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ABSTRACT 

Video streaming demands high data rates and hard delay 
constraints, and it raises several challenges on today’s 
packet-based and best-effort internet.  In this paper, we 
propose an efficient multiple-description coding (MDC) 
technique based on video frame sub-sampling and cubic-
spline interpolation to provide spatial diversity, such that 
no additional buffering delay or storage is required.  The 
frame dropping rate due to packet loss and drifting error 
under the multi-path streaming environment is analyzed 
in this paper. 
 
 

I. INTRODUCTION 
Tremendous amount of research has been taken place to 
ensure the quality of service for video streaming applica-
tions.  Techniques such as Integrated Service (IntServ), 
Differential Service (DiffServ), and Resource Reserva-
tion Protocols (RSVP) have been standardized.  These 
techniques require the support on the network backbone, 
which is not readily available on today’s Internet.  Pro-
viding these services require higher computational re-
sources on the network equipments for additional packet 
processing, which is a costly practice.  In addition, ser-
vice providers need to sustain a non-interrupted service 
during the upgrade process, which is another difficult 
task to deploy such techniques. 

To get around with the network backbone upgrade 
while maintaining a low packet loss rate, numerous dis-
tributed streaming techniques have been proposed.  Lay-
ered coding techniques such as Fine Granularity Scalable 
(FGS) coding [1] and Progressive Fine Granularity Scal-
able (PFGS) coding [2] divides the video bitstream with 
different priority levels, which is best applied with Diff-
Serv technique mentioned above.  If DiffServ is unavail-
able on the backbone, it is also possible to appoint statis-
tical feedback from the receiver to the sender to adjust 
the amount of video layers to be transmitted.  The major 
drawbacks of this approach are the round-trip feedback 
delay and the capability of adapting bandwidth varying 
channels.  To overcome these drawbacks, combining 
source coding and distributed streaming infrastructure 
have been proposed in [3][4], with a layered coding 
technique applied to the video bitstream and a collabora-

tive streaming infrastructure. 
Multiple-Description Coding (MDC) [5] is another 

approach proposed to address some of the challenges 
described above.  MDC is a source coding technique 
in which the source is encoded into multiple descrip-
tions (MD), which can be transmitted via independent 
paths to the receiver.  Vaishampayan proposed a Mul-
tiple Description Scalar Quantization (MDSQ) tech-
nique in [6], to generate two sub-streams by producing 
two indices for each quantization level [7]. 

This paper introduces an efficient MDC technique 
based on spatial domain up-scaling or super-
resolution.  The coding efficiencies and the recon-
structed video qualities of the proposed MDC tech-
nique are further explored.  The multi-path video 
streaming framework is simulated using the two-state 
Markovian Gilbert-Elliot Model, and comparisons 
between the frame loss rates by single-path streaming 
and multiple-path streaming are analyzed in this pa-
per.  Other factors affecting the frame loss rate, such 
as the number of MDC streams and the transition pa-
rameters of the Gilbert-Elliot Model, are further ana-
lyzed in the experiment. 

 
II. MULTI-DESCRIPTION VIDEO CODING WITH 

SPATIAL DIVERSITY 
The Internet consists of arbitrary interconnections 
between sources and destinations with heterogeneous 
propagation delays.  Most of the routing protocols 
today select the best path for data transmission, and a 
path handover will take place upon any failure or con-
gestions appearing at the network.  Unfortunately, the 
delay for the routing update during the path handover 
can produce severe impact to real-time applications 
such as video streaming.  Therefore, source coding 
technical with embedded error resilience has become a 
popular approach to resolve errors caused by the net-
work connections. 

MDC technique is one attempt to resolve the draw-
back caused by single path transmission.  Given a 
sequence of video frames {F1,F2,…}, where Fk repre-
sents the k-th frame of the video.  Using CIF video 
format for example: , { }vuyFk ,,= [ ] 288352255,0 xy∈∀  
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and .  MDC consists of an encoder 
EMDC and a decoder DMDC.  The MDC encoder EMDC 
maps a given frame into m codes: 

[ ] 144176255,0, xvu ∈∀

{ }m
kMDCkMDCkMDC CCFE ,

1
, ,,: K→   (1) 

The MDC decoder DMDC maps a subset of 
codes into a reconstructed frame, : { } { mxx n ,,1,,1 KK ⊂ }

}
n
kF̂

{ n
k

x
kMDC

x
kMDCMDC FCCD n ˆ,,: ,,

1 →K   (2) 
with the property that 
( ) ( )nkk

m
kk FFdFFd ˆ,ˆ, ≤   (3) 

where distortion metric d(F1,F2) represents the similari-
ties between the two video frames F1 and F2, for example, 
mean squared error (MSE) or peak signal to noise ratio 
(PSNR), and a lower d(F1,F2) value represents a higher 
similarity between F1 and F2. 

In this paper, an efficient super-resolution based video 
MDC codec is constructed based on the strong inter-
pixel similarity between neighboring pixels within a 
video frame.  In the encoding stage, EMDC performs spa-
tial sub-sampling for each individual frame in the video 
sequence. 
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Figure 1: MDC video reconstruction using Cubic Spline 

Interpolation 
 Raw 

(kbps) 
MDC  

 (kbps) 
ζ PSNR 

(dB) 
Akiyo 126.24 68.91 

137.70 
206.18 
274.60 

1.8320 
0.9168 
0.6123 
0.4597  

33.10 
36.36 
36.88 
37.82 

Foreman 464.51 293.15 
589.70 
887.22 

1188.02 

1.5845 
0.7877 
0.5236 
0.3910  

28.19 
28.87 
32.96 
34.70 

News 271.64 141.89 
284.11 
425.22 
566.92 

1.9144 
0.9561 
0.6388 
0.4792 

28.69 
32.37 
34.13 
36.40 

Table 1: Coding Efficiencies for MDC with Temporal Di-
versity 

The down-sampled video sequences are encoded 
using conventional video codec.  In our experiment, 
advanced video codec standard using H.264 is chosen.  
The decoded sequences by H.264 are used to recon-
struct the video.  The missing MDC streams are pre-
dicted from the received MDC streams using cubic-
spline interpolation.  If there are more than one re-
ceived MDC streams, the mean of the predicted frame 
will be used.  Figure 1 shows the block diagram of the 
proposed DMDC process.  

MDC provides higher error resilience to the raw 
codec scheme, with the trade-off in coding efficiency.  
The coding efficiency ζ is defined in Eqn (4). 

∑
=

=
M

m
mrr

1
ς  (4) 

Where r denotes the bitrate for the raw video codec, rm 
denotes the bitrate for stream in the MDC.  Coding 
efficiencies of the proposed MDC technique for the 
standard Akiyo, Foreman, and News sequences are 
summarized in Table 1. 
 
III. MULTI-PATH TRANSMISSION AND ITS IMPACT 

ON RECONSTRUCTED VIDEO QUALITY 
The two-state Markovian Gilbert-Elliot Model is used 
as the channel model [8]. This model has been shown 
to be able to effectively capture the bursty packet loss 
behavior.  The two states of this model are denoted as 
S0 (good) and S1 (bad).   S0 (good) represents the state 
where packets are received correctly and satisfies real-
time constraint.  S1 (bad) represents the state where 
packets are missing for reconstructing the video.  The 
state transition probabilities for S0-to-S1 and S1-to-S0 
are denoted as P01 and P10, respectively.  The probabil-
ity of remaining in the same state are denoted as P00 
and P01 where P00=1-P01 and P11=1-P00.  ℜ∈xP  
and 10 << xP , { }11,10,01,00∈∀x . Steady state analysis 
of being in state S0 and S1 satisfies the criteria in Eqn 
(5). 
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where P0 and P1 are the steady state probabilities of 
being in S0 and S1 states, respectively.  Solving Eqn 
(5), the probabilities of successful and unsuccessful 
packet transmissions can be represented in Eqn (6) 
and Eqn (7). 
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Figure 2: Video bitrate for the down-sampled Akiyo se-

quence at different I-intervals ( ) 2
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inter- (I) and predictive (P) frames are used in the bit-
stream.  I-frames are encoded as discrete frames, inde-
pendent of adjacent frames.  P-frames are encoded with 
respect to a past I-frame or P-frame with motion vector 
prediction and compensation.  A group of frames that 
starts with an I-frame and ends at the frame before the 
next I-frame is called a Group of Pictures (GOP), de-
noted as T.  Losing an I-frame or P-frame will corrupt 
the remaining frames within the same GOP in the recon-
structed video sequence, and this is referred as the drift-
ing error.  Figure 2 shows the bitrate for each MDC 
stream with different lengths of GOP. 
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Substituting H back to Eqn (11) yields 
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Next, let us consider the case the video is divided 
into M streams using MDC, and transmitted over M-
independent paths.  Assume all the paths have identi-
cal loss paths, and therefore share the same state tran-
sition parameters for the Gilbert Model.  

Considering the drifting error, each packet loss will 
propagate until the end of the GOP.  Take the extreme 
case for example, if the I-frame is dropped, the remain-
ing P-frames cannot be reconstructed the output video 
without a reference frame for motion prediction, and the 
whole GOP will be missing.  In general, the probability 
of receiving n frames followed by a lost frame is shown 
in Eqn (8). 

For MDC with M independent streams, output video 
can be reconstructed from any stream. The video 
frames cannot be reconstructed only if all streams are 
lost.  Denote the GOP period of the MDC as T.  Then 
the probability that a stream loses a frame at or before 
t1 is: 
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The frame dropout rate for receiving n frames followed 
by a lost frame is given by 
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Hence, the probability of losing all M streams at but 
not before t1 is: 

It is easy to show that the mean frame dropout rate is 
given by Eqn (10), where the first term represents a lost 
I-frame and the second term shows that several I- and P-
frames are received before a lost P-frame. 
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(a) 1 MDC stream 

(PSNR Y = 28.80 dB) 
(b) 2 MDC streams 

(PSNR Y = 32.88 dB) 
(c) 3 MDC streams  

(PSNR Y = 34.63 dB) 
(d) 4 MDC streams 

(PSNR Y = 37.16 dB) 
Figure 3: Reconstructed News video frame, frame 1 

 



 
(a) (b)  (c)  

Figure 4: (a) Frame Loss Rate for single stream and 4 MDC streams (b) Comparisons of the Frame Loss Rate for differ-
ent level of multiple description coding (c) Effect of state transition probability to the frame loss rate 

 
It can be shown that the mean frame dropout rate for 
MDC is given by Eqn (16) 
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IV. EXPERIMENTS 

In this paper, we divide CIF video sequences into 
four sub-sampled QCIF sequences.  Each QCIF se-
quence is coded using H.264.  The decoded se-
quences are assembled using cubic-spline interpola-
tion, as described in section II.  Examples of recon-
structed MDC video frames are shown in Figure 3 
(News sequence, frame 1). 

The frame loss rate of the single video stream 
transmission and the MDC transmission using the 
Gilbert model are shown in Eqn (14) and Eqn (17), 
respectively.  Both equations show the frame loss rate 
is a function of length of GOP (T) and the transition 
probabilities (P01 and P10).  As shown in Figure 4(a), 
the frame loss rate increases with T, due to a higher 
drifting error associated with a larger T value.  We 
observe that for all T values, MDC outperforms sin-
gle stream transmission in terms of frame dropping 
rate (the lower the frame loss rate, the higher the per-
ceived video quality).  Figure 4(b) compares different 
number of MDC streams.  We observe that the more 
MDC streams are used - a higher value for m in Eqn 
(1), the lower the frame loss rate.  Figure 4(c) com-
pares different transition probabilities P00 and P11 and 
their impacts to the frame loss rate.  We observe that 
lowering increasing P00 (higher probability of staying 
in good state) and decreasing P11 (lower probability 
of staying in bad state) yield lower frame loss rate. 

 

V. CONCLUSIONS 
In this paper, we propose an efficient MDC video 
coding technique with spatial diversity.  Sub-sampled 
video frames are H.264 encoded, transmitted over 
multiple paths, H.264 decoded, and reconstructed 
using cubic-spline interpolation.  The proposed MDC 
trades-off the coding efficiencies with the improve-
ment in the frame loss rate, yielding a better per-
ceived video quality. 
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