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ABSTRACT 
In this paper, an HMM-embedded unsupervised learning 
approach is proposed to detect the music events by grouping the 
similar segments of the music signal. This approach can cluster 
the segments based on their similarity of the spectral as well as 
the temporal structures. This is not easily done for clustering 
with the traditional similarity measures. Together with a 
Bayesian information criterion, the proposed approach can 
obtain a suitable event set to regularize the complexity of the 
model structure. The natural product of the approach is a set of 
music events modeled by the HMMs. Our experimental analyses 
show that the detected musical events have more perceptual 
meaning and are more consistent than the KL-distance based 
clustering. The learned events match better with our experience 
in spectrogram reading. Its capacity is further evaluated on a 
task of music identification. The identification error rate is 
reduced to 1.57%, and 56.3% relative error rate reduction is 
observed comparing with the system trained using the 
KL-distance clustering method. 

1. INTRODUCTION 
Music is highly structured. However, this structure is not readily 
available for musical signal. Automatically recovering the 
structure and efficiently representing it is important for music 
information retrieval, indexing and organization of digital audio 
library, and music summarization [1, 6, 12]. There are rich 
structures in music. But here we are interesting in one of its 
temporal structures, i.e. repetitive pattern (or event). There are 
many works for automatically discovering the repeating patterns 
from acoustical signal [6, 8, 11, 12]. 

From the experience in spectrogram reading and speech 
analysis, these outstanding events (or landmarks) often occur at 
places with significant changes in spectral and temporal 
characteristics. It is therefore possible to find the musical 
structures using the data-driven approaches. 

To detect the repeating patterns, the audio sequence is 
segmented and grouped together based on their similarities of 
the features. In [3, 6, 12], the feature sequence is mapped into its 
similarity representation by calculating the distance between any 
pair of frames, and then the segment boundary position is 
located using the heuristic methods. [2, 8] apply dynamic 
programming (DP) for segmentation with the pre-defined costs 
of insertion and deletion. These methods need to compute the 
similarity of all frame pairs and it is not efficient for real-time 
analysis of music excerpts that could last for a few minutes. To 
address this problem, the segment- based (fix-length e.g. [3] or 
variable-length based on the beat detection e.g. [11]) methods 
are applied. Then the unsupervised clustering methods, such as 
heuristic clustering [12] or k-means clustering [3], are used to 
merge similar segments to obtain a set of events. 

In the proposed methods, the temporal structure of an 
excerpt of music is often ignored in the clustering. For example, 
in [2, 3, 8, 12], since the similarity is calculated from a pair of 
frames, the frame dependent information is not considered. For 
the segment-based methods [3, 11, 12], the similarity of a pair of 

segments is calculated from a global statistics of the segment 
and its temporal feature of a segment is excluded from 
calculating the similarity. 

Considering the importance of the temporal information of 
the musical signal, it should be included in the similarity 
measure. In this paper, a hidden Markov model (HMM) 
embedded unsupervised learning approach is proposed to group 
the similar music segments together by measuring the similarity 
of their spectral and temporal structure. This learning algorithm 
is a modified K-means clustering method, where the similarity 
between the variable-length segments is measured by the HMM, 
not the Euclidean distance or KL-distance. To get a suitable set 
of clusters, a Bayesian information criterion (BIC) is used to 
regularize the complexity of the model structure. This learning 
algorithm can automatically generate a set of music event, each 
with a HMM for describing its temporal structure of the 
corresponding segments. 

We will experimentally analyze its property of the proposed 
unsupervised learning approach for detecting music events and 
its effectiveness and efficiency for indexing music on a task of 
music identification. Since the learning algorithm is to group the 
music segments, we will first introduce the music segmentation 
algorithm in the next section. 

2. MUSIC SEGMENTATION  
Music segmentation is to partition the music signal into a 
sequence of segments. The similar segments are grouped into a 
cluster or event. Here the term, event, is used to refer to the 
cluster with the similar segments. In [1], it is defined by a set of 
coherent characteristics with some striking properties.  

The beat and onset is the low-level perception feature that 
human perceives as well as it can be automatically detected from 
the signal. The onset position indicates a beginning of the next 
segment. So the onset-based segmentation should be more 
coherent and robust [10]. Here we will apply the maximum a 
posteriori (MAP) based adaptive learning approach for the beat 
and onset detection [10].  

2.1 MAP-based Beat Detection 
The beat of a piece of music is a sequence of equally spaced 
phenomenal impulses, which defines a tempo for the music [10]. 
Given a piece of music, a feature sequence can be extracted. 
Let ( )Tt oooX v

L
v

L
v ,,,,1=  denote a sequence of 

D-dimensional feature vectors, and T be its length. A temporal 
window (or block) is applied to analyze the beat. Assume that its 
size is L, and there are M blocks in the feature sequence, then X 
can be re-denoted as ( )Mt OOOX ,,,,1 LL= , where 

( )t
L

tt
t oooO ,,, 21 L= . If only the tempos in a range of [ ]ba ττ ,  

are considered, then tempo induction can be formulated as, 
( )XP ττ

τ sequence  tempopossible All

* maxarg
∈

=     (1) 

where ( ) ],[,,,,,1 batMt τττττττ ∈= LL is any possible 

tempo sequence, and ( )***
1

* ,,,, Mt ττττ LL=  the optimal one. 
To simplify the optimization in Eq. (1), it is assumed that 
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tτ is estimated only from the block tO  but with a conditional 

probability, i.e. ( )
1−ttP ττ , which is derived from its previous 

block. Then, Eq. (1) can be simplified as 

[ ]
( ) ( )( ) ( )( )1

,

* log,,log1maxarg −
∈

⋅+Σ⋅−= tt
t

t
t

tt PAOP
bat

ττητητ
τττ

,  

[ ]Mt ,1∈ . (2) 
Here η  is a constant weight. The first term in the right hand is 
the likelihood of the sub-sequence tO . And the second is our 
model about the tempo for the block, tO , given the known 
previous tempo. 

The first term can be estimated from the observed data if a 
linear regression model is assumed. Given a block of 
sub-sequence evidence, tO , the linear model is defined as, 

tt
k

tt
k t

oo Θ+⋅Α= −τ
vv

          (3) 

where ( )Tt
D

ttt θθθ ,,, 21 L=Θ is a prediction error vector. In this 

paper, tA  is a diagonal transformation matrix, and tΘ  is 
assumed to be a multivariate Gaussian distribution with a zero 
mean and a diagonal covariance, tΣ .  

So the probability distribution of t
kov  is also a Gaussian 

distribution (mean equal to t
k

t
t

oA τ−⋅ v and covariance, tΣ ), i.e.,  

( ) ( )tt
k

tt
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k t
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Then the likelihood of the evidence, tO , in Eq. (2) can be derived 
from Eq. (4) as, 

( )( ) ( )( )∑ Σ=Σ
k

t
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t
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Because the likelihood defined in Eq. (5) is a function of a 
tempo, the second term in Eq.(2) can be approximated by a 
logistic function as, 
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whereλ is a scale coefficient and β is a bias. The normalization 
is performed to make ( )1 1

t
t tP

τ
τ τ − =∑ .  

With the above definitions, the optimal tempo, 
( )***

1
* ,,,, Mt ττττ LL= , can be estimated using the EM 

algorithm based on the MAP criterion. 

2.2 Beat Onset Decision 
After the beat period is determined, the onset can be determined. 
Assume that the detected beat period is *

tτ for a 

sub-sequence ( )t
L

tt
t oooO ,,, 21 L= , and its corresponding energy 

envelope is ( )t
L

tt
t enenenEn ,,, 21 L= , the sub-sequence is equally 

divided by its beat period. Let 
( ) ( ) ( ) ( )( )t
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The onset is defined as the time with the maximal energy. To 
extract the onset in each beat period, the averaging onset, tno , 
is first calculated from the averaging energy envelope as, 
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With the assumption that the onset in each beat period will 

have a bias (here maximum bias is set to 10% of the beat period) 
centered at the average onset, the real onset can be determined 
as, 
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3. HMM-EMBEDDED UNSUPERVISED 
LEARNING APPROACH 

After a musical signal is segmented with the beat onset, its 
beat-level structure is obtained. This segmentation has some 
perceptual meaning, especially for percussion music. Due to the 
highly structured nature of music, many repetitive segments are 
often observed. To group these similar segments into some 
meaningful musical events without using any knowledge, the 
unsupervised clustering with a chosen similarity metric is 
applied. 

Assume that the detected onset positions divide the feature 
sequence, ( )Tt oooX v

L
v

L
v ,,,,1= , into N segments, which is 

denoted by ( )Ni sssS ,,,,1 LL= . is is the i -th segment 
with the length Ti, which is a subsequence having the feature 
sequence ( )i

T
i

i i
ooX v

L
v ,,

1
= . Our task is to group these N 

variable-length segments into the musical event clusters based 
on their observation and the chosen similarity metric. Since the 
temporal variation of the music segment characterizes some 
specific properties of a piece of music (e.g. rhythm) and it 
contains rich information that is not represented by the 
frame-level feature, it is interesting to cluster the segments using 
a metric calculated from the spectral as well as the temporal 
features. The popular metrics (e.g. Euclidean or KL distance) 
will not do it well. 

Although the dynamic time warping (DTW) can handle the 
similarity measure between the variable-length sequences, the 
HMM-based measure is more preferred since it can model and 
recover the hidden structures for the music segment [4, 9]. [7] 
studied the sequence clustering with the HMM. Here we will 
study the HMM-embedded K-means clustering approach for 
detecting music event.  

3.1 HMM-embedded K-means Clustering 
Given N music segments, ( )Ni sssS ,,,,1 LL= , each with a 
sequential observation having the variable frames, the K-means 
clustering can be used to get C clusters or music events [9] by 
minimizing an objective function defined as, 

( ) ( )∑ =
Λ=Λ

N

i jij
sdSL

1
,min ,    (9) 

where ( )CΛΛ=Λ ,,1 L  is the parameter set for C clusters, and 

( )jisd Λ, measures the similarity between the i-th segment, si, 

and j-th cluster modeled by
jΛ . Since the length of the segments 

is variable and we would like to measure the similarity of the 
segments based on their statistical spectral distribution as well as 
the temporal structure. HMM is a good choice for this task. Its 
hidden states and state sequence will model the unobserved 
temporal structure of the music segment while the statistical 
spectral distribution of a segment is characterized by the state 
probabilistic distribution. In this case, the parameter set 
for

jΛ will include the transition matrix, Aj, among the states, the 

means,
jµ , and the variances, 

jv , if the Gaussian distribution is 

used for the state description. 
Since the segmentation is based on the beat onset and a 

segment describes the music changing property in an interval 



between two continuous onsets, it is reasonable to use a HMM 
with the left-to-right state transition. So the similarity 
function, ( )⋅d , can be defined as the log-likelihood function 
derived from HMM as, 

( ) ( )( )jiji sPsd Λ−=Λ log, ,     (10) 

where ( )jisP Λ  is the probability generated from the j-th cluster 

or HMM for the i-th segment. 
To estimate the parameter set for C HMMs, i.e. 

( ){ }NjvA jjjj ≤≤=Λ=Λ 1,,,µ , the EM algorithm can be used. 

The HMM-embedded K-means clustering algorithm is shown in 
the following: 

1. Initialization: 
� Assign N segments into C clusters randomly. 
� Estimate the initial parameters for each cluster (or HMM) 

based on the assigned segments. 
2. Iterative estimation 
� Calculate the similarity defined in Eq. (10) between a 

given segment and any HMM using the Viterbi 
algorithm. 
� According to the above similarity, re-assign the segment 

into one of C clusters with the minimal similarity. 
� Re-estimate the parameters for C clusters based on the 

re-assignments using the segmental K-means algorithm 
for training HMM (Baum-Welsh algorithm can also be 
used. But computation cost is high) [4]. 

3. Terminate if the stop criterion defined in the following is 
reached. Otherwise, goto (2). 
� The preset maximal iteration cycle is reached. Or, 
� The relative improvement of the overall similarity is 

smaller than a predefined threshold. 
With the above algorithm, we can cluster N segments or 

sequence with the variable length into C clusters based on the 
sequence similarity measured by the HMM. The statistical 
property of all segments in each cluster is characterized by a 
HMM, whose parameters are trained in the clustering procedure 
at the same time. The states of HMM will describe the hidden 
structure contained in an event. For example, if the correct beat 
and onset could be obtained for a piano music, the first state 
would describe the acoustical property for the attack while the 
last would describe for the decay. This is contrast to the 
K-means clustering using the Euclidean or KL distance as a 
measure, where only the overall statistics for a segment can be 
described.  

3.2 Model Selection 
In the above we have introduced the HMM-embedded clustering 
approach for the known cluster number. However, it is not true 
for many real-world applications. The fixed-size clusters will not 
work well for the music event detection and representation. 

Given any piece of music, it is difficult to know about how 
many musical events are sufficient to describe it. Even for the 
experts, the definition is sometimes confused because of the 
hieratical organization of the music structure. However, 
significant differences of the musical structure are often 
observed. Some music excerpts are simple, which maybe played 
by a single instrument with the repeats of a few similar events, 
while others are complex where many instruments play 
simultaneously with the diverse chords and rhythms. This 
implies that the number of the musical events should partially 
depend on the complexity of music. For music with a simple 
structure, only a few clusters may be sufficient, while more 
clusters are needed for modeling music with the complex 
structure. So it is necessary to automatically determine the event 
number.  

Many model selection criterions are proposed [9]. In this 
paper, we adopt a Bayesian information criterion (BIC) to 
choose an optimal model from a set of models, each of which 
has a different event number and is trained using the 
HMM-embedded K-means approach discussed in the above. To 
generate the set of models with the variable cluster number, the 
top-down clustering procedure is applied. 

 For any piece of music, we assume that at least minC 
clusters are needed to represent it and the maximal number of 
the clusters is set to maxC. The set of models, each 
corresponding to a cluster set, is [ ]{ }CCnn max,min∈Λ=Φ . A 

candidate model set with n clusters is denoted by 
( ) [ ]{ }njvA n

j
n
j

n
j

n
j

n ,1,, ∈=Λ=Λ µ , where n
jΛ is the parameter set (i.e. 

transition matrix, means and variances) for the j-th cluster (or 
HMM) among n clusters. The set of model is trained using the 
top-down procedure together with the HMM-embedded 
K-means clustering. Then the BIC criterion is used to select the 
optimal model set, *nΛ , 

( )nBIC
n

n

Φ∈Λ
=Λ min*        (11) 

where BIC(n) is defined as, 

( ) ( ) )(
2
1 nQSLnBIC n ⋅+Λ= κ ,     (12) 

The first term in the right hand side in Eq. (12) is the overall 
similarity between N segments and the model, nΛ . It can be 
calculated using Eqs. (9-10). κ is a penalty weight. And Q(n) is 
a measure of the complexity of a model set. It is defined as, 

( ) ( ) ( )NvAnQ n
j

n
j

n
j log⋅++= µ      (13) 

For a HMM with R states, left-to-right state transition without 
any skip, and single Gaussian with the diagonal covariance for 
each state, ( ) ( ) ( )NDRRnQ log22 ⋅⋅+=  (D: feature dimension). 

4. EXPERIMENTAL ANALYSIS 
To analyze our proposed learning approach, a database with 807 
pieces of music (average length is ~240 seconds), is first built. 
The diverse genres (e.g. western popular music, Chinese 
classical music, songs by various singers, etc) are covered. All 
pieces of music are converted to the standard wav format with a 
16-bit resolution and 8-kHz sampling rate. Then the 
36-dimensional feature vector is extracted, including 
12-dimensional MFCC plus their first- and second –order 
difference [4]. 

In the beat and onset detection algorithm, η  is set to 0.5, 
the interested tempo is between 60bpm and 250bpm, and the 
length of the block to analyze the tempo is 5 seconds. The 
desired maximal number of the clusters is set equal to 20 in the 
music event detection. The penalty weight in Eq. (12) is equal to 
1.0e-4. Each HMM has 3 states with the left-to-right state 
transition and without any skip and single Gaussian is used for 
describing the state distribution.  

4.1 Musical Event Detection Analysis 
Now we will compare the HMM-embedded event detection 
approach with the KL-distance based method in [11], and then 
analyze its properties. Two excerpts of music are chosen from 
the dataset for illustration. One (M1) is a Chinese classical piece 
played by the flute and another (M2) is a piano music. The 
number of the event clusters is set equal to 10 for comparison. 
The onset position and the event labels for the segments are 
superimposed in its spectrogram, and are shown in Figure 1 and 
2, respectively. Only a 5-sec piece is selected for display. The 
total length for each is ~240-sec. The labels (“A”,”B”,…,) are 



only used to distinguish the different event clusters for each 
piece of music and there is not any other meaning. 

These figures clearly show the effects on the clustering 
when the temporal structure and variation is embedded into the 
similarity measure. For M1, the first two segments (labeled as 
“C” and “H” in M1-a) have different notes as well as the 
temporal variation. The proposed HMM-embedded method can 
detect the difference while the KL-distance based method [11] 
assigns them into one same cluster (labeled as “B” in M1-b). For 
M2, the first two segments (both labeled as “B” in M2-a) have 
the same notes and very similar temporal structure. The 
proposed method detects it well while the KL-based method 
cannot.  

The above analyses show that the HMM-embedded 
unsupervised clustering approach gives more reasonable results. 
The detected events are more consistent with our perception and 
experience of the spectral reading. 

 

 
(M1-a) 
HMM- 

embedded

 

 
(M1-b) 

KL 

Figure 1 Musical events grouping (Chinese music, Vertical 
line: onset position, “A” ,“B”, …,: events) 

  

 
(M2-a) 
HMM- 

embedded

  

 
(M2-b) 

KL 

Figure 2 Musical events grouping (Piano music. Vertical 
line: onset position, “A” ,“B”, …,: event) 

4.2 Application for Music Identification 
Now we will use the learned events for modeling the piece of 
music and apply them for the task of music identification. A test 
dataset with 2,421 query excerpts is built by randomly selecting 
three 20-second excerpts from 807 pieces of music in the 
database. The HMM-embedded method generates total 7,140 
events for 807 pieces of music. So there are 7,140*3 single 
Gaussians. The baseline system is trained using the KL-distance 

as a similarity measure [11]. To make two systems have the 
approximate size of the model parameters, 27 music events for 
each piece of music are learned using the method introduced in 
[11]. Table 1 lists the error rate for the identification. Comparing 
with the baseline system, the system using the HMM-embedded 
clustering approach reduces the identification error rate from 
3.59% to 1.57%. A relative error reduction, 56.3%, is seen.  

Table 1 Comparison of the identification error rates 

 KL-based HMM-based Rel (%) 
Err (%) 3.59 1.57 56.3 

5. CONCLUSION 
We propose a HMM-embedded unsupervised learning approach 
to detect the music events by grouping the similar segments of 
the music signal. This approach can cluster the segments based 
on the similarity of the spectral as well as the temporal structures. 
This is not easily done for clustering with the traditional 
similarity measures such as the Euclidean or KL distances. 
Together with a Bayesian information criterion, a suitable event 
set is obtained to regularize the complexity of the model 
structure. The natural product of the proposed approach is a set 
of music events modeled by the HMMs. Our experimental 
analyses show that the detected musical events have more 
perceptual meaning and are more consistent than the 
KL-distance based clustering. The learned events match better 
with our experience in spectrogram reading. Its capacity is 
further evaluated on a task of music identification. The 
identification error rate is reduced to 1.57% and a relative error 
rate reduction, 56.3%, is observed comparing with the system 
trained using the KL-distance clustering. In the future, more 
applications will be studied such as music information retrieval, 
indexing and summarization.  
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