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ABSTRACT 
 This paper presents the optimization techniques 

and results of implementing the H.264/AVC baseline 
profile decoder  in software on the Sandblaster digital 
signal processor. It has been implemented in ANSI C and 
optimized to exploit the architectural features of the 
processor.  The software implementation enables the 
reusability of the processor and   lowers the development 
costs.  

 
1. INTRODUCTION 
 
The motion pictures video group has developed a 

new video coding standard called H.264/AVC/ MPEG-4 
Part 10 that provides better compression than the earlier 
standards such as MPEG4 and H.263 [7]. 

The H.264 concentrates on compression and 
transmission efficiency, and focuses on popular 
applications of video compression such as video 
telephony, digital TV etc. It provides three different 
profiles, namely the baseline profile (used for video 
conferencing), the main profile (used for video streaming 
across networks) and the extended profile (for video 
broadcast and storage) [5]. 

In this paper, we focus primarily on software 
implementation and optimization of the baseline profile 
in ANSI C. These optimizations can be extended to other 
profiles also.  

In Section 2, we discuss the Sandblaster 
multithreaded processor, and Section 3 onwards we 
discuss the optimizations for baseline profile. 

 
2. SANDBLASTER DSP 

 
Sandbridge Technologies has developed the 

Sandblaster architecture for a convergence device. As 
handsets are converging to multimedia multi-protocol 
systems, the Sandblaster architecture supports the data 
types necessary for convergence devices including RISC 
control code, DSP, and Java.  

 

 As shown in Figure 1, the design includes a 
unique combination of modern techniques such as a 
SIMD Vector/DSP unit, a parallel reduction unit, and a 
RISC-based integer unit. Each processor core provides 
support for concurrent execution for up to eight threads of 
execution. All states may be saved from each individual 
thread and no special software support is required for 
interrupt processing. The machine is partitioned into a 
RISC-based control unit that fetches instructions from a 
set-associative instruction cache. Instruction space is 
conserved through the use of compounded instructions 
that are grouped into packets for execution.   

 
 

 
 

Figure 1: Sandblaster Multithreaded Processor 
 
 The memory subsystem has been designed 

carefully to minimize power dissipation. The pipeline 
design in combination with the memory design ensures 
that all memories are single ported and yet the processor 
can sustain nearly 4 taps per cycle for a filter (the 
theoretical maximum) in every thread unit 
simultaneously. A RISC-based execution unit, depicted in 
the center of Figure 1, assists with control processing.  

 Video codec processing often consists of control 
structures with compute-intensive inner loops. For the 
control code, a 16 entry, 32-bit register file per thread 
unit provides for very efficient control processing. 
Common integer data types are typically stored in the 
register file. This allows for branch bounds to be 
computed and addresses to be efficiently generated. 
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Intensive loop processing is performed in the 
SIMD/Vector unit depicted on the right side of Figure 1. 
Each cycle, a 4x16-bit vector may be loaded into the 
register file while two vectors are being multiplied, 
saturated, reduced (e.g. summed), and saturated again. 
The branch bound may also be computed and the 
instruction looped on itself until the entire vector is 
processed. This may be specified in as little as 64-bits.  

 To enable multimedia processing in software, 
the processor supports many levels of parallelism. 
Thread-level parallelism is supported by providing 
hardware support for up to 8 independent programs to be 
simultaneously active on a single Sandblaster core. This 
minimizes the latency in physical layer processing. Since 
many algorithms have stringent requirements on response 
time, multithreading is an integral technique in reducing 
latencies. The data-level parallelism (SIMD) is supported 
through the use of a Vector unit. In the inner kernel of 
video codec routines such as DCT and SAD, the 
computations appear as vector operations of moderate 
length. In addition, the compound word instruction set 
provides instruction level parallelism. 

 
3. H.264 DECODER IMPLEMENTATION 

 
An open source reference H.264 decoder [8] was 

used for development. The reference decoder was 
compiled, executed and profiled using the Sandblaster 
software tools [2]. Using the profile information,  the 
compute intensive blocks were identified, and then 
algorithmic and coding changes were applied to these 
blocks to achieve the maximum performance. All the 
changes were applied strictly at the C level and no 
assembly language or intrinsics  were used.  The modified 
code was recompiled, executed and profiled using the 
tools again.  

The software changes maximize the usage of vector 
instructions and parallel instructions, minimize 32x32 
multiplications, minimize division, and pre-compute the 
results in look up tables when possible The modified 
software required  ~80% less cycles than the original 
code and executes on a fraction of the processing power 
available on the Sandblaster DSP. 

The key routines that contributed to the high 
execution cost in the original code were: 

 
o Inverse 4x4 integer transform 
o Interpolation to compute the half and quarter 

pixel resolution  
o Generation of macro block address coordinates 
o Deblocking filter, used to minimize the blocking 

distortion 
o Intra prediction of the macro-blocks 

 
3.1.  4 x 4 INTERGER TRANSFORM 

 
The inverse integer transform is performed on 4x4 

blocks of luminance and chrominance value differences. 
All operations are carried out using integer arithmetic 
without any loss of accuracy. 

 
The inverse 4x4 block transform can be vectorized on 

the platform by changes to the algorithm. The change 
ensures that loads and stores are being done from  
consecutive locations in memory. The transform typically 
has a horizontal and a vertical step. The code below 
shows the original and optimized code for the horizontal 
step.  

The optimized code is completely vectorized by the 
compiler. The original code requires 16 additions, 8 shifts 
and 32 memory loads. The optimized code requires 4 
additions, 2 shifts and 4 memory loads.  
 
Horizontal  stage (original) 
 
for (j0=0;j<BLOCK_SIZE;j++) 
{ 
    for (i0=0;i<BLOCK_SIZE;i++) 
    { 
      m5[i]=img->cof[i0][j0][i][j]; 
    } 
   m6[0]=(m5[0]+m5[2]); 
    m6[1]=(m5[0]-m5[2]); 
    m6[2]=(m5[1]>>1)-m5[3]; 
    m6[3]=m5[1]+(m5[3]>>1); 
} 
 

The original code cannot be vectorized. However, it 
can be rewritten with slight modifications as below: 

 
void itrans_stage1_horiz(short m[], short 
m5[]){ 
    m[0]=(m5[0]+m5[8]); 
    m[4]=(m5[0]-m5[8]); 
    m[8]=(m5[4]>>1)-m5[12]; 
    m[12]= m5[4]+(m5[12]>>1); 
}         
 
short t1[16];  
 
for (j=0;j<BLOCK_SIZE;j++) 
{       
   t2[i]=img->cof[i0][j0][i][j]; 
    
} 
for (j=0;j<BLOCK_SIZE;j++) { 
 
   itrans_stage1_horiz(&t1[j], &t2[j]); 
 
}      
 
 



The compiler will unroll the second loop with index j 
, inline the itrans_stage1_horiz function and then 
vectorize the operations. The process for first four 
iterations is shown below: 

 
   //2 vec ld, 1 vec st, 1 vec add 
   m[0]=(m5[0]+m5[8]); 
   m[1]=(m5[1]+m5[9]); 
   m[2]=(m5[2]+m5[10]); 
   m[3]=(m5[3]+m5[11]); 
   //2 vec ld, 1 vec st, 1 vec sub 
   m[4]=(m5[0]-m5[8]); 
   m[5]=(m5[1]-m5[9]); 
   m[6]=(m5[2]-m5[10]); 
   m[7]=(m5[3]-m5[11]); 
   //2 vec ld, 1 vec shr,1 vec sub,1 vec 
st 
   m[8]=(m5[4]>>1)-m5[12]; 
   m[9]=(m5[5]>>1)-m5[13]; 
   m[10]=(m5[6]>>1)-m5[14]; 
   m[11]=(m5[7]>>1)-m5[15]; 
//2 vec ld, 1 vec shr, 1 vec add, 1 vec st 
   m[12]= m5[4]+(m5[12]>>1); 
   m[13]= m5[5]+(m5[13]>>1); 
   m[14]= m5[6]+(m5[14]>>1); 
   m[15]= m5[7]+(m5[15]>>1); 
}      

This approach provides ~75% improvement over the 
original number of cycles. 

 
3.2. INTERPOLATION 

 
H.264 supports integer, half-pixel and quarter-pixel 

interpolation for motion compensation. The motion 
vector precision is one-quarter pixel for luma and one 
eighth pixel in chroma. The interpolation is used to 
determine the intensity values at non-integer pixel 
positions. The input values to the interpolation process 
either lies within the image boundary or outside the 
image boundary. In the latter case, the edge pixels are 
repeated. A six tap filter is used to interpolate the 
samples. The original code shows how the pixels are 
interpolated horizontally for half pixel positions. The 
images at quarter-pixel positions are then obtained by 
averaging the samples at integer and half-pixel positions. 

 
Two inefficiencies with the interpolation code can be 

improved upon. The following is the original 
interpolation code. 

 
for (j = 0; j < BLOCK_SIZE; j++) { 
  for (i = 0; i < BLOCK_SIZE; i++) { 
    for (result = 0, x = -2; x < 4; x++) 

result += 
imageY[max(0,min(maxold_y,y_pos+j))]
[max(0,min(maxold_x,x_pos+i+x))]*COE
F[x+2]; 

    block[i][j] = max(0, min(255, 
(result+16)/32)); 

  } 
} 

 
First, a considerable amount (i.e. conditional 

statements) of computation goes into calculating whether 
a required pixel is within the frame or image boundary. 
As a side-effect, the multiply accumulates involved in the 
filter do not vectorize as there are conditional statements 
inside the loop. To simplify the computation, the loop is 
split into two separate loops, one where all the inputs for 
filtering lie within the boundary of the image and one 
where the inputs lie beyond the image boundary. Now the 
first loop will be vectorized. 

 
In the case where the pixels might not fit into an 

image, the edge pixels are used. In this case, we avoid the 
(min, max) computation by using a look-up table. The 
lookup table provides the index of the edge pixel when 
the input pixel for interpolation falls beyond the image 
boundary. Note that the dimensions of the image are 
known when the header is decoded ( e.g. . QCIF = 176, 
CIF = 352).  

Secondly, the filter can be better vectorized if the 
loop bound is a multiple of 4. Therefore,  we increase the 
size of the filter from six tap to eight tap, with the values 
for the seventh and eighth tap being 0. This enables the 
filter loop to be vectorized efficiently. 

The above two changes contribute about 80% 
improvement over the original code. 
 

3.3. Macroblock position 
 
A significant amount of division and modulo 

operations are used in calculating the x and y macroblock 
coordinates for a given macroblock address. As the 
macroblock width of the picture and the macroblock 
address range is fixed for a given image type (e.g. CIF: 
MB width = 22, MB address = {0… 395},  QCIF: MB 
width = 11, MB address = {0…98}), these values can be 
precomputed and stored in a table. The table will look as 
shown in the following figure 

 
MB address X 

coordinate 
Y 

coordinate 
0 0 0 
1 1 0 
2 2 0 
…. … … 
96 8 8 
97 9 8 
98 10 8 

 
 



This reduces the computation of the macroblock 
coordinates by over 95%, as it eliminates the division and 
modulus operations to compute the coordinates. 
 

3.4. Deblocking filter 
 

The deblocking filter is applied to all 4x4 block 
edges of a picture, except edges at the boundary of the 
picture and any edges for which the deblocking filter 
process is disabled. This filtering process is performed to 
eliminate blocking distortion on the picture edges. The 
filtering process is done in increasing order of the 
macroblock addresses. The deblocking of a macroblock 
requires macro blocks from above (if available) and left 
(if available). 

 
The deblocking filter process is invoked for the luma 

and chroma components separately. For each macroblock, 
vertical edges are filtered first, from left to right, and then 
horizontal edges are filtered from top to bottom. The 
luma deblocking filter process is performed on four 16-
sample edges and the chroma deblocking filter process is 
performed on two 8-sample edges. Sample values above 
and to the left of the current macroblock  are used as 
input and may be further modified during the filtering of 
the current macroblock. Sample values modified during 
filtering of vertical edges are used as input for the 
filtering of the horizontal edges for the same macroblock.  

The pixel strengths are calculated for 4 strips in the 
vertical and horizontal directions. The values of the 
strength could be in the range of 0-4. Even though there 
are a number of conditional statements that decide the 
filter strength for each pixel, all the 4 pixels in a given 
4x4 block will always have the same strength. This is 
exploited to vectorize a significant portion of the code 
where the filter strengths are computed.  

For example, if the block edge is not a macroblock 
edge and if the samples are in a macroblock coded using 
an Intra macroblock prediction mode, filter strength of 3 
is used. 

 
if(edge!= MB_EDGE && (MbQ-

>mb_type==I4MB ||MbQ->mb_type==I16MB||MbQ-
>mb_type==IPCM)) { 

      for( idx=0 ; idx<16 ; idx++) 
      { 
          Strength[idx] = 3; 
      } 

  }    
 

The above loop can be vectorized. The vectorization 
and associated optimizations provide a 75% improvement 
in cycles. 

 

3.5. INTRA-PREDICTION 
 

In intra prediction, only spatial redundancies are 
exploited to encode a video picture. These encoded 
frames are called I frames. Adjacent blocks in a frame 
tend to have similar properties and this is exploited to 
encode a frame. The difference between the actual block 
and the predicted block is directly transformed and 
encoded. The decoder, depending on the type of 
prediction adds the predicted samples with the inverse 
transformed differences to get the reconstructed block. 

H.264 offers nine modes of intra prediction for 4x4 
blocks of luminance data that includes a DC mode and 8 
directional modes.  The vertical prediction is discussed 
here. The DC and horizontal prediction can also be 
vectorized in a similar fashion. 

 
VERTICAL PREDICTION 

 
 

A B C D E F G H I 

J a b c d 

K e f g h 

L i j k l 

M m n o p 

 
If vertical prediction is used, pixels {a, e, i, m} are 

equal to B, {b, f, j, n} are equal to C, {c, g, k, o} are 
equal to D and {d, h, l, p} are equal to E.  The code can 
be written such that the copying of the pixel values is 
vectorized. 
 

4. SUMMARY 
 
In this paper, we have described the optimizations of 

the software implementation of the H.264 baseline profile 
in ANSI C . The optimizations have been done to exploit 
the architectural features of the processor. 
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