
A QUARTER PEL FULL SEARCH BLOCK MOTION ESTIMATION
ARCHITECTURE FOR H.264/AVC

Choudhury A. Rahman and Wael Badawy

Laboratory for Integrated Video Systems (LIVS)
University of Calgary

Calgary, Alberta, Canada T2N 1N4
{rahman, badawy}@livs.ca

ABSTRACT

This paper presents a novel quarter pel full search block
motion estimation architecture for H.264/AVC encoder.
The proposed architecture is capable of calculating all 41
motion vectors required by the various size blocks,
supported by H.264/AVC, in parallel. The architecture has
been prototyped in Verilog HDL, simulated and
synthesized for Xilinx Virtex2 FPGA. The experimental
result shows that the architecture is capable of processing
CIF frame sequences in real time considering 5 reference
frames within the search range of -3.75 to +4.00 at a clock
speed of 120MHz. The maximum speed of the
architecture is around 150MHz.

1. INTRODUCTION

The newest international video coding standard has been
finalized in May 2003. It is approved both by ITU-T as
Recommendation H.264 and ISO/IEC as International
Standard 14496-10 (MPEG-4 part 10) Advanced Video
Coding (AVC) [1]. This new standard H.264/AVC is
designed for application in the areas such as broadcast,
interactive or serial storage on optical and magnetic
devices such as DVDs, video-on-demand or multimedia
streaming, multimedia messaging etc. over ISDN, DSL,
Ethernet, LAN, wireless and mobile networks. Some new
features of the standard that enable enhanced coding
efficiency by accurately predicting the values of the
content of a picture to be encoded are variable block-size,
quarter-sample-accuracy and multiple reference picture
for motion estimation and compensation [2]. In addition to
improved prediction methods, other parts of the design are
also enhanced for improved coding efficiency including
small block-size transform, hierarchical block transform,
exact-match inverse transform, arithmetic entropy coding
etc. While the scope of the standard is limited to the
decoder by imposing restrictions on the bitstream and

syntax, and defining the decoding process of the syntax
elements such that every decoder conforming to the
standard will produce similar output when given an
encoded bitstream that conforms to the constraints of the
standard, there is a considerable flexibility in designing an
encoder for AVC to optimize implementations in a
manner appropriate to the intended application.
 The new features such as variable block-size, quarter-
sample-accuracy and multiple reference frames increase
the complexity and computation load of motion estimation
greatly in H.264/AVC encoder. Experimental results have
shown that motion estimation can consume 60% for 1
reference frame to 80% for 5 reference frames of the total
encoding time of H.264 codec [3]. Due to this reason, in
order to get real time performance (30 frames per second)
from a H.264 encoder, parallel processing must be
exploited in the architecture. So far, there have been a
very few VLSI implementations [4,5] for H.264/AVC
motion estimation considering variable block size. But
none of them is particularly suitable considering real time
frame processing, multiple reference frames and fractional
pel accuracy. In this paper, a quarter pixel full search
variable block motion estimation architecture has been
proposed that can process all the required motion vectors
for H.264/AVC encoder in parallel. Experimental results
have shown that the architecture can process in real time
upto 5 reference frames at a clock speed of 120MHz.
 The rest of the paper is organized as follows: Section
2 discusses some background of motion estimation.
Section 3 presents the proposed architecture. Section 4
shows the simulation and synthesis results. Finally,
section 5 concludes the paper.

2. BACKGROUND

Motion estimation is the basic bandwidth compression
method adopted in the video coding standards. In
H.264/AVC the motion estimation method is further
refined with the new features like variable block size,
multiple reference frames and quarter pixel accuracy.

0-7803-9332-5/05/$20.00 ©2005 IEEE

Upto 5 reference frames can be used along with 7 block
patterns: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 in
AVC as shown in figure 1. Compared to fixed size block
and singe reference frame, the new method provides better
estimation of small and irregular motion fields and allows
better adaptation of motion boundaries resulting in a
reduced number of bits required for coding prediction
errors.

0

0

0

16x16 16x8

1

1

0 1

2 3

8x16 8x8

0

0

0

8x8 8x4

1

1

0 1

2 3

4x8 4x4

Figure 1. The various block sizes in H.264/AVC

 The block matching algorithm (BMA) is the most
implemented one in real time for motion estimation [6].
The algorithm is composed of two parts: matching
criterion and searching strategy. In our proposed
architecture, sum of absolute difference (SAD) and full
search (FS) have been chosen for matching criterion and
search strategy, respectively. SAD can be expressed in
terms of equation as follows:

() ()

() () ()

1 1

0 0

min ,

(,) , ,

, ,

M N

i j

x y SAD dx dy

SAD dx dy a i j b i dx j dy

MV MV dx dy

− −

= =

= − + +

=

∑∑ (1)

In equation (1), a(i,j) and b(i,j) are the pixels of the
reference and candidate blocks, respectively. dx and dy
are the displacement of the candidate block within the
search window. MxN is the size of the reference block and
(MVx, MVy) is the motion vector pair of the block.

3. THE PROPOSED ARCHITECTURE

The proposed architecture for quarter pel full search block
motion estimation is shown in figure 2. The architecture
composed of single port block RAMs for search window
and 16x16 reference block, 8 processing units, shift
registers comparing unit and address generator (AG). The
search window size of 92x92 pixels (quarter pel) has been
chosen for prototyping for which the motion vector for the
16x16 size block lays between -3.75 to +4.00. So, there
are 23x23 integer pel positions for which there are
64(8x8) 16x16 candidate blocks. Therefore, the total
number of 16x16 candidate blocks considering quarter pel

accuracy is 64x4x4 = 1024. The search window has been
partitioned into 23 4x92 size block RAMs for parallel
processing. This is shown in figure 3 and it requires a total
memory bandwidth of 184(23x8) bits. The address
generator generates addresses for the reference and
candidate blocks. These addresses are fed into the search
window memory, reference block memory and comparing
unit.

 Search Window
 Memory

B
R
A
M

1

B
R
A
M

2

B
R
A
M

3

PU1 PU2 PU3 PU8

Hardwired Routing Network

B
R
A
M

23

Ref.
Block
RAM

Shift Registers

Comparing Unit

Address
Generator

(AG)

41 pair of motion vectors

Quarter-pel interpolated
search window

Reference block
16x16

Figure 2. The proposed motion estimation architecture.

0

1

2

3

4

5

88

89

90

91

0 1 2 3

Input

output

- Integer pel

- Half pel

- Quarter pel

Figure 3. BRAM for search window memory.

 The hardwired routing network connects the search
window memory with the PUs. The input / output
connections of the routing network are shown in table 1.
Figure 4 shows the C-type address generation algorithm
for the AG. This algorithm generates addresses for the
search window memory (SW MEM), reference block
memory (REF MEM) and Hx, Vx for the processing units

fed into the comparing unit. Each (Hx, Vx) pair represents
motion vector and it addresses the top left corner point of
a 4x4 candidate block shown in figure 5. This means the
motion vectors of all the possible size blocks can be
represented by the combination of these Hx, Vx values.

Figure 4. Algorithm for address generator.

H0 H1 H2 H3
V0

V1

V2

V3

Figure 5. 4x4 blocks within a 16x16 candidate block and their
corresponding addresses. For an example, the address of the gray

shaded 4x4 block is (H2, V2).

 The PU structure is shown in figure 6. It has 16
processing elements (PE) shown in figure 7. The PE is
composed of one subtractor, one selectable adder /
subtractor and two registers. The subtractor subtracts the
values of the candidate and reference block pixels. The

MSB of the result of this subtractor selects the
functionality of the adder / subtractor unit. If the result of
the subtractor unit is negative (MSB = 1), the adder /
subtractor unit subtracts the result from the value stored in
register R1 and vice versa. After each 4th cycle the
accumulated value is loaded into R2 and R1 value is
cleared. This means the output of each group of 4 PEs (16
PEs arranged in 4 groups) after summation of the PE
outputs in that group gives the SAD value of a 4x4 block.

PE
1

PE
13

PE
4

PE
3

PE
2

PE
14

PE
15

PE
16

D

D

D

D

D

D

Routing Network I

Routing Network II

Routing Network III

Candidate block Reference block

SAD of 41 blocks

16 SAD
(4x4 blocks)

16 SAD
(8x4 &

4x8 blocks)

4 SAD
(8x8 blocks)

4 SAD
(16x8 &

8x16 blocks)

1 SAD (16x16 block)

Figure 6. Processing unit (PU).

R2

Sub

Add/Sub R1

MSB
(add/sub
selector)

Candidate
block

Reference
block

Figure 7. Processing element (PE).

These SAD values are passed through delay registers (D)
that are triggered in every 4th cycle. Therefore, after the
16th cycle the SAD values of all the 4x4 candidate blocks
are available to the inputs of the routing networks. The
routing networks I, II and III are then used to connect
these inputs to the four stage adder networks for
computing the SAD values of the candidate blocks of
other sizes, i.e., 8x4, 4x8, 8x8, 16x8, 8x16 and 16x16.

Table 1. Hardwired routing network’s input / output
connections.

Output Input

(BRAM) PU1 PU2 PU3 PU4 PU5 PU6 PU7 PU8
1 1
2 2 1
3 3 2 1
4 4 3 2 1
5 5 4 3 2 1
6 6 5 4 3 2 1
7 7 6 5 4 3 2 1
8 8 7 6 5 4 3 2 1
9 9 8 7 6 5 4 3 2
10 10 9 8 7 6 5 4 3
11 11 10 9 8 7 6 5 4
12 12 11 10 9 8 7 6 5
13 13 12 11 10 9 8 7 6
14 14 13 12 11 10 9 8 7
15 15 14 13 12 11 10 9 8
16 16 15 14 13 12 11 10 9
17 16 15 14 13 12 11 10
18 16 15 14 13 12 11
19 16 15 14 13 12
20 16 15 14 13
21 16 15 14
22 16 15
23 16

For c = 0 to 31 {
 For add_h = 0 to 3 {
 For add_v = 0 to 15 {

 SW MEM address = c + add_v*4 + add_h*92;
 REF MEM address = add_v;

 Hx for PU(y) = (add_h + x*16 + y*4 – 15)/4;
 Vx for all PU = (c + x*16 – 15)/4;
 //where, x = {0, 1, .. 3} and y = {0, 1, .. 7}
} } }

PU1 PU2 PU3 PU4 PU5 PU6 PU7 PU8

SAD

ComparatorMin
SAD R

SAD

MV

Input from AG

(enable)

Therefore, 8 PUs compute all 41 SAD values of 8 16x16
candidate blocks of one row in parallel for each add_h
value (figure 4). This means, each complete cycle of
add_h values results all SAD values of 8x4 = 32 16x16
candidate blocks of one row. This is repeated 32 times,
controlled by the value of c (figure 4) to complete motion
estimation of the entire search window. add_v in figure 4
controls the row addresses of the reference and candidate
block.
 There are 41 parallel in serial out shift registers, one
of which is shown in figure 8. Each of these takes SAD
values of one particular type / size of block from all PUs
as inputs and makes them serially available to the
comparing unit.

Figure 8. Parallel in serial out shift registers.

 The comparing unit is composed of 41 comparing
elements (CE), one of which is shown in figure 9. Each
shift registers output is connected to one of these CEs. CE
is composed of one comparator and two registers, one of
which stores the minimum SAD for comparison and the
other is triggered for storing the motion vector (Hx, Vx)
from AG when the input SAD is less than the previous
stored minimum SAD value.

Figure 9. Comparing element (CE).

 The min SAD is initialized with the biggest possible
SAD value at the beginning of motion estimation for each
reference block. So, the output of the comparing unit
gives the motion vectors of all possible candidate blocks
(41 in total) at the end of search of the search window.
The multiplication and division operations in AG (figure
4) are implemented by hardwired shifts except add_h*92
for which stored pre-computed values are used. The
subtraction and division operations are done for sign and
quarter pel adjustments, respectively.

4. SIMULATION AND SYNTHESIS RESULTS

The proposed architecture has been prototyped in Verilog
HDL, simulated and synthesized by Xilinx ISE
development tools for Virtex2 device family. Table 2
summarizes the synthesis results. The maximum speed

was found to be around 150MHz. Simulation result
conforms real time processing of CIF (352x288) frame
sequences. Under a clock speed of 120MHz, the core can
compute in real time the motion vectors of all various size
blocks with 5 reference frames.

Table 2. Simulation and synthesis results.

of
Slices

of
4-input LUTs

Gate
Count

Speed
(MHz)

14.5K 28.5K 225K 149.2

5. CONCLUSION

A novel quarter pel full search variable block size motion
estimation architecture has been presented in this paper.
The architecture is suitable for FPGA implementation as
an IP core for H.264/AVC encoder. The parallel and
pipelined design allows the core to run at a speed of
120MHz which is sufficient for real time processing of
CIF image sequences.

6. ACKNOWLEDGEMENTS

The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada (NSERC), the
Canadian Foundation for Innovations (CFI), Micronet
R&D Canada, and the Canadian Microelectronics
Corporation (CMC) for supporting this research.

7. REFERENCES

[1] “Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification (ITU-T Rec. H.264 |
ISO/IEC 14496-10 AVC),” in Joint Video Team (JVT) of
ISO/IEC MPEG and ITU-T VCEG, JVT-G050r1, May 2003.

[2] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 560-576, July 2003.

[3] “Fast integer pel and fractional pel motion estimation for
AVC,” in Joint Video Team (JVT) of ISO/IEC MPEG and
ITU-T VCEG, JVT-F016, December 2002.

[4] Y. W. Huang et. al., “Hardware architecture design for
variable block size motion estimation in MPEG-4
AVC/JVT/ITU-T H.264,” Proceedings of the 2003
International Symposium on CAS, ISCAS ’03, pp. II-796-II-
799, May 2003.

[5] S. Y. Yap and J. V. McCanny, “A VLSI architecture for
variable block size video motion estimation,” IEEE
Transactions on CAS II, vol. 51, no. 7, July 2004.

[6] P. Kuhn, Algorithms, Complexity Analysis and VLSI
Architectures for MPEG-4 Motion Estimation, Kluwer
Academic Publishers, Boston, 1999.

	Index
	ICME 2005

	Conference Info
	Welcome Messages
	Venue Access
	Committees
	Sponsors
	Tutorials

	Sessions
	Wednesday, 6 July, 2005
	WedAmOR1-Action recognition
	WedAmOR2-Video conference applications
	WedAmOR3-Video indexing
	WedAmOR4-Concealment & information recovery
	WedAmPO1-Posters on Human machine interface, interactio ...
	WedAmOR5-Face detection & tracking
	WedAmOR6-Video conferencing & interaction
	WedAmOR7-Audio & video segmentation
	WedAmOR8-Security
	WedPmOR1-Video streaming
	WedPmOR2-Music
	WedPmOR3-H.264
	WedPmSS1-E-meetings & e-learning
	WedPmPO1-Posters on Content analysis and compressed dom ...
	WedPmOR4-Wireless multimedia streaming
	WedPmOR5-Audio processing & analysis
	WedPmOR6-Authentication, protection & DRM
	WedPmSS2-E-meetings & e-learning -cntd-

	Thursday, 7 July, 2005
	ThuAmOR1-3D
	ThuAmOR2-Video classification
	ThuAmOR3-Watermarking 1
	ThuAmSS1-Emotion detection
	ThuAmNT1-Expo
	ThuAmOR4-Multidimensional signal processing
	ThuAmOR5-Feature extraction
	ThuAmOR6-Coding
	ThuAmSS2-Emotion detection -cntd-
	ThuPmOR1-Home video analysis
	ThuPmOR2-Interactive retrieval & annotation
	ThuPmOR3-Multimedia hardware and software design
	ThuPmSS1-Enterprise streaming
	ThuPmNT1-Expo -cntd-
	ThuPmOR4-Faces
	ThuPmOR5-Audio event detection
	ThuPmOR6-Multimedia systems analysis
	ThuPmOR7-Media conversion
	ThuPmPS2-Keynote Gopal Pingali, IBM Research, "Ele ...

	Friday, 8 July, 2005
	FriAmOR1-Annotation & ontologies
	FriAmOR2-Interfaces for multimedia
	FriAmOR3-Hardware
	FriAmOR4-Motion estimation
	FriAmPO1-Posters on Architectures, security, systems &a ...
	FriAmOR5-Machine learning
	FriAmOR6-Multimedia traffic management
	FriAmOR7-CBIR
	FriAmOR8-Compression
	FriPmOR1-Speech processing & analysis
	FriPmSS1-Sports
	FriPmOR2-Hypermedia & internet
	FriPmOR3-Transcoding
	FriPmPO1-Posters on Applications, authoring & editi ...
	FriPmOR4-Multimedia communication & networking
	FriPmOR5-Watermarking 2
	FriPmSS2-Sports -cntd-
	FriPmOR6-Shape retrieval

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1 SIGNAL PROCESSING FOR MEDIA INTEGRATION
	1-CDOM Compressed Domain Processing
	1-CONV Media Conversion
	1-CPRS Media Compression
	1-ENCR Watermarking, Encryption and Data Hiding
	1-FILT Media Filtering and Enhancement
	1-JMEP Joint Media Processing
	1-PROC 3-D Processing
	1-SYNC Synchronization
	1-TCOD Transcoding of Compressed Multimedia Objects
	2 COMPONENTS AND TECHNOLOGIES FOR MULTIMEDIA SYSTEMS
	2-ALAR Algorithms/Architectures
	2-CIRC Low-Power Digital and Analog Circuits for Multim ...
	2-DISP Display Technology for Multimedia
	2-EXTN Signal and Data Processors for Multimedia Extens ...
	2-HDSO Hardware/Software Codesign
	2-PARA Parallel Architectures and Design Techniques
	2-PRES 3-D Presentation
	3 HUMAN-MACHINE INTERFACE AND INTERACTION
	3-AGNT Intelligent and Life-Like Agents
	3-CAMM Context-aware Multimedia
	3-CONT Presentation of Content in Multimedia Sessions
	3-DIAL Dialogue and Interactive Systems
	3-INTF User Interfaces
	3-MODA Multimodal Interaction
	3-QUAL Perceptual Quality and Human Factors
	3-VRAR Virtual Reality and Augmented Reality
	4 MULTIMEDIA CONTENT MANAGEMENT AND DELIVERY
	4-ANSY Content Analysis and Synthesis
	4-AUTH Authoring and Editing
	4-COMO Multimedia Content Modeling
	4-DESC Multimedia Content Descriptors
	4-DLIB Digital Libraries
	4-FEAT Feature Extraction and Representation
	4-KEEP Multimedia Indexing, Searching, Retrieving, Quer ...
	4-KNOW Content Recognition and Understanding
	4-MINI Multimedia Mining
	4-MMDB Multimedia Databases
	4-PERS Personalized Multimedia
	4-SEGM Image and Video Segmentation for Interactive Ser ...
	4-STRY Video Summaries and Storyboards
	5 MULTIMEDIA COMMUNICATION AND NETWORKING
	5-APDM Multimedia Authentication, Content Protection an ...
	5-BEEP Multimedia Traffic Management
	5-HIDE Error Concealment and Information Recovery
	5-QOSV Quality of Service
	5-SEND Transport Protocols
	5-STRM Multimedia Streaming
	5-WRLS Wireless Multimedia Communication
	6 SYSTEM INTEGRATION
	6-MMMR Multimedia Middleware
	6-OPTI System Optimization and Packaging
	6-SYSS Operating System Support for Multimedia
	6-WORK System Performance
	7 APPLICATIONS
	7-AMBI Ambient Intelligence
	7-CONF Videoconferencing and Collaboration Environment
	7-CONS Consumer Electronics and Entertainment
	7-EDUC Education and e-learning
	7-SECR Security
	7-STAN Multimedia Standards
	7-WEBS WWW, Hypermedia and Internet, Internet II

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Wael Badawy
	Choudhury Rahman

