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ABSTRACT 

 
Scalable shape encoding is an important requirement of 
highly scalable object-based video coding. In this paper, a 
new scalable vertex-based shape coding scheme is 
proposed that uses temporal prediction. During shape 
coding of a video object, the object shape in the first frame 
is scalable intra-coded using the method described in [1]. 
For scalable shape coding of subsequent frames, temporal 
prediction is conducted during the coding of coarser 
layers. Contour matching in the curvature scale space 
domain is conducted in order to get higher matching 
accuracy. Experimental results show that the proposed 
scalable shape coding scheme can achieve better R-D 
performance than existing predictive shape coding 
methods [2] and CAE in MPEG-4 [3]. 

 
 

1. INTRODUCTION 
 
Much research has been conducted into determining 
methods for shape representation and coding. In order to 
transmit the shape of an object efficiently and robustly, a 
large number of techniques have been proposed [1-2, 4-
10]. These coding algorithms can achieve lossy and/or 
lossless coding. However, the coding efficiency achieved 
by intra-shape coding can not satisfy the requirement of 
low bitrate video coding, even though current state-of-the-
art compression ratios are high. Since a contour sequence 
has very high correlation in the temporal domain, motion 
estimation and compensation can be used to achieve 
further compression [2, 4-6]. The contour in the current 
frame can be predicted from the contour obtained in the 
previous frame. Only the contour segment which can not 
be predicted must be encoded, which is achieved by using 
the intra-shape coding technique. This can reduce the bit 
rate of shape coding drastically.  

In the published contour motion estimation schemes 
[2] [4], the object contour is assumed to undergo a 

translational motion. When there is more complex motion 
such as zoom and/or rotation, the contour cannot be well 
compensated. In Figure 2 (a), for example, the object 
contours in two neighbouring frames are overlapped. We 
can find that different motion patterns exist for different 
contour segments. It is difficult to use one motion model 
to describe them.  

In [6], an affine global motion compensation scheme 
is investigated. The parameter vector of affine transfor-
mation is estimated according to two available contours 
and is encoded. The problem with this method is the 
coding of affine parameters. As the affine parameters are 
floating point, 10-12 bits are required to represent each 
parameter. So, for most sequences, the compression ratio 
is not very high. Furthermore, it can not provide scalable 
shape coding. 

In this paper, a novel scalable predictive coding 
scheme is proposed, which can achieve higher 
compression efficiency than state-of-the-art shape coding 
methods due to the use of temporal information. In order 
to achieve scalable predictive coding, it is necessary to 
represent and estimate the contour motion hierarchically. 
In our proposed scheme, the contour motions in level i  
are first estimated. They are predicted from the MVs of 
the previously transmitted levels and/or the encoded MVs 
of the current level. Contour matching in CSS images is 
applied to find the correspondence of two contours during 
contour motion estimation, which can achieve more 
accurate contour motion estimation. This paper is 
organised as follows. The proposed scalable shape coding 
scheme is described in detail in section 2. Section 3 
presents some experimental results. Section 4 gives the 
conclusions. 
 

2. SCHEME DESCRIPTION 
 
Figure 1 shows the diagram for predictive scalable shape 
coding. The novelties of this method are twofold. First, we 
propose an efficient contour motion estimation scheme, 
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which is based on the curvature information of an object 
contour and is used to predict the motion vectors of 
vertices in the coarser level. Second, a scalable shape 
coding scheme is proposed, in which the motion of each 
contour is estimated hierarchically. A multi-model 
encoding scheme is included to improve the compression 
efficiency. Our scheme consists of two steps: contour 
motion estimation and scalable predictive shape coding, 
which will be discussed in detail in the following sections. 
 
2.1. Contour motion estimation 

 

Instead of using corner matching for contour motion 
estimation in [6], in our method, curvature scale space 
(CSS) images and curvature information are used in 
contour matching. CSS image is currently used for shape 
feature selection in shape indexing and retrieving and bas 
been selected as shape descriptors for the MPEG-7 
standard [11]. Compared with the method in [6], the 
proposed method can achieve more accurate motion 
estimation. The contour motion estimation algorithm 
includes CSS image calculation and contour matching in 
the CSS domain.  

The CSS image is computed by first convolving a 
path-based parametric representation of the contour with a 
Gaussian function, as the standard deviation of the 
Gaussian varies from a small to a large value. Next, 
curvature is computed on each smoothed contour. As a 
result, curvature zero-crossing points can be recovered and 
mapped to the CSS image in which the horizontal axis 
represents the arc length parameter on the original contour, 
and the vertical axis represents the standard deviation of 
the Gaussian filter. The CSS image has the properties that 
it is invariant under rotation, uniform scaling and 
translation of the contour. 

Figure 2 shows the two object contours of Motr_dhtr 
sequence, and their zero crossing of contour curvature 
image with the scale s . It can be found that the zero 
crossing of object contour curvature can identify important 
geometric properties of contour and two object contours 
have large similarity in CSS images.   

As the two contours have the same direction (counter-
clockwise in our experiments), the matching of two CSS 
images just tries to find the optimal horizontal shift of the 
maxima in one of the CSS images that would yield the best 
possible overlap with the maxima of the other CSS image. 
The contour-matching algorithm [12] (in Chapter 2) has 
been employed to achieve contour matching in CSS image.  
 
2.2. Scalable predictive shape coding 
 
The proposed scalable predictive shape coding scheme 
used different encoding schemes for different 

approximation levels. For each level except the finest one, 
the motion vectors of allocated approximating vertices are 
estimated and the contour of the current frame is predicted 
by motion compensation. For the motion failure segments, 
where the approximation error band is larger than the 
predefined threshold, new vertices are inserted to make it 
satisfy the error band. The coordinates of these vertices 
are intracoded and are transmitted to the decoder. As an 
adaptive update scheme is proposed and used in the codec, 
the order of the maintained and rejected vertices are not 
coded and transmitted to the decoder. This is different 
from the method in [9].  

The predictive scalable shape coding algorithm can be 
summarized as follows: 
• For the vertices of level 0 in the previous frame, which 

have the maximal curvature, their corresponding point 
in the CSS of current frame is estimated based on the 
contour matching algorithm in Section 2.1. For other 
vertices of level 0, which try to make the contour 
satisfy the error band, their motion vectors are 
estimated by trying to minimise the approximation 
error. After estimating the motion vectors, these 
motion vectors are encoded by using a variable length 
coding scheme (VLC). In order to achieve higher 
coding efficiency, each motion vector is divided into a 
global motion part and a local motion part.  For the 
motion failure segments, where approximation can not 
satisfy the predefined error band; new vertices are 
inserted based on the CSS image and maximal error 
distance. The coordinates of these vertices are intra-
coded and transmitted to the decoder after the motion 
vectors. 

• If the vertices in level 1 and level 2 in the previous 
frame are located on the salient points with high 
curvature, their motion vectors are estimated by using 
the method described in Section 2.1. Otherwise, the 
motion vectors (MV) are estimated by trying to 
minimise the approximation error. During shape MV 
encoding, motion vectors are first predicted from MVs 
in the coarser levels and/or the current level. The 
prediction error is encoded by using a VLC scheme. 
Some video objects have complicated shapes, 
requiring more vertices in level 1 and 2 to represent 
them. Therefore, the MV estimation and prediction-
coding method is not efficient. In the proposed 
scheme, the multi-model selection method is used in 
these two levels. The selected coding models are MV 
estimation/prediction-coding method and scalable 
intra-shape coding method. The method, which 
generates the shorter bitstream, is selected and 
encoded, together with the shorter bitstream.  

• For level 3, as there are more approximation vertices, 
the size of the list update information is significant. 



Furthermore, it is very hard to estimate the 
correspondence of two contour segments based on the 
curvature information, which provide a lossless 
approximation of contour. The performance of the MC-
based method is not satisfactory. Therefore, in the 
proposed method, the scalable intra-encoding scheme 
described in [1] is used. Therefore, for the vertices of 
level 3, no motion estimation is conducted as the 
motion estimation of vertices is less efficient for shape 
coding.  
After predictive coding of each layer, some vertices 

may change their layer status, for example, one vertex 
changes from layer 1 to layer 0 or to layer 2 due to shape 
deformation. This information should be updated and used 
for the shape coding of next video frame. This update 
process can be achieved in encoder and decoder 
simultaneously without information transmission. 

 
3. EXPERIMENTAL RESULTS 

 
The performance of the proposed algorithm has been 
tested using “Weather” and “Kids” sequences, which are 
widely used during test in other published papers. The 
performance is compared with the predictive shape coding 
scheme (GPSC) in [2] and CAE in MPEG-4 [3]. For the 
CAE method, the inter-model is used instead of intra-
coding model.  

From the various ways to measure distortion, we 
utilize the following additive distortion metric per frame, 
which has also been used in the MPEG-4 standardization 
process to evaluate the performance of competing 
algorithms: 

PixelsInteriorofNumber

ErrorinPixelsofNumber
Dn =                       (1) 

where a pixel is said to be in error if it belongs to the 
interior of the original object and the exterior of the 
approximating object, or vise-versa.  

Figure 3 presents the bit distortion curves of the 
proposed algorithm for (a) Weather and (b) Kids sequence. 
It shows that our proposed algorithm can achieve better R-
D performance than that of CAE and GPSC techniques.  

 
4. CONCLUSIONS 

 
Experimental results show that the proposed scalable 
predictive shape coding scheme can achieve better R-D 
performance than the existing published predictive shape 
coding method and the CAE method in MPEG-4. The 
proposed scalable shape coding method can achieve great 

improvement in compression performance by exploiting 
the geometrical knowledge of coarser levels, statistical 
entropy coding, and novel contour motion estimation 
scheme. Most importantly, the proposed scheme can 
achieve scalable shape coding, which facilitates error 
protection and error concealment of shape information. It 
also allows other functions, such as shape retrieval. 
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Figure 1 – Diagram for predictive scalable shape coding 
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Figure 2 - Two object contours from Motr_dhtr sequence, and their zero crossing of contour curvature image with the scale 
s : (a) Original object contours and their overlap to show contour motion; (b) the zero crossing of curvature across the 

scale s . 
 

         

(a)                                                                                      (b) 

Figure 3 Comparison of R-D performance of the proposed scalable inter-shape coding method with those of other coding 
scheme for (a) Weather and (b) Kids sequence 
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