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ABSTRACT

The goal of this communication is to present a weighted likeli-
hood discriminant for minimum error shape classification. Differ-
ent from traditional Maximum Likelihood (ML) methods in which
classification is carried out based on probabilities from indepen-
dent individual class models as is the case for general hidden Markov
model (HMM) methods, our proposed method utilizes informa-
tion from all classes to minimize classification error. Proposed ap-
proach uses a Hidden Markov Model as a curvature feature based
2D shape descriptor. In this contribution we present a General-
ized Probabilistic Descent (GPD) method to weight the curvature
likelihoods to achieve a discriminant function with minimum clas-
sification error. In contrast with other approaches, a weighted like-
lihood discriminant function is introduced. We believe that our
sound theory based implementation reduces classification error by
combining hidden Markov model with generalized probabilistic
descent theory. We show comparative results obtained with our
approach and classic maximum-likelihood calculation for fighter
planes in terms of classification accuracies.

1. INTRODUCTION

Object recognition is a classic problem in image processing, com-
puter vision, and database retrieval. Among others, object recogni-
tion based on shape is widely used. First step towards the design of
a shape classifier is feature extraction. Shapes can be represented
by their contours or regions [1]. Curvature, chain codes, Fourier
descriptors, etc. are contour based descriptors while medial axis
transform, Zernike moments, etc. are region based features. Con-
tour based descriptors are widely used as they preserve the local in-
formation which is important in classification of complex shapes.

Feature extraction is followed by shape matching. In recent
years, dynamic programming (DP) based shape matching is be-
ing increasingly applied [2], [3], [4], [5]. DP approaches are able
to match the shapes part by part rather than point by point, and
are robust to deformation and occlusion. Hidden Markov Models
(HMMs) are also being explored as one of the possible shape mod-
eling and classification frameworks [6], [7], [8], [9], [10]. Apart
from having all the properties of DP based matching, HMM pro-
vides a probabilistic framework for training and classification.

The current HMM approaches apply maximum likelihood (ML)
as their classification criterion. Due to good generalization prop-
erty of HMM, applying ML criterion to similar shapes does not
provide good classification. Also, ML criterion is evaluated us-
ing information from only one class and does not take advantage
of information from the other classes. Generally shapes can be

discriminated using only parts of the boundaries rather than com-
paring whole boundary. ML does not provide such mechanism.

To overcome these shortcomings, we propose a weighted like-
lihood discriminant for shape classification. The weighting scheme
emulates comparison of parts of shape rather than the whole shape.
The weights are estimated by applying Generalized Probabilistic
Descent (GPD) method. Unlike ML criterion, GPD uses informa-
tion from all the classes to estimate the weights. As GPD method
is designed to minimize the classification error, the proposed clas-
sifier gives good classification performance with similar shapes.
This paper is organized as follows: The description phase of the
proposed method is discussed in Section 2, while Section 3 formu-
lates discriminative training with GPD. Experimental results are
presented in Section 4 and the paper ends with the conclusions
and suggestions for further research in Section 5.

2. SHAPE DESCRIPTION WITH HMM

Before proceeding to the detailed topology of HMM, we introduce
the terminology used in the rest of the paper.

1. S, set of states. S = {S1, S2, . . . , SN}, where N is num-
ber of states. State of HMM at instance t is denoted by qt.

2. A, state transition probability distribution. A = {aij}, aij

denotes the probability of changing the state from Si to Sj .

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N. (1)

3. B, observation symbol probability distribution. B = {bj(o)},
bj(o) gives probability of observing the symbol o in state
Sj at instance t.

bj(o) = P [o at t|qt = Sj ], 1 ≤ j ≤ N. (2)

4. π, initial state distribution. π = {πi}, πi gives probability
of HMM being in state Si at instance t = 1.

πi = P [q1 = Si], 1 ≤ i ≤ N. (3)

If Cj is jth shape class where j = 1, 2, . . . , M and M is total
number of classes then for convenience, HMM for Cj can be com-
pactly denoted as,

λj = (A, B, π). (4)

An in depth description about HMM can be found in [11].
For the approach proposed in this paper, the description phase

employs HMM topology proposed by Bicego and Murino [7]. The
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curvature of the shape is used as the descriptor. The shape is fil-
tered with large variance Gaussian filter to reduce the effect of
noise in curvature estimation. The filtered shape is normalized to
a fixed length to simplify comparison and its major eigen-axis is
aligned horizontally to achieve an invariant starting point. Let the
aligned shape be indicated by D = {Dn} and Dn = (xn, yn)
for 1 ≤ n ≤ T , where T is the normalized length of the shape,
and Dn indicates coordinates of nth point of the shape. Finally,
approximate curvature at each point is calculated as the turn angle
at that point. The turn angle θn at point Dn is defined as,

θn = arctan
yn − yn−1

xn − xn−1
− arctan

yn − yn+1

xn − xn+1
(5)

The turn angle θn is is treated as observation On for the HMM
model. Shape class Cj is modeled by a N -state ergodic HMM λN

j

and observation symbol probability distribution, i.e., bj of each
state is modeled as one-dimensional Gaussian distribution. Gaus-
sian Mixture Model (GMM) [12] for N clusters estimated from
unrolled values of curvature is used to initialize observation distri-
bution B. Baum-Welch algorithm is then applied to estimate the
parameters of the HMM λj = (A, B, π). Optimum N for the
HMM is selected using Bayesian Inference Criterion (BIC). In [7]
BIC is applied to GMM to select optimal k, but this gives opti-
mal N for GMM and not for HMM. In proposed approach, BIC
is applied to HMM to ensure proper model selection. For HMM
topology discussed, BIC can be written as,

BIC(λN
j ) = logP (O|λN

k ) − N2 + 2N − 1

2
log(T ). (6)

Model with N states, i.e., λN
j is selected to maximize BIC(λN

j ).
ML training approach described in this section utilizes infor-

mation from only one class to build the models. Though other
approaches, like Maximum Mutual Information (MMI), General-
ized Probabilistic Descent (GPD), which use information of all the
classes, have been proposed for model training. However, classi-
fication performance of properly designed and ML trained HMM
cannot be improved significantly with MMI or GPD training of
HMM. Therefore in our paper, we will stay with optimally de-
signed HMM and make our contributions in designing robust dis-
criminant functions with minimum error. Hence Section 3.

3. DISCRIMINANT FUNCTION FORMULATION AND
TRAINING

In this section, we formulate a minimum error classifier with weighted
likelihood discriminant function. The weights introduced in the
discriminant function are trained with GPD method. A detailed
review of GPD method can be found in [13].

3.1. Discriminant Function Selection

Consider observation sequence to be classified, O = O1O2...OT .
After modeling this sequence with j th class HMM λj = (A, B, π)
and solving optimal path problem, optimum path is given by Q∗ =
q∗1q∗2 ...q∗T in which qt is the state of HMM at instance t. The prob-
ability of observation sequence O given the state sequence Q∗ and
model λj is given by,

P (O|Q∗, λj) = bq∗
1
(O1) · bq∗

2
(O2) . . . bq∗

T
(OT ). (7)

Probability of state sequence Q∗ is given by,

P (Q∗|λj) = πq∗
1
· aq∗

1q∗
2

. . . aq∗
T−1q∗

T
. (8)

Then probability of the both occurring simultaneously is given by,

P (O, Q∗|λj) = P (O|Q∗, λj) · P (Q∗|λj)

= πq∗
1
bq∗

1
(O1) aq∗

1q∗
2
bq∗

2
(O2)

...aq∗
T−1q∗

T
bq∗

T
(OT ). (9)

Let Υ be defined as,

Υt,j =

{
log {πq∗

1
bq∗

1
(O1)}, t = 1;

log {aq∗
t−1qtbq∗

t
(Ot)}, 2 ≤ t ≤ T . (10)

Therefore, Eqn.(9) can be expressed as,

log P (O, Q∗|λj) =

T∑
t=1

Υt,j . (11)

Eq.(11) can be used as discriminant for classification of the obser-
vation sequence O. This function gives equal importance to every
point of the shape in shape classifications. Hence, we introduce a
new discriminant function which weights the curvature likelihood
of shape points according to their importance in classification. The
new discriminant function, gj is given by,

gj =

T∑
t=1

wj(t).Υt,j , (12)

where wj is weighting function for class Cj . wj provides addi-
tional discrimination among the classes. These weights will be
tuned by applying GPD method to minimize the classification er-
ror.

3.2. Weighting Functions

Weighting function at individual observation can be estimated by
applying GPD to current formulation. But due to the large num-
ber of parameters (equal to T ), the convergence of GPD will be
slower and will need large number of observation sequences for
training. As mentioned in Section 1, to discriminate between simi-
lar shapes, comparison between parts of their contour is sufficient.
As a result, shape can be weighted part by part instead of weight-
ing it pointwise. Following this intuitive idea, weighting functions
are chosen to be windows which can adapt their position, spread
and height. Any smooth window function can be selected. Our
approach uses weighting function given in Eqn.(13), which is sum
of S Gaussian shaped windows.

wj(t) =

S∑
i=1

pi,j · e
− (t−µi,j)2

s2
i,j . (13)

Parameter pi,j governs the height, µi,j controls the position, while
si,j determines spread of ith window of jth class. In this case, we
have only 3S parameters to estimate. The discriminant function
can now be written as,

gj =

T∑
t=1

S∑
i=1

pi,j · e
− (t−µi,j)2

s2
i,j · Υt,j . (14)

In the next subsection GPD method is applied to above formu-
lation.



3.3. GPD Algorithm

To complete the formulation of GPD, we introduce misclassifica-
tion measure for observation sequence of jth class as,

dj = −gj +
1

η
log

⎛
⎝ 1

M − 1

∑
k,k �=j

eη.gk

⎞
⎠ (15)

and corresponding cost function as,

lj =
1

1 + e−ξ.dj
(16)

The probabilistic descent re-estimation rule for parameters Λ is
given as,

Λn+1 = Λn − εU∇lj . (17)

For the proposed method, U is chosen to be identity matrix. The
re-estimation rules in iteration n, for ith window parameters of kth

class when Cj is the correct class are given by,

pn+1
i,k = pn

i,k − εp · ∂lj
∂pi,k

, (18)

µn+1
i,k = µn

i,k − εµ · ∂lj
∂µi,k

, (19)

sn+1
i,k = sn

i,k − εs · ∂lj
∂si,k

, (20)

for 1 ≤ i ≤ S, 1 ≤ k ≤ M.
Partial derivatives appearing in Eqns.(18)-(20) can be calcu-

lated by chain rule as,

∂lj
∂pi,k

=
∂lj
∂dj

· ∂dj

∂gk
· ∂gk

∂pi,k
, (21)

∂lj
∂µi,k

=
∂lj
∂dj

· ∂dj

∂gk
· ∂gk

∂µi,k
, (22)

∂lj
∂si,k

=
∂lj
∂dj

· ∂dj

∂gk
· ∂gk

∂si,k
, (23)

where,
∂lj
∂dj

=
ξe−ξ.dj

(1 + e−ξ.dj )2
, (24)

∂dj

∂gk
=

{ −1, j = k;
e

η.gj
∑

k′ �=k e
η.g

k′ , j �= k. (25)

∂gk

∂pi,k
=

T∑
t=1

e
− (t−µi,k)2

s2
i,k Υt,k, (26)

∂gk

∂µi,k
=

T∑
t=1

2pi,k(t − µi,k)e
− (t−µi,k)2

s2
i,k

s2
i,k

Υt,k, (27)

∂gk

∂si,k
=

T∑
t=1

2pi,k(t − µi,k)2e
− (t−µi,k)2

s2
i,k

s3
i,k

Υt,k. (28)

Note that in above formulation Υt,k is treated to be a constant
as the HMM parameters are not affected by the change in Λ.

Table 1. Classification accuracy in %
Class HMM-ML HMM-WtL

Mirage 79.42 99.33
Eurofighter 78.14 98.66
F-14 Closed 79.28 98.66
F-14 Open 52.57 99.33

Harrier 78.28 100.00
F-22 68.71 100.00
F-15 62.57 100.00

4. EXPERIMENTAL RESULTS

The proposed classification scheme was verified with fighter aero-
plane shapes. These fighter aeroplanes include Mirage, Eurofighter,
F-14, Harrier, F-22 and F-15 [14]. Since F-14 has two possible
shapes, one when its wings closed and another when its wings
opened, total number of shape classes are seven. Shape database
was created by taking digital pictures of die-cast replica models
of these aeroplanes. 30 pictures for each class were captured at
640×480 resolution, and were segmented using Spedge and Medge
[15] color image segmentation algorithm. Contours of the seg-
mented planes were used for training and testing of the classifier.
Figure 1 shows the extracted shapes for different classes.

Shapes were filtered with Gaussian filter (standard deviation
= 10) and shape length was normalized to 512 points. The nor-
malized shapes were split randomly into 15 training and 15 testing
samples. For one of the training samples of each class, HMM
was built as explained in Section 2. Optimum number of HMM
states were selected by applying BIC to models with 3 to 10 states.
Sum of 20 Gaussian windows was used for formulation and train-
ing of the discriminant function. The window parameters were
initialized to spread the windows uniformly over the shape (refer
Figure 2(a)). The training vectors were used to train the classifier
with ξ = 1 and η = 10. Once the training was complete, testing
samples were used to determine the classification performance.

Table 1 gives classification results for ML classification (HMM-
ML) and GPD based for weighted likelihood classification (HMM-
WtL). These results were averaged over 20 runs of the classifier
design, each time with different combination of training samples.
Figure 2 shows the initial and estimated weights for various classes
for one of the experiments. Weights for all the classes are initial-
ized as shown in Figure 2(a). After training, the weights modified
to minimize the classification error can be seen in Figure 2(b) and
(c) for classes Mirage and F-14 respectively.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a weighted likelihood discriminant func-
tion for shape classification by the combination of generalized
probabilistic descent theory and hidden Markov model. A training
algorithm based on GPD method to estimate the optimal weights
with minimum classification error was formulated. The perfor-
mance of the proposed shape classification scheme was tested on
shapes of seven fighter planes. The classification accuracy is found
to be 99.43% which is much higher than 71.3% of ML discrimi-
nant.

Though the shapes used for training and testing of the clas-
sifier exhibit some deformation (due to varying view points) and
noise (due to automatic segmentation), a comprehensive analysis
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Fig. 1. Aeroplane shape classes: (a) Mirage, (b) Eurofighter, (c) F-14 wings closed, (d) F-14 wings opened, (e) Harrier, (f) F-22, (g) F-15.
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Fig. 2. Weights for various classes: (a) Initial weights for all classes, (b) Weights for Mirage after GPD, (c) Weights for F-14 open after
GPD.

in presence of noise, occlusion and deformations needs to be evalu-
ated by designing appropriate experiments. Currently, the number
of weighting windows is selected manually and their parameters
are initialized uniformly. A better initialization strategy like ini-
tializing them at curvature extremes can be employed.
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