a BSC, whose crossover probabil-

ity is pc. At the receiver, we do channel decoding followed

by MAP decoding on each packet and obtain N decoded

subsequences yi. Finally the receiver concatenates all yi’s

into an output sequence y. We measure the performance of

such a system by the expected total error propagation length

(EPL) between the system input x and output y, denoted by

D̄(x,y), where the total EPL measures the number of sym-

bols that are decoded incorrectly after x and y are aligned

by minimum edit distance.

Ideally, one wants to minimize D̄(x,y) over all pos-

sible packetization vectors m and the channel rate vectors

r, given the VLC, x, and pc. Since our system imposes

the condition that an integer number of source symbols are

packed into a packet, the influence of any bit error is con-

fined to the boundary of the packet. This makes D̄(x,y) an

additive measure, namely,

D̄(x,y) =
N−1
∑

i=0

E(D(xi,yi)). (1)

Since the distortion D(xi,yi) of the ith subsequence is mono-

tonically nonincreasing in channel coding rate ri, given mi,

the optimal rate ri is determined by

r∗i = min{r ∈ R | |bi|/r ≤ L}. (2)

Therefore, the packetization vector m becomes the only

variable in the underlying optimization problem, given the

VLC, x, and pc, and we can equivalently write

D̄(x,y) =

N−1
∑

i=0

D̄(x[mi, mi+1)), (3)

where D̄(x[mi, mi+1)) is the expected sum of error propa-

gation lengths by source-channel coding of the subsequence

x[mi, mi+1) in one packet, where the channel code rate is

selected as r∗i .

Finally, we can state the problem of optimal packetiza-

tion of source-channel coded Markov sequence x, given the

variable length source code C, BSC crossover probability

pc, packet size L, and the number of packets N , as the fol-

lowing

min
m

N−1
∑

i=0

D̄(x[mi, mi+1)) (4)

3. ALGORITHM DEVELOPMENT

To facilitate the development of algorithms for the problem

given in (4), a weighted directed acyclic graph (DAG) G
is constructed as follows. There are M + 1 vertices in G,

denoted vi, in which vi corresponds to the symbol xi for i
from zero to M − 1 and vM to the end of sequence x. For

any subsequence x[i, j), i < j, if |b[i, j)| is less than L,

there exists a directed edge (i, j) that leaves vertex vi and

enters vertex vj . The weight of edge (i, j) is D̄(x[i, j)).
Then the optimal solution can be found by searching for the

shortest path from v0 to vM that has exact N edges [3, 4].

Specifically, for each vertex vi, a list of weights ω(i, n),
n = 0, 1, · · · , N , are saved, which give the solution of

the subproblem where the input sequence is x[0, i) and the

number of packets is n. Then ω(j, n) can be calculated by

ω(j, n) = min
0≤i<j,

if edge (i,j)exists

{D̄(x[i, j)) + ω(i, n− 1)}. (5)

The value of ω(j, n) and the survival path are recorded. To

initialize, we have ω(0, 0) = 0 and ω(i, 0) = +∞ for i =
1, 2, · · · , M .

After all ω(i, n)’s are calculated, we start from ω(M, N)
and trace back along the survival paths. The obtained path

gives the optimal solution. Because there are M vertices in

G, the out-degree of each vertex is O(L), and for each ver-

tex, N values need to be calculated, the complexity of the

above dynamic programming algorithm is O(MNL).

...

vj

(i,j)

v0 vMvi

Fig. 1. Graph representation of the greedy search algorithm.

It is possible to speed up the algorithm by removing

edges of large weights from graph G. Instead of consid-

ering all possible outgoing edges from a given vertex vi,

for each available rate r ∈ R, we only include the edge



that crosses the longest sequence subject to the constraint of

packet size. Only those vertices that have incoming edges

(called activated vertices, as gray shaded in Fig. 1) can emit

outgoing edges. This graph construction algorithm is given

below.

Algorithm Graph Construction for Greedy Search

1. activate v0

2. for i = 0, 1, · · · , M − 1
3. do if vi is activated

4. then for t = 1, 2, · · · , B
5. do j ←max{k|k ≤M, b[i, k)/Rt ≤ L}
6. add a new edge (i, j)
7. if vj is non-activated

8. then activate vj

The resulting graph will be much sparser than the com-

plete DAG. The same dynamic programming method can

be used on the reduced graph. Let the average out-degree

of vertices be B, the complexity of the search algorithm is

reduced to O(MNB).

4. ESTIMATION OF ERROR PROPAGATION

LENGTH

4.1. Error Analysis

The remaining challenge to solving the optimal packetiza-

tion problem (4) is how to compute D̄(x[mi, mi+1)). It is

well known that with proper interleaver/deinterleaver and

channel encoder/decoder a BSC can be regarded as a new

BSC of reduced crossover probability. The new crossover

probability pe is determined by pc, ri and the structure of

the channel code and can be obtained by simulations. Let

li(j) be the error propagation length caused by flipping only

the jth bit of bi. Empirically we observed that the random

variable li(j) obeys a geometric distribution whose param-

eter λ, is determined by pe and the MAP decoding process.

One can show that the average interval between two

consecutive bit errors for BSC is 1
pe

. The expectation of

li(j) is 1
λ
− 1. In practice, 1

pe

� 1
λ
− 1 holds. There-

fore, if more than one bits flip during the transmission, the

probability that the bit errors interfere with each other will

be very small. Thus, the expected total EPL of sequence

x[mi, mi+1) can be approximated by

D̄(x[mi, mi+1)) ≈ pe

|bi|−1
∑

j=0

li(j). (6)

The next step is to compute li(j) for all j. Three different

methods of calculating li(j) are discussed in the following

subsections.

4.2. Direct Method

From definition, we can calculate li(j)’s directly by using

the following algorithm.

Algorithm Direct Method

1. Calculate pe from pc, r∗i and channel code structure

2. for j = 0, 1, · · · , |bi| − 1
3. do flip the jth bit of bi, get a new sequence b′

i

4. MAP decode b′
i (by using pe) into yi

5. li(j)←D(xi,yi)

The complexity of MAP decoding in calculating li(j) is

O(N2|bi|), or O(N |bi|
2) when the input sequence is Gaus-

sian Markov [5]. Therefore, the complexity to calculate

D̄(x[mi, mi+1)) by direct algorithm is O(N2|bi|
2), or

O(N |bi|
2) when the input sequence is Gaussian Markov,

which is very expensive when |bi| is large. We propose two

approximate methods to reduce the complexity.

4.3. Moving Window Method

In MAP decoding, the EPL of a single bit error is only de-

pendent on those symbols that are not far away from the

flipped bit. Thus we analyze sequence xi in a window of

2W + 1 symbols and centered at the symbol of the flipped

bit. Instead of MAP decoding of the whole sequence bi,

we confine MAP to the subsequence of the window. As j
changes from 0 to |bi| − 1, the window moves along the

sequence xi from left to right. Because W is a constant,

the complexity to calculate D̄(x[mi, mi+1)) decreases to

O(N2|bi|), or O(N |bi|) if the input sequence is Gaussian

Markov [5].

4.4. Dictionary Method

In moving window method, if the width of the window is

small enough, we can precompute the values for all combi-

nations of the symbols in the window in advance and save

the results in a dictionary. Thus, li(j) can be had by table

look up, reducing the complexity dramatically.

Now we show how the dictionary is created. Consider

a window of 2w+1 symbols centered at the current symbol.

Denote the sequence in this window by z = z−w · · · z0 · · · zw.

The value of z is used as a key to the dictionary. The en-

try for z is the expected value l̄(z0) of the summation of

the EPL’s caused by the single bit errors at the bits of sym-

bol z0, which can be precomputed using a long training se-

quence t = t0t1 · · · tT generated from the first-order dis-

crete Markov source, by

l̄(z0) = E

[

∑

0≤i<T
ti−w···ti+w=z

∑

j∈ti

lt(j)

]

. (7)

Note that lt(j) is calculated by using the moving window

method within a bigger window of 2W + 1 symbols. With

this dictionary, D̄(x[mi, mi+1)) can be easily calculated.

This algorithm is very fast, with a complexity of only

O(|bi|). However, since pe varies for different rates ri,

lt(j) is a function of ri. We need to create different dic-

tionaries, one for each ri ∈ R. Since |R| = B, the total

table size is BK2w+1. For sufficient accuracy, w cannot be

too small, incurring huge memory use. Fortunately, the ta-



ble is very sparse due to the Markov property of z. Hashing

technique can be used to reduce the space requirement.

5. EXPERIMENTAL RESULTS

In our experiments the source is a scalar-quantized (uni-

form with nine code cells) zero-mean, unit-variance, first-

order Gaussian-Markov process of correlation coefficient

0.9. The input sequences are Huffman encoded with nine

codewords (K = 9). We use four different packet lengths

(L = 60, 120, 240, 384bits), where the last one is the length

of an ATM packet, and three different number of packets

(N = 10, 20, 40). The crossover probability of the BSC is

pc=0.005. We use convolutional code as the channel code.

The set of all available rates is R = { 1
2 , 3

5 , 2
3 , 3

4 , 1}. The

constraint lengths for these rates are 3, 4, 3, 4 and 0 respec-

tively. We pick the width of the moving window to be 21

symbols (W = 10).

The length of the z in the dictionary method is five, i.e.

w = 2. The total number of indices BK2w+1 equals to

5 · 95 = 295245, only 42906 of which are non-zero and are

saved in the Hash table.

Table 1 gives the accuracy of the three methods in es-

timating the EPL, measured by the average relative error.

The direct method and moving window method have al-

most the same accuracy, and are better than the dictionary

method. It can also be seen that the accuracy is better for

lower crossover probability, which is expected because the

approximation in (6) is more accurate for lower crossover

probability.

Table 1. Estimation errors of different methods.

M Method
Crossover Probability pc

0.003 0.001

20

Direct 5.25% 1.96%

Moving Window 5.25% 1.96%

Dictionary 15.36% 17.72%

60

Direct 4.90% 2.16%

Moving Window 5.01% 2.27%

Dictionary 13.27% 15.18%

120

Direct 5.62% 2.14%

Moving Window 5.47% 2.80%

Dictionary 10.67% 11.02%

We implemented the two search algorithms proposed in

Section 3, and compared them with the fixed rate packeti-

zation, whose rate is 2
3 . For each (L, N) combination, we

tested 100 input sequences. For fair comparison, we se-

lected only the sequences such that with the fixed channel

code rate the source symbols can be packed exactly without

wasting packet payload. For each combination (L, N) and

each input sequence, we compared fixed rate packetization

and three versions of variable rate packetization: 1) mov-

ing window method with complete search, 2) moving win-

dow method with greedy search and 3) dictionary method

with greedy search. For each method and each input se-

quence, we ran 5000 simulations. The simulation results

are reported in Tables 2 and 3, whose entries are the reduc-

tion (in percentage) of D(x,y) over that of the fixed rate

packetization.

Table 2. Results for different N (L = 120, pc = 0.005).

N
Complete Search Greedy Search Greedy Search

& Moving Window & Moving Window & Dictionary

10 24.08% 24.36% 23.30%

20 27.06% 27.03% 26.93%

40 29.71% 29.36% 29.10%

Table 3. Results for different L (N = 10, pc = 0.005).

L
Complete Search Greedy Search Greedy Search

& Moving Window & Moving Window & Dictionary

60 32.05% 31.54% 28.34%

120 24.08% 24.36% 23.30%

240 16.96% 16.21% 16.58%

384 12.62% 12.07% 10.84%

Referring to the tables, the result of greedy search is al-

most the same as that of complete search. The performance

of the dictionary method with greedy search is only a little

worse than that of moving window method with complete

search, but the former is much faster than the latter.

When the number of packets (N ) increases, so does the

improvement. This is because the more packets, the more

flexibilities exist in the optimization. In a coding perspec-

tive, more packets mean higher density of header overhead,

hence greater level of redundancy to be exploited by the

optimal packetization process. Conversely, as the size of

the packets (L) increases, the less improvement is achieved.

The reason is that the larger the packet size, the lower den-

sity of header information, hence less redundancy available

to combat the channel errors.
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