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ABSTRACT

Bilateral filtering is an edge-preserving filtering technique
that employs both geometric closeness and photometric sim-
ilarity of neighboring pixels to construct its filter kernel.
Multi-dimensional bilateral filtering is computationally ex-
pensive because the adaptive kernel has to be recomputed at
every pixel. In this paper, we present a separable implemen-
tation of the bilateral filter. The separable implementation
offers equivalent adaptive filtering capability at a fraction of
execution time compared to the traditional filter. Because of
this efficiency, the separable bilateral filter can be used for
fast preprocessing of images and videos. Experiments show
that better image quality and higher compression efficiency
is achievable if the original video is preprocessed with the
separable bilateral filter.

1. INTRODUCTION

Bilateral filtering is a term coined by Tomasi and Manduchi
[12] in 1998 to refer to an edge-preserving filtering tech-
nique that takes both geometric closeness and photometric
similarity of neighboring pixels into account. The edge-
preserving capability is due to an implicit local mode se-
lection as a result of intensity-selective filtering [3]. In fact,
the idea of filtering in both spacial and tonal domains has
been around since the sigma filter [8] in 1983. Smith and
Brady [11] in 1995 added Gaussian weighting to the sigma
filter and produced their own version of bilateral filter. The
bilateral filter has also been shown [2, 3] to be equivalent
to a number of known techniques such as anisotropic dif-
fusion [10], local-mode finding [3] and mean-shift analysis
[5]. Recently, Boomgaard and Weijer [4] extended bilat-
eral filtering to a robust facet model to estimate local image
structures under random noise and outliers.

Although the bilateral filter produces excellent filtered
results, its application is limited by its speed. The filter’s
computational complexity is high and it increases exponen-
tially with the number of dimensions. Equivalent filtering
techniques such as anisotropic diffusion and mean-shift anal-
ysis are not fast either because of their iterative nature. A

fast implementation of bilateral filtering is therefore desir-
able.

One first attempt to speedup the bilateral filter is a piece-
wise linear approximation proposed by Durrand and Dorsey
[6]. The method is similar to the idea of channel filter-
ing by Felsberg and Grandlund [7], in which the image is
spatio-tonally filtered with respect to a number of intensity
channels. The output image is then a pixel-wise interpola-
tion of the channel responses. Although the computation of
each channel response requires only two Gaussian convo-
lutions, many channels are needed to cover the whole dy-
namic range (up to 17 in [6]). The gain in speed is therefore
only apparent for very large kernels (kernel size > 25 pixels
per dimension as shown in figure 11 in [6]). The piecewise-
linear approximation is also not suitable for large images
or videos because of excessive memory needed to store the
temporary channel images.

In this paper, we propose a fast separable implementa-
tion of the bilateral filter. The image is bilaterally filtered in
one dimension and the intermediate result is filtered again
in subsequent dimensions. The separable implementation is
not only fast but it also approximates the true bilateral filter
reasonably well. Little memory overhead is required since
the output image can be written direct onto the input’s mem-
ory. Experiments on various images show that the separa-
ble implementation outperforms both the original and the
piecewise-linear implementation in speed while achieving
similar filtering results. As an application, the separable bi-
lateral filtering is applied to noisy videos to improve image
quality and coding efficiency of video compression systems.

2. BILATERAL FILTERING

Bilateral filtering performs a weighted average of local sam-
ples, in which higher weights are given to samples that are
closer in both space and intensity to the center sample. The
weighted average is done over a neighborhood S around the
center sample s0 = {x0, y0} whose intensity is I(s0):

O(s0) =
∑

s∈S

f(s, s0).I(s)

/

∑

s∈S

f(s, s0) (1)
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Fig. 1. Bilateral filtering as a mode seeking process.

where f(s, s0) = gs(s − s0) . gt(I(s) − I(s0)) is the bilat-
eral filter for the neighborhood around s0. The constituent
spatial and tonal weights gs and gt are Gaussian functions:

gs(s) = g(x, σs) . g(y, σs) gt(I) = g(I, σt) (2)

where g(t, σ) = 1

σ
√

2π
e−t2/2σ2

, σs and σt are the spatial
and tonal scales of bilateral filtering.

Figure 1 depicts the formation of a bilateral filter cen-
tered at a pixel on one side of a noisy step edge (fig. 1a).
The role of the spatial weight gs is to limit the spatial ex-
tend of the filter operation. It accounts for the bell shape of
the bilateral filter. The tonal weight gt suppresses the con-
tributions of pixels from the other side of the edge. It is
responsible for the truncation of approximately half of the
Gaussian bell (fig. 1b). Since only pixels sharing similar
intensity with the current pixel have significant weights in
the local analysis, the edge is not diffused across and noise
is effectively suppressed (fig. 1c). A compact bi-modal his-
togram of the filtered edge compared to that of the noisy
edge in figure 1e further confirms this noire reduction and
edge sharpening. As pointed out in [3], bilateral filtering is
a first iteration of an iterative local mode finding process.
If the bilateral filter is applied several times, the filtered re-
sult will eventually converge to a sharp edge transition and
the local histogram will reduce to two spikes at the intensity
levels on either sides of the edge.

3. SEPARABLE BILATERAL FILTERING

Gaussian filtering is very fast because it can be implemented
in a separable way (i.e. the image is first filtered in the x-
dimension, followed by a filtering in the y-dimension and so
on...). A recursive implementation of the separable Gaus-
sian filter, for example, only requires a fixed number of

operations per pixel irrespective of the Gaussian scale [14]
(O(Nd), where N is the total number of pixels in the image,
and d is the image dimensionality). Unfortunately, the bilat-
eral filter f(s, s0) in (1) is not separable due to the intensity-
dependent component gt. However, when implemented in
a separable way, the new filter still satisfies all desired re-
quirements: noise reduction and signal preservation.

Similar to separable Gaussian filtering, a one-dimen-
sional bilateral filter is applied to the first dimension and
the intermediate result is filtered again in subsequent di-
mensions. In this way, the computational complexity of
the separable implementation is just O(Nmd) compared to
O(Nmd) for a full kernel implementation (where m is the
size of the filter in each dimension). With a modest filter
size of 7, for example, the speed improvement of the sepa-
rable filter over the original filter could reach 3.5 times for
2D and 16 times for 3D data.

Not sacrificing performance for speed, the separable bi-
lateral filter is also a good approximation to the original
filter. Similar to a separable median filter [9], the separa-
ble bilateral filter first seeks the local mode along the x-
dimension, followed by a mode seeking in the y-dimension.
Because of the non-separability of f(s, s0) in (1), differ-
ent orderings of filtering could result in a slightly different
output. However, the difference is often small for normal
Signal-to-Noise Ratios1 (SNR ≥ 20dB). Also, due to the
separable filtering along the sampling axes, the proposed fil-
ter approximates the original filter better for image patches
whose dominant orientation aligns with the sampling grid.
Nevertheless, even in a worst case scenario of a 45◦-tilt step
edge in figure 2, the separable filter still performs noise re-
duction and edge preservation very well.

3.1. Kernel approximation in 2D

We show how an effective kernel of the separable bilateral
filtering looks like on the verge of a 45◦-tilt step edge. Im-
ages on the top row of figure 2 show an input patch and its
separable filter kernels as gray-scale images (brighter pixel
mean higher filter weight and vice versa). The center pixel
lies just on the white side of the edge in the middle of the
image in figure 2a. Since we are interested in the effective
kernel centered at this pixel, intermediate 1D kernels in the
x- and y-dimensions are shown in figure 2b-d.

In the first step, a horizontal bilateral filtering is applied
to all rows of the input image. The x-kernels centered at
pixels in the middle column are shown in figure 2b. As can
be seen in figure 2b, bilateral filtering assigns low weights
to the pixels far away from the center position and pixels
with a large intensity difference from the center intensity
(which changes from high to low as the center pixel moves
from top of the column to the bottom).

1SNR=10 log
10

(σ2

I
/σ2

n); where σ2

I
, σ2

n are variances of signal, noise
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Fig. 2. Separable bilateral filtering as an approximation of
the original filter [12]. Top:kernels. Bottom:filtered outputs

In the second separable step, a vertical bilateral filtering
is applied to the previously filtered result. The y-kernel for
the center pixel is shown as a single image column in fig-
ure 2c. Again, note that bilateral filtering prevents the low
intensity pixels to contribute to the high intensity output by
giving them low weights. Multiplying the columns in the
x-kernels image and y-kernel image, we obtain the effective
kernel in figure 2d.

Compared to the full 2D bilateral kernel in figure 2e, the
effective separable kernel in figure 2d gathers fewer samples
for the local weighted average. This is due to a truncation
of the lower half of the y-kernel. However, the effective ker-
nel still gathers enough pixels of the correct intensity mode
for the filtering. The separable bilateral filter therefore still
performs noise reduction and edge preservation well. The
filtered results at the bottom of figure 2 confirm this. After
a bilateral filtering in the x-dimension, figure 2g is already
less noisy than the input (fig. 2f). A subsequent bilateral fil-
ter in the y-dimension reduces noise even further while still
keeping the edge sharp (fig.2h).

3.2. Reduction of edge jaggedness

One undesirable effect of bilateral filtering as a mode seek-
ing algorithm is that edge transitions are often too abrupt
after filtering. This results in a cartoon-like appearance of
the filtered images [12]. It also hampers later processing
tasks such as iso-surface extraction and image compression.
Moreover, high noise could bias pixels on the edge towards
a wrong local mode, causing noticeable edge jaggedness.
To avoid these unwanted effects, we limit the edge sharpen-
ing by imposing a minimum smoothing in the filter kernel.
In the 1D separable filter, this is done by forcing the values
of two immediate middle taps to be greater than or equal
to α-times that of the center tap (we choose α = 0.25 for
a minimum smoothing equivalent to a low-pass filtering by
1

6
[1 4 1]). Note that this trick only smoothes out very sharp

edges, whereas image patches with gradual intensity varia-
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Fig. 3. Performance of separable bilateral filtering.

tions are not affected.

4. EXPERIMENTS

4.1. Performance of separable bilateral filter

To quantitatively show that the separable implementation
can approximate the original bilateral filter well, we com-
pare the results of all implementations (full-kernel, piecewise-
linear, separable) on three images: an 1D sinusoid pattern
(10000), a 2D Lena image (512 × 512) and a 3D Foreman
video (176 × 144 × 400, see fig.5) at different SNRs. Fil-
ter sizes of 9 for 1D, 9 × 9 for 2D and 9 × 9 × 5 for 3D
with spatial scale σs = 2, temporal scale = 1, and tonal scale
σt = 3σn are used for all implementations. The Improve-
ment in SNR of a filtered image f̂ over a noisy image g with
respect to a noise-free original f is defined as:

ISNR = 10 log
10

(

∑

(f − g)2
/

∑

(f − f̂)2
)

(3)

As can be seen in figure 3a, the ISNR of separable bi-
lateral filtering closely follows that of the full-kernel imple-
mentation. The piecewise-linear implementation does not
perform very well at high SNRs due to errors in channel in-
terpolation. Finally, the ISNR of Gaussian filtering is worse
than any implementations of the bilateral filter.

The execution time chart in figure 3b shows that the
separable filter is the fastest amongst all three implemen-
tations: full-kernel, piecewise-linear and separable. At the
processing speed of 2 µsec per pixel for 3D images, the sep-
arable method is two-times faster than the piecewise-linear
method. Note that we have speeded up the piecewise-linear
filter in [6] with several enhancements: tile processing to re-
duce memory consumption (63 tiles for the 3D Foreman se-
quence), non-uniform channel selection (8 channels on av-
erage). Two-times downsampling of the channel responses
is used because the spatial scale is small (σs = 2). The exe-
cution time of separable bilateral filtering is linearly propor-
tional to the number of dimensions, whereas the relationship
is exponential for the full-kernel implementation.
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Fig. 4. Quality of compressed Foreman with bilateral filter

4.2. Preprocessing for efficient compression

Preprocessing is often used to improve visual quality and
coding efficiency of video compression systems. Due to
timing constraints, however, only fast filters such as win-
dow averaging filters are used. The problem with this type
of low-pass filters is that they blur out small details and
edges. Averaging along the temporal axis also results in
ghost effects around moving objects. Bilateral filtering re-
solves all these problems by an intensity-selective averag-
ing. The separable implementation is fast enough to be in-
corporated into any video compression schemes. Similar
to [12], the separable filter is applicable to color images if
the tonal weight gt in (2) is computed from an Euclidean
distance in the CIE-Lab color space.

We show that better compressed video is achievable if
the separable bilateral filter is used in the preprocessing step.
In this experiment, the original QCIF Foreman sequence2

(176 × 144 × 400) is compressed using an MPEG-1 en-
coder [1]. The compressed videos with and without prepro-
cessing are compared in terms of Root Mean Squared Error

(RMSE =

√

∑

(f − f̂)2) with the original video and an
MPEG quality score. The MPEG quality score, being an
averaged JPEG quality score [13] of all frames, ranges from
0 to 10 with higher values mean less blocking artifacts. As
can be seen from figure 4, the MPEG sequence with sep-
arable bilateral preprocessing has a smallest RMSE and a
highest MPEG quality score. Full-kernel bilateral prepro-
cessing with the same CPU requirements does improve the
video quality. However, the improvement is minimal due
to a small kernel size (3 × 3 × 3 full-kernel compared to
9×9×5 separable). The 31st frame of a Foreman sequence
compressed at 150 Kbits/s can be seen in figure 5 where
the video without preprocessing on the left is clearly more
blocky than the video with separable bilateral pre-filtering
on the right. This once again confirms a higher quality curve
of the video with preprocessing in figure 4b.

2available at http://trace.eas.asu.edu/yuv/qcif.html

(a) without preprocessing (b) with bilateral pre-filtering

Fig. 5. Frame 31 of Foreman MPEG1 video at 150 Kbits/s

5. CONCLUSIONS

In conclusion, we have presented a separable implementa-
tion of the bilateral filter. The separable implementation is
fast and is a good approximation of the original bilateral fil-
ter. When used as a preprocessing step, the separable bilat-
eral filter helps increasing the coding efficiency and visual
quality of MPEG video compression systems.
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