
IMPLEMENTATION OF H.264 DECODER ON SANDBLASTER DSP
Vaidyanathan Ramadurai, Sanjay Jinturkar, Mayan Moudgill, John Glossner

Sandbridge Technologies, 1 North Lexington Avenue, White Plains, NY 10601

sjinturkar@sandbridgetech.com

ABSTRACT
 This paper presents the optimization techniques

and results of implementing the H.264/AVC baseline
profile decoder in software on the Sandblaster digital
signal processor. It has been implemented in ANSI C and
optimized to exploit the architectural features of the
processor. The software implementation enables the
reusability of the processor and lowers the development
costs.

1. INTRODUCTION

The motion pictures video group has developed a

new video coding standard called H.264/AVC/ MPEG-4
Part 10 that provides better compression than the earlier
standards such as MPEG4 and H.263 [7].

The H.264 concentrates on compression and
transmission efficiency, and focuses on popular
applications of video compression such as video
telephony, digital TV etc. It provides three different
profiles, namely the baseline profile (used for video
conferencing), the main profile (used for video streaming
across networks) and the extended profile (for video
broadcast and storage) [5].

In this paper, we focus primarily on software
implementation and optimization of the baseline profile
in ANSI C. These optimizations can be extended to other
profiles also.

In Section 2, we discuss the Sandblaster
multithreaded processor, and Section 3 onwards we
discuss the optimizations for baseline profile.

2. SANDBLASTER DSP

Sandbridge Technologies has developed the

Sandblaster architecture for a convergence device. As
handsets are converging to multimedia multi-protocol
systems, the Sandblaster architecture supports the data
types necessary for convergence devices including RISC
control code, DSP, and Java.

 As shown in Figure 1, the design includes a
unique combination of modern techniques such as a
SIMD Vector/DSP unit, a parallel reduction unit, and a
RISC-based integer unit. Each processor core provides
support for concurrent execution for up to eight threads of
execution. All states may be saved from each individual
thread and no special software support is required for
interrupt processing. The machine is partitioned into a
RISC-based control unit that fetches instructions from a
set-associative instruction cache. Instruction space is
conserved through the use of compounded instructions
that are grouped into packets for execution.

Figure 1: Sandblaster Multithreaded Processor

 The memory subsystem has been designed

carefully to minimize power dissipation. The pipeline
design in combination with the memory design ensures
that all memories are single ported and yet the processor
can sustain nearly 4 taps per cycle for a filter (the
theoretical maximum) in every thread unit
simultaneously. A RISC-based execution unit, depicted in
the center of Figure 1, assists with control processing.

 Video codec processing often consists of control
structures with compute-intensive inner loops. For the
control code, a 16 entry, 32-bit register file per thread
unit provides for very efficient control processing.
Common integer data types are typically stored in the
register file. This allows for branch bounds to be
computed and addresses to be efficiently generated.

Inter-Chip Connection E
xt

er
n

al
 M

em
or

y
Inter-Chip Connection E

xt
er

n
al

 M
em

or
y

Inter-Chip Connection E
xt

er
na

l M
em

or
y

Inter-Chip Connection E
xt

er
na

l M
em

or
y

Inter-Chip Connection E
xt

er
na

l M
em

or
y

Inter-Chip Connection E
xt

er
na

l M
em

or
y

T
hr

ea
d

C
a

ch
e

Instruction Decode

Branch PCPCCRCR

LRLR

CTRCTR

Integer IQ

Register
File

OffsetOffset

External MemoryExternal MemoryExternal MemoryData Memory
External MemoryExternal MemoryExternal MemoryData Memory

Data Buffer

MPY

VRABC

Vector
File

MPY

VRABC

Vector
File

PABC

MPY

Vector
File

MPY

Vector
File

Vector IQ

OffsetOffset

SAT

VRABC VRABC

PABCPABCPABC

ACC ACC ACC ACC

RA RB

ADD

RA RB

ADD
ADD ADD ADD ADD

ADD

0-7803-9332-5/05/$20.00 ©2005 IEEE

Intensive loop processing is performed in the
SIMD/Vector unit depicted on the right side of Figure 1.
Each cycle, a 4x16-bit vector may be loaded into the
register file while two vectors are being multiplied,
saturated, reduced (e.g. summed), and saturated again.
The branch bound may also be computed and the
instruction looped on itself until the entire vector is
processed. This may be specified in as little as 64-bits.

 To enable multimedia processing in software,
the processor supports many levels of parallelism.
Thread-level parallelism is supported by providing
hardware support for up to 8 independent programs to be
simultaneously active on a single Sandblaster core. This
minimizes the latency in physical layer processing. Since
many algorithms have stringent requirements on response
time, multithreading is an integral technique in reducing
latencies. The data-level parallelism (SIMD) is supported
through the use of a Vector unit. In the inner kernel of
video codec routines such as DCT and SAD, the
computations appear as vector operations of moderate
length. In addition, the compound word instruction set
provides instruction level parallelism.

3. H.264 DECODER IMPLEMENTATION

An open source reference H.264 decoder [8] was

used for development. The reference decoder was
compiled, executed and profiled using the Sandblaster
software tools [2]. Using the profile information, the
compute intensive blocks were identified, and then
algorithmic and coding changes were applied to these
blocks to achieve the maximum performance. All the
changes were applied strictly at the C level and no
assembly language or intrinsics were used. The modified
code was recompiled, executed and profiled using the
tools again.

The software changes maximize the usage of vector
instructions and parallel instructions, minimize 32x32
multiplications, minimize division, and pre-compute the
results in look up tables when possible The modified
software required ~80% less cycles than the original
code and executes on a fraction of the processing power
available on the Sandblaster DSP.

The key routines that contributed to the high
execution cost in the original code were:

o Inverse 4x4 integer transform
o Interpolation to compute the half and quarter

pixel resolution
o Generation of macro block address coordinates
o Deblocking filter, used to minimize the blocking

distortion
o Intra prediction of the macro-blocks

3.1. 4 x 4 INTERGER TRANSFORM

The inverse integer transform is performed on 4x4

blocks of luminance and chrominance value differences.
All operations are carried out using integer arithmetic
without any loss of accuracy.

The inverse 4x4 block transform can be vectorized on

the platform by changes to the algorithm. The change
ensures that loads and stores are being done from
consecutive locations in memory. The transform typically
has a horizontal and a vertical step. The code below
shows the original and optimized code for the horizontal
step.

The optimized code is completely vectorized by the
compiler. The original code requires 16 additions, 8 shifts
and 32 memory loads. The optimized code requires 4
additions, 2 shifts and 4 memory loads.

Horizontal stage (original)

for (j0=0;j<BLOCK_SIZE;j++)
{
 for (i0=0;i<BLOCK_SIZE;i++)
 {
 m5[i]=img->cof[i0][j0][i][j];
 }
 m6[0]=(m5[0]+m5[2]);
 m6[1]=(m5[0]-m5[2]);
 m6[2]=(m5[1]>>1)-m5[3];
 m6[3]=m5[1]+(m5[3]>>1);
}

The original code cannot be vectorized. However, it
can be rewritten with slight modifications as below:

void itrans_stage1_horiz(short m[], short
m5[]){
 m[0]=(m5[0]+m5[8]);
 m[4]=(m5[0]-m5[8]);
 m[8]=(m5[4]>>1)-m5[12];
 m[12]= m5[4]+(m5[12]>>1);
}

short t1[16];

for (j=0;j<BLOCK_SIZE;j++)
{
 t2[i]=img->cof[i0][j0][i][j];

}
for (j=0;j<BLOCK_SIZE;j++) {

 itrans_stage1_horiz(&t1[j], &t2[j]);

}

The compiler will unroll the second loop with index j
, inline the itrans_stage1_horiz function and then
vectorize the operations. The process for first four
iterations is shown below:

 //2 vec ld, 1 vec st, 1 vec add
 m[0]=(m5[0]+m5[8]);
 m[1]=(m5[1]+m5[9]);
 m[2]=(m5[2]+m5[10]);
 m[3]=(m5[3]+m5[11]);
 //2 vec ld, 1 vec st, 1 vec sub
 m[4]=(m5[0]-m5[8]);
 m[5]=(m5[1]-m5[9]);
 m[6]=(m5[2]-m5[10]);
 m[7]=(m5[3]-m5[11]);
 //2 vec ld, 1 vec shr,1 vec sub,1 vec
st
 m[8]=(m5[4]>>1)-m5[12];
 m[9]=(m5[5]>>1)-m5[13];
 m[10]=(m5[6]>>1)-m5[14];
 m[11]=(m5[7]>>1)-m5[15];
//2 vec ld, 1 vec shr, 1 vec add, 1 vec st
 m[12]= m5[4]+(m5[12]>>1);
 m[13]= m5[5]+(m5[13]>>1);
 m[14]= m5[6]+(m5[14]>>1);
 m[15]= m5[7]+(m5[15]>>1);
}

This approach provides ~75% improvement over the
original number of cycles.

3.2. INTERPOLATION

H.264 supports integer, half-pixel and quarter-pixel

interpolation for motion compensation. The motion
vector precision is one-quarter pixel for luma and one
eighth pixel in chroma. The interpolation is used to
determine the intensity values at non-integer pixel
positions. The input values to the interpolation process
either lies within the image boundary or outside the
image boundary. In the latter case, the edge pixels are
repeated. A six tap filter is used to interpolate the
samples. The original code shows how the pixels are
interpolated horizontally for half pixel positions. The
images at quarter-pixel positions are then obtained by
averaging the samples at integer and half-pixel positions.

Two inefficiencies with the interpolation code can be

improved upon. The following is the original
interpolation code.

for (j = 0; j < BLOCK_SIZE; j++) {
 for (i = 0; i < BLOCK_SIZE; i++) {
 for (result = 0, x = -2; x < 4; x++)

result +=
imageY[max(0,min(maxold_y,y_pos+j))]
[max(0,min(maxold_x,x_pos+i+x))]*COE
F[x+2];

 block[i][j] = max(0, min(255,
(result+16)/32));

 }
}

First, a considerable amount (i.e. conditional

statements) of computation goes into calculating whether
a required pixel is within the frame or image boundary.
As a side-effect, the multiply accumulates involved in the
filter do not vectorize as there are conditional statements
inside the loop. To simplify the computation, the loop is
split into two separate loops, one where all the inputs for
filtering lie within the boundary of the image and one
where the inputs lie beyond the image boundary. Now the
first loop will be vectorized.

In the case where the pixels might not fit into an

image, the edge pixels are used. In this case, we avoid the
(min, max) computation by using a look-up table. The
lookup table provides the index of the edge pixel when
the input pixel for interpolation falls beyond the image
boundary. Note that the dimensions of the image are
known when the header is decoded (e.g. . QCIF = 176,
CIF = 352).

Secondly, the filter can be better vectorized if the
loop bound is a multiple of 4. Therefore, we increase the
size of the filter from six tap to eight tap, with the values
for the seventh and eighth tap being 0. This enables the
filter loop to be vectorized efficiently.

The above two changes contribute about 80%
improvement over the original code.

3.3. Macroblock position

A significant amount of division and modulo

operations are used in calculating the x and y macroblock
coordinates for a given macroblock address. As the
macroblock width of the picture and the macroblock
address range is fixed for a given image type (e.g. CIF:
MB width = 22, MB address = {0… 395}, QCIF: MB
width = 11, MB address = {0…98}), these values can be
precomputed and stored in a table. The table will look as
shown in the following figure

MB address X

coordinate
Y

coordinate
0 0 0
1 1 0
2 2 0
…. … …
96 8 8
97 9 8
98 10 8

This reduces the computation of the macroblock
coordinates by over 95%, as it eliminates the division and
modulus operations to compute the coordinates.

3.4. Deblocking filter

The deblocking filter is applied to all 4x4 block
edges of a picture, except edges at the boundary of the
picture and any edges for which the deblocking filter
process is disabled. This filtering process is performed to
eliminate blocking distortion on the picture edges. The
filtering process is done in increasing order of the
macroblock addresses. The deblocking of a macroblock
requires macro blocks from above (if available) and left
(if available).

The deblocking filter process is invoked for the luma

and chroma components separately. For each macroblock,
vertical edges are filtered first, from left to right, and then
horizontal edges are filtered from top to bottom. The
luma deblocking filter process is performed on four 16-
sample edges and the chroma deblocking filter process is
performed on two 8-sample edges. Sample values above
and to the left of the current macroblock are used as
input and may be further modified during the filtering of
the current macroblock. Sample values modified during
filtering of vertical edges are used as input for the
filtering of the horizontal edges for the same macroblock.

The pixel strengths are calculated for 4 strips in the
vertical and horizontal directions. The values of the
strength could be in the range of 0-4. Even though there
are a number of conditional statements that decide the
filter strength for each pixel, all the 4 pixels in a given
4x4 block will always have the same strength. This is
exploited to vectorize a significant portion of the code
where the filter strengths are computed.

For example, if the block edge is not a macroblock
edge and if the samples are in a macroblock coded using
an Intra macroblock prediction mode, filter strength of 3
is used.

if(edge!= MB_EDGE && (MbQ-

>mb_type==I4MB ||MbQ->mb_type==I16MB||MbQ-
>mb_type==IPCM)) {

 for(idx=0 ; idx<16 ; idx++)
 {
 Strength[idx] = 3;
 }

 }

The above loop can be vectorized. The vectorization
and associated optimizations provide a 75% improvement
in cycles.

3.5. INTRA-PREDICTION

In intra prediction, only spatial redundancies are
exploited to encode a video picture. These encoded
frames are called I frames. Adjacent blocks in a frame
tend to have similar properties and this is exploited to
encode a frame. The difference between the actual block
and the predicted block is directly transformed and
encoded. The decoder, depending on the type of
prediction adds the predicted samples with the inverse
transformed differences to get the reconstructed block.

H.264 offers nine modes of intra prediction for 4x4
blocks of luminance data that includes a DC mode and 8
directional modes. The vertical prediction is discussed
here. The DC and horizontal prediction can also be
vectorized in a similar fashion.

VERTICAL PREDICTION

A B C D E F G H I

J a b c d

K e f g h

L i j k l

M m n o p

If vertical prediction is used, pixels {a, e, i, m} are

equal to B, {b, f, j, n} are equal to C, {c, g, k, o} are
equal to D and {d, h, l, p} are equal to E. The code can
be written such that the copying of the pixel values is
vectorized.

4. SUMMARY

In this paper, we have described the optimizations of

the software implementation of the H.264 baseline profile
in ANSI C . The optimizations have been done to exploit
the architectural features of the processor.

5. REFERENCES

[1] Sandbridge Technologies, “Sandblaster DSP
Overview”, www.sandbridgetech.com

[2] Sanjay Jinturkar , John Glossner, Mayan Moudgill,
Erdem Hokenek, “Programming the Sandblaster
Multithreaded Processor”, GSPx 2003.

[3] Sanjay Jinturkar , John Glossner, Vladimir Kotlyar,
Erdem Hokenek, “The Sandblaster Automatic
Multithreaded Vectorizing Compiler”, GSPx 2004.

[4] www.netbeans.org, “Netbeans IDE”.

[5] Iain E.G. Richardson, “H.264 and MPEG-4 video
compression”, Wiley 2003.

[6] Juyup Lee, Sungkun Moon and Wonyong Sung,
"H.264 Decoder Optimization Exploiting SIMD
Instructions," IEEE Asia-Pacific Conference on
Circuits and Systems, (APCCAS), December 2004.

[7] H.264 standard, DRAFT ISO/IEC 14496-10.

[8] http://iphome.hhi.de/suehring/tml/,“H.264/AVC
Reference Software”.

	Index
	ICME 2005

	Conference Info
	Welcome Messages
	Venue Access
	Committees
	Sponsors
	Tutorials

	Sessions
	Wednesday, 6 July, 2005
	WedAmOR1-Action recognition
	WedAmOR2-Video conference applications
	WedAmOR3-Video indexing
	WedAmOR4-Concealment & information recovery
	WedAmPO1-Posters on Human machine interface, interactio ...
	WedAmOR5-Face detection & tracking
	WedAmOR6-Video conferencing & interaction
	WedAmOR7-Audio & video segmentation
	WedAmOR8-Security
	WedPmOR1-Video streaming
	WedPmOR2-Music
	WedPmOR3-H.264
	WedPmSS1-E-meetings & e-learning
	WedPmPO1-Posters on Content analysis and compressed dom ...
	WedPmOR4-Wireless multimedia streaming
	WedPmOR5-Audio processing & analysis
	WedPmOR6-Authentication, protection & DRM
	WedPmSS2-E-meetings & e-learning -cntd-

	Thursday, 7 July, 2005
	ThuAmOR1-3D
	ThuAmOR2-Video classification
	ThuAmOR3-Watermarking 1
	ThuAmSS1-Emotion detection
	ThuAmNT1-Expo
	ThuAmOR4-Multidimensional signal processing
	ThuAmOR5-Feature extraction
	ThuAmOR6-Coding
	ThuAmSS2-Emotion detection -cntd-
	ThuPmOR1-Home video analysis
	ThuPmOR2-Interactive retrieval & annotation
	ThuPmOR3-Multimedia hardware and software design
	ThuPmSS1-Enterprise streaming
	ThuPmNT1-Expo -cntd-
	ThuPmOR4-Faces
	ThuPmOR5-Audio event detection
	ThuPmOR6-Multimedia systems analysis
	ThuPmOR7-Media conversion
	ThuPmPS2-Keynote Gopal Pingali, IBM Research, "Ele ...

	Friday, 8 July, 2005
	FriAmOR1-Annotation & ontologies
	FriAmOR2-Interfaces for multimedia
	FriAmOR3-Hardware
	FriAmOR4-Motion estimation
	FriAmPO1-Posters on Architectures, security, systems &a ...
	FriAmOR5-Machine learning
	FriAmOR6-Multimedia traffic management
	FriAmOR7-CBIR
	FriAmOR8-Compression
	FriPmOR1-Speech processing & analysis
	FriPmSS1-Sports
	FriPmOR2-Hypermedia & internet
	FriPmOR3-Transcoding
	FriPmPO1-Posters on Applications, authoring & editi ...
	FriPmOR4-Multimedia communication & networking
	FriPmOR5-Watermarking 2
	FriPmSS2-Sports -cntd-
	FriPmOR6-Shape retrieval

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1 SIGNAL PROCESSING FOR MEDIA INTEGRATION
	1-CDOM Compressed Domain Processing
	1-CONV Media Conversion
	1-CPRS Media Compression
	1-ENCR Watermarking, Encryption and Data Hiding
	1-FILT Media Filtering and Enhancement
	1-JMEP Joint Media Processing
	1-PROC 3-D Processing
	1-SYNC Synchronization
	1-TCOD Transcoding of Compressed Multimedia Objects
	2 COMPONENTS AND TECHNOLOGIES FOR MULTIMEDIA SYSTEMS
	2-ALAR Algorithms/Architectures
	2-CIRC Low-Power Digital and Analog Circuits for Multim ...
	2-DISP Display Technology for Multimedia
	2-EXTN Signal and Data Processors for Multimedia Extens ...
	2-HDSO Hardware/Software Codesign
	2-PARA Parallel Architectures and Design Techniques
	2-PRES 3-D Presentation
	3 HUMAN-MACHINE INTERFACE AND INTERACTION
	3-AGNT Intelligent and Life-Like Agents
	3-CAMM Context-aware Multimedia
	3-CONT Presentation of Content in Multimedia Sessions
	3-DIAL Dialogue and Interactive Systems
	3-INTF User Interfaces
	3-MODA Multimodal Interaction
	3-QUAL Perceptual Quality and Human Factors
	3-VRAR Virtual Reality and Augmented Reality
	4 MULTIMEDIA CONTENT MANAGEMENT AND DELIVERY
	4-ANSY Content Analysis and Synthesis
	4-AUTH Authoring and Editing
	4-COMO Multimedia Content Modeling
	4-DESC Multimedia Content Descriptors
	4-DLIB Digital Libraries
	4-FEAT Feature Extraction and Representation
	4-KEEP Multimedia Indexing, Searching, Retrieving, Quer ...
	4-KNOW Content Recognition and Understanding
	4-MINI Multimedia Mining
	4-MMDB Multimedia Databases
	4-PERS Personalized Multimedia
	4-SEGM Image and Video Segmentation for Interactive Ser ...
	4-STRY Video Summaries and Storyboards
	5 MULTIMEDIA COMMUNICATION AND NETWORKING
	5-APDM Multimedia Authentication, Content Protection an ...
	5-BEEP Multimedia Traffic Management
	5-HIDE Error Concealment and Information Recovery
	5-QOSV Quality of Service
	5-SEND Transport Protocols
	5-STRM Multimedia Streaming
	5-WRLS Wireless Multimedia Communication
	6 SYSTEM INTEGRATION
	6-MMMR Multimedia Middleware
	6-OPTI System Optimization and Packaging
	6-SYSS Operating System Support for Multimedia
	6-WORK System Performance
	7 APPLICATIONS
	7-AMBI Ambient Intelligence
	7-CONF Videoconferencing and Collaboration Environment
	7-CONS Consumer Electronics and Entertainment
	7-EDUC Education and e-learning
	7-SECR Security
	7-STAN Multimedia Standards
	7-WEBS WWW, Hypermedia and Internet, Internet II

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Vaidyanathan Ramadurai
	Sanjay Jinturkar
	Mayan Moudgill
	John Glossner

