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ABSTRACT

Separation of voice and music is an interesting but difficult
problem. It is useful for many other researches such as au-
dio content analysis. In this paper, the difference between
voice and music signals is carefully studied. It is proposed
that the Harmonic Structure Stability is the key difference
between them. A separation algorithm based on this theory
is proposed. The main idea is to learn the average harmonic
structure of the music, and then separate signals by using it
to distinguish voice and music harmonic structures. Exper-
imental results show that the algorithm can separate mixed
signals and obtains not only a very high Signal-to-Noise Ra-
tio (SNR) but also a rather good subjective audio quality.

1. INTRODUCTION

Separation of voice and music in a mixed signal is an im-
portant problem in music research. Here, voice means the
singing voice in a song, music means the instrument ac-
companiments, i.e. acappella and instrumental in music
terms, respectively. Separation of voice and music is help-
ful for many other music researches, such as Music Re-
trieval, Classification and Segmentation, Multi-pitch esti-
mation, etc. [1, 2]. Signal separation is a difficult problem
and no reliable methods are available for the general case.

However, voice and music are so different that a human
can easily distinguish them. So, if it is possible to separate
them by analyzing their difference? In this paper, the differ-
ence between voice and music is carefully studied and a new
feature called Harmonic Structure Stability is proposed to
represent this difference. A corresponding new algorithm is
proposed to separate signals. The algorithm consists of four
steps: preprocessing, harmonic structure extraction, music
Average Harmonic Structure analysis, separation of signals.
The main idea is to learn the average harmonic structure of
the music, and then separate signals by using it to distin-
guish voice and music harmonic structures.
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Music is a fast variation signal, it is difficult for tradi-
tional speech enhancement methods to enhance speech with
music noise [3]. Compared to previous multi-pitch estima-
tion methods, our method learns a model from the primary
multi-pitch estimation results, and uses the model to im-
prove the results. Gil-Jin and Te-Won proposed a proba-
bilistic approach to single channel blind signal separation.
The main idea is to exploit the inherent time structure of
sound sources by learning a priori sets of basis filters [4]. In
our approach, no training sets are needed. All information
is directly learned from the mixed signal. Feng and etc. ap-
plied FastICA to extract singing and accompaniment from
a mixture [5]. Vanroose used ICA to remove music back-
ground from speech by subtracting ICA components with
the lowest entropy [6]. Compared to these approaches, our
method preserves the harmonic structure in the separated
signals and obtains a good subjective audio quality.

The rest of this paper is organized as follows: The es-
sential difference between voice and music is analyzed in
section two. The detail of the algorithm is described in sec-
tion three. Experimental results are shown in section four.
Finally, conclusion and discussions are given in section five.

2. HARMONIC STRUCTURE STABILITY
ANALYSIS FOR VOICE AND MUSIC

The first task is to reveal the essential difference between
voice and music signals. It is an interesting but challenging
task. First, the frequency ranges of voice and music are
overlapping. They can not be separated by frequency range
analysis. Second, the human voice is a harmonic and non-
harmonic mixture. Also, most music sounds are harmonic
[7]. They can’t be separated by harmony analysis. Third,
the spectral peak tracks of both signals may stay at a certain
note for a period of time [7]. They can’t be separated by
stable duration analysis. However, music signals are more
ordered than voice. The entropy of music is much more
constant in time than that of speech [8]. We try to find a
way to define this difference for the purpose of separation.

Represent a monophonic sound signal s(t) , which may
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be a voice or a music signal, by a sinusoidal model [9]:

s(t) =
R∑

r=1

Ar(t) cos[θr(t)] + e(t) (1)

Ar(t) and θr(t) =
∫ t

0
2πrf0(τ)dτ are the instantaneous

amplitude and phase of the rth harmonic, respectively, R
is the maximal harmonic number, f0(τ) is the fundamental
frequency, e(t) is the non-harmonic or noise component.

Divide s(t) into overlapped frames and calculate f l
0 and

Al
r by detecting peaks in the magnitude spectrum. Al

r = 0,
if there doesn’t exist the rth harmonic. l = 1, . . . , L is the
index of the frame. f l

0 and [Al
1, . . . , A

l
R] describe the posi-

tion and amplitudes of harmonics. Normalize Al
r by mul-

tiplying a factor ρl = C/Al
1 ( C is an arbitrary constant)

to ensure separation procedure will not be influenced by the
amplitude. Then, translate the amplitudes into a log scale,
because the human ear has a logarithmic sensitivity to sound
as frequency varying. Define Harmonic Structure Coeffi-
cient as equation (2). As we know, the timbre of a sound
is mostly controlled by the number of harmonics and the
ratio of their amplitudes. So Bl = [Bl

1, . . . , B
l
R], which is

free from the fundamental frequency and amplitude, exactly
represents the timbre of a sound. In this paper, these coef-
ficients are used to represent the harmonic structure of the
sound. Average Harmonic Structure and Harmonic Struc-
ture Stability are defined as follows to model music signals
and measure the stability of harmonic structures.

• Harmonic Structure Coefficient:

Bl
i = log(ρlAl

i)/ log(ρlAl
1), i = 1, . . . , R (2)

• Average Harmonic Structure (AHS): B̄ = 1
L

L∑
l=1

Bl

• Harmonic Structure Stability (HSS):

HSS =
1
R

L∑

l=1

∥∥Bl − B̄
∥∥2

=
1
R

R∑

r=1

L∑

l=1

(Bl
r − B̄r)

2

(3)

AHS and HSS (see Fig. 1) are the mean and variance of Bl.
Since timbres of most instruments are stable, so Bl varies
little in different frames in a music signal and AHS is a good
model to represent music signals. While, during singing a
song, the vibration channel varies much, so Bl varies much
in a voice signal. So, HSSs of music signals are small and
HSSs of voice signals are big. This characteristic is useful
for voice and music separation.

3. SEPARATION ALGORITHM

Suppose we have a signal mixture consisting of one voice
and one music, in which both voice and music signals are
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Fig. 1. AHS and HSS of a flute music signal.

monophonic. The separation algorithm consists of four steps:
preprocessing, extraction of harmonic structures, music AHS
analysis, separation of signals.

In preprocessing step, the mean and energy of the input
signal are normalized. In the second step, the pitch esti-
mation algorithm of Terhardt’s [10] is extended and used
to extract harmonic structures. This algorithm is suitable
for estimation both fundamental frequency and all it’s har-
monics. In Terhardt’s algorithm, in each frame, all spectral
peaks exceeding a given threshold are detected. The fre-
quencies of these peaks are [f1, . . . , fK ], K is the number
of peaks. For a fundamental frequency candidate f , count
the number of fi which satisfies the following condition:

floor[(1 + d)fi/f ] ≥ (1 − d)fi/f (4)

floor(x) denotes the greatest integer less than or equal to
x. This condition means whether rif · (1 − d) ≤ fi ≤
rif · (1 + d). If the condition is fulfilled, fi is the fre-
quency of the rth

i harmonic component when fundamental
frequency is f . For each fundamental frequency candidate
f , the coincidence number is calculated and f̂ correspond-
ing to the largest coincidence number is selected as the esti-
mated fundamental frequency.

The original algorithm is extended in the following way:
First, in peak detection procedure, not all peaks exceeding
the given threshold are detected, only significant ones are
selected by a edge detecting procedure. This is very impor-
tant for eliminating noise and achieving high performance
in next steps. Second, not only fundamental frequency but
also all its harmonics are extracted, then B can be calcu-
lated. Third, the original optimality criteria is to select f̂
corresponding to the largest coincidence number. This crite-
ria is not stable when the signal is polyphonic, because har-
monic components of different sources may influence each
other. A new optimality criteria is define as follows:

d =
1
n

K∑

i=1,fi coincident with f

|ri − fi/f |
ri

(5)

Then, f̂ corresponding to the smallest d is selected as the es-
timated fundamental frequency. The new criteria measures
the precision of coincidence. Generally speaking, for a fun-
damental frequency candidate f , harmonic components of
the same source are more probably to have a high coinci-
dence precision than those of a different source. So the new



criteria is helpful for separation of harmonic structures of
different sources. Fourth, in the original algorithm, only
one pitch was detected in each frame. In our situation, the
sound is a mixture and is polyphonic. So, all pitches which
corresponding d below a given threshold are extracted.

After harmonic structure extraction, a data set of har-
monic structures is obtained. As the analysis in section two,
music harmonic structures in different frames are similar
to each other, while voice harmonic structures have a large
variation. So, in the data set all music harmonic structures
form a cluster with very high density while voice harmonic
structures scatter around like background noise.

In the third step, harmonic structures outside three stan-
dard deviations are removed from the data set. This opera-
tion removes most of the voice harmonic structures. Then
the average harmonic structure of music can be calculated.

In separation step, in each frame of the mixed signal, if
there exists a harmonic structure similar to the music AHS, a
music harmonic structure is detected. Otherwise, there is no
music structure. Music harmonic structures in all frames are
extracted to reconstruct the music signal and then removed
from the mixture. The rest of the mixture after removing
music harmonic structures is the separated voice signal.

The procedure of music harmonic structure detection is
detailed as follows. Given the music AHS [B̄1, . . . , B̄R] and
a fundamental frequency candidate f , a possible music har-
monic structure is predicted. [f, 2f, . . . , Rf ] and [B̄1, . . . , B̄R]
are the frequencies and harmonic structure coefficients of
it. Find the closest peak in the magnitude spectrum for
each predicted harmonic component. Suppose [f1, . . . , fR]
and [B1, . . . , BR] are the frequencies and harmonic struc-
ture coefficients of these peaks (measured peaks). Using
formula 6 to calculate the distance between the predicted
harmonic structure and the measured peaks.

The first part of formula 6 is a modified version of Two-
Way Mismatch measure defined by Maher and Beauchamp,
which measures the frequency difference between predicted
peaks and measured peaks [11]. Where ∆fr = |fr − r · f |.
The second part of formula 6 measures the shape difference
between the two, a is a normalize coefficient. Note that,
only harmonic components with none zero harmonic struc-
ture coefficients are considered. Let f̂ indicate the funda-
mental frequency candidate corresponding to the smallest
distance between the predicted peaks and the actual spec-
tral peaks. If D(f̂) is smaller than a threshold Td, a music
harmonic structure is detected. Otherwise there is no music
harmonic structure in the frame. If a music harmonic struc-
ture is detected, the corresponding measured peaks in the
spectrum are extracted. And music signal is reconstructed
by IFFT. The voice signal is reconstructed by taking IFFT
on the rest spectrum. Smoothing between frames is needed
to eliminate click noise between frames.

D(f) =
R∑

r=1,B̄r>0,Br>0

{∆fr · (rf)−p + B̄r

B̄max
× q∆fr · (rf)−p}

+ a
R∑

r=1,B̄r>0,Br>0

( B̄r

B̄max
)(B̄r − Br)2

(6)

4. EXPERIMENTAL RESULTS

We had calculated HSSs on both the Iowa music instrument
database and a singing voice database. The music database
contains 21 kinds of instruments and total 765 samples. The
sample rate is set to 44.1K to contain more high frequency
harmonics. The singing voice database contains 50 seg-
ments coming from 10 acappellas including male and fe-
male singing voice. Each segment is 30 seconds in length.
The mean of the HSSs of harmonic music samples is 0.04.
The mean of the HSSs of singing samples is 0.18. So, HSS
represents the essential difference between voice and music.

Fig. 2 are two examples of separation experiments. Ta-
ble 1 are corresponding SNRs. All the files can be down-
loaded from http://www.au.tsinghua.edu.cn/szll/bodao/zhan
gchangshui/bigeye/member/zyghtm/music.htm. It can be seen
that the mixtures are well separated and very high SNRs
are obtained. The distance between music harmonic struc-
tures and the corresponding music AHS is small (the mean
distances is 0.01 and 0.006 in experiment 1 and 2, respec-
tively), and the distance between voice harmonic structures
and the music AHS is bigger (the mean distances is 0.1 and
0.13 in experiment 1 and 2, respectively). So, the music
AHS is a good model for music signal representation and
for voice and music separation. The separation procedure is
based on harmonic structure analysis, it makes the separated
signals with a rather good subjective audio quality because
the harmonic structure is reserved. This is an important ad-
vantage of the proposed algorithm. All the parameters are
determined experimentally. d = 0.04, p = 1, q = 4, a =
0.01 in all experiments, which are parameters in equation 4,
6. Td, used in separation step, is 0.15 and 0.35 in experi-
ment 1 and 2 , respectively.

Fig. 2 also shows speech enhancement results obtained
by a speech enhancement software which tries to estimate
the spectrum of noise in the pause of speech and enhance
the speech by spectral subtraction [3]. Detecting pauses in
speech with music background and enhancing speech with
music noise are both very difficult problems, so tradition
speech enhancement techniques can’t work here.

5. CONCLUSION AND DISCUSSION

In this paper, the essential difference between voice and mu-
sic signals is analyzed. Harmonic structure stability and av-
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Fig. 2. Experimental results.

Table 1. SNR results (DB): snrv and snrm are the SNRs
of voice and music signals in the mixed signal. snr′e is the
SNR of speech enhancement result. snr′v and snr′m are the
SNRs of the separated voice and music signals.

snrv snrm snr′e snr′v snr′m Total inc.
Experiment1 -7.9 7.9 -1.1 6.7 10.8 17.5
Experiment2 -5.2 5.2 -1.5 6.6 10.0 16.6

erage harmonic structure are defined to represent this differ-
ence and separate signals. Experimental results show a good
performance of this method. The difference between voice
and music signals is significant. So the algorithm based on
analysis and modeling this difference is a promising way to
solve many problems in music and speech research.

The proposed method has applications in many research
areas. It is useful for melody extraction and then makes
audio retrieval become much easier. In our algorithm, not
only harmonic structures but also corresponding fundamen-
tal frequencies are extracted. So, the algorithm is also a
new multi-pitch estimation method. It analyzes the primary
multi-pitch estimation results and learns a model to repre-
sent music signals and improve multi-pitch estimation re-
sults. More importantly, pitches of different sources can be
distinguished by the AHS model. This advantage is signifi-
cant for automatic transcription.

There are still some limitations. First, for non-harmonic
instruments, such as some drums, the proposed algorithm
doesn’t work. Some rhythm tracking algorithms can be used
instead to separate drum sounds. Fortunately, most instru-
ment sounds are harmonic. Second, when there exists more
than one music in the mixture, the algorithm should be ex-
tended to learned the AHS for every instrument. Then the
separation can be done in the similar way. Third, for some

instruments, the timbre in the onset duration is somewhat
different from which in the stable duration. Also differ-
ent performing methods ( pizz. or arco) produces different
timbres. In these cases, the music harmonic structures will
form several clusters not one. Then a GMM model instead
of an average harmonic structure model (actually a point
model) should be used as to represent the music.
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