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Abstract

We present a method to track and estimate the motion of a
3D object with a monocular image sequence. The problem
is based on the state equations and is solved by a sequen-
tial Monte Carlo Method. The method uses a CAD model of
the object whose projection can be compared directly with
the pixels of the image. The advantage is to obtain a better
accuracy and a direct estimation of the pose and motion in
the 3D world.

However, this algorithm needs a massive load in computing.
For real-time use, we develop in this paper a distributed al-
gorithm that dispatches the processing between the Central
Processing Unit (CPU) and the Graphics Processing Unit
(GPU) of a consumer-market computer. Some experimen-
tal results show that it is possible to obtain an accurate 3D
tracking of the object with low computing costs.

1. Introduction

The aim of this paper is to describe the implementation of
a 3D object tracking and motion estimation algorithm from
an intensity image sequence. This problem has been widely
studied and has led to many methods which can be classi-
fied in two categories. In the feature-based methods [3], 3D
motion is determined by tracking of 2D primitives (points,
lines, regions, ...) in the image sequence. The model-based
approaches are more robust because they use 3D object in-
formations [2, 4]. Moreover, the 3D motion is described by
physics equations and is easier to model than the projected
2D motion obtained from image sequence analysis. Finally,
the knowledge of object geometry allows an easy manage-
ment of auto-occlusions.

The proposed algorithm directly uses the grey level pix-
els without any preprocessing which disrupts and weakens
the estimation. The problem lies in a state modelling [5]:
the dynamics equation describes the evolution of the object
and the measurement equation links the grey level pixels
with the state vector (which is composed of the pose and
motion parameters of the object). This modelling shows ob-
viously strong non-linearities. We use the sequential Monte
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Carlo methods [6] (known as particle filtering, bootstrap fil-
tering, condensation algorithm, ...) to solve this non-linear
estimation problem. This kind of methods can deal with
non-linear models and non-Gaussian statistics. They are
only limited by the finite number of particles.

A common problem of sequential Monte Carlo Meth-
ods is their significant overload in terms of computing cost,
though the computer evolution makes them more and more
affordable. One proposes here a new implementation of the
algorithm on a standard PC architecture which is composed
by a central processing unit (CPU) and a graphics process-
ing unit (GPU). Compared to previous works [2, 1], this
new approach needs a full restatement of the particle-based
solution, which leads to significant speed-ups and better es-
timation accuracies. Modern GPUs are able of complex 3D
rendering and more general computer vision applications
[7, 8]. They are theoretically more powerful than CPU, with
a high price/performance ratio. This architecture allows to
fully use the processors and exploits a form of parallelism
between CPU and GPU. The global performance of the ar-
chitecture is thus increased, or at least allows to free up CPU
resources which can be used for other tasks.

The document is structured as follows: the problem is
first modelled with the state formalism. The particle filter-
ing is then detailled and the next paragraph describes the
proposed architecture for the implementation and several
improvements. The last part allows to evaluate the per-
formances of the algorithm/architecture with two image se-
quences.

2 3D state modelling

State modelling : We propose a state modelling of this 3D
pose and motion estimation problem [1]. The equations de-
scribe the 3D evolution of the object (dynamics equation)
and partial observation (measurement equation) by the sen-
SOT.

The object is characterized by pose parameters defined in
its local reference frame (Fig. 1) and by motion parameters.
The object is described by a textured mesh obtained by a



rendering software for instance.
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Figure 1: Pose of the object

Dynamics equation : the object evolves in a rigid transla-
tion/rotation motion with the following equation:

Xe=FXy 1+ W, ()

F'is the system’s flow which characterizes the evolution
of the object at each time instant:

o ( Isxe  Ioxe > 3)

Osxe Ioxs

W4 is a dynamics noise with zero mean and (); covariance
matrix.

Measurement equation : the object is viewed by a CCD
camera which delivers an IV, x N, image sequence of the
scene:

Zy = H(Xy) +V; “4)

H is the function which links the object model (appear-
ance and position) with the pixels of intensity image, Z; is
the intensity image provides by the sensor at time ¢ and V;
are independent additive Gaussian noises with ;; mean and
R; covariance matrix.

To sum up, the state modelling can be written as follows:

X, = FX, 1+ W,
Z, =

H(X;)+V; ©)
3 Particle solution of this problem

The measurement equation shows obviously that the state
model is strongly non-linear and needs suitable methods to
solve this problem. The proposed solution relies on the par-
ticle filtering. The probability density function, solution of

the filtering problem, is approximated by N random parti-
cles whose supports X, and weights p! are conditioned by
the measurement Z;. The particle solution can be split in
five parts:

1. Initialisation : each particle X} is initialized with the
a priori law P(Xy). The weights pj are set to 1/N ;

2. Evolution : the particles evolve in state space accord-
ing to the dynamics equation (Eq. 2), via N randoms
trials W, with law P(W};) (zero mean, ); covariance
matrix) ;

3. Weighting : this step adjusts the weights of the
particles with the new available measurement and the
object projection for the particle ¢ :

P(Zy| X3)
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4. Estimation : the filter delivers the estimation as the
weighted sum of the particles:

N
Xy =Y _piX} (7
=1

5. Redistribution : it is known that the basic particle pro-
cedure does not prevent some of the weights to be low
compared to those of others particles and therefore to
poorly contribute to the performance of the estimator.
The redistribution step consists to reallocate particles
with high probability.

4. Hardware Implementation
4.1. Presentation

The architecture used to implement the algorithm is a
consumer-market PC. It is composed of three functional
sets (Fig. 2 left): a central processing unit (CPU) which
organizes the several steps of the particle algorithm and a
graphics processing unit which performs the particles im-
age reconstruction. CPU and GPU communication is made
through a bidirectionnal data bus. The GPU takes care of
the rendering tasks obviously better than the CPU, while
the CPU can concentrate himself on the particle filtering
tasks. As a result, the parallelism between CPU and GPU
increases the overall performance of the algorithm.

4.2. Particle weighting

The weighting procedure uses the measurement at time ¢
and the partial reconstructed measurement for the particle.
This reconstruction is made by the GPU which uses the ob-
ject parameters and the object model to project the 3D ob-
ject model in four steps :
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Figure 2: Left : Processing architecture. Right : Weighting procedure synopsis.

. Level of detail : the object model is first simplified
according to the camera/object distance. This step can
improve the speed of the transformation step, without
any really lost of precision ;

. Transformation : the object geometry is transformed
from his local reference frame to the camera reference
frame. Then it is projected in the image plane with the
sensors parameters ;

. Rasterization : the object is rendered by discretiza-
tion of each triangle which composes the mesh. The
textures and colors are applied here.

. Frame Buffer transfer: next, the image result is
transfered to system memory for the likelihood com-
putation.

In spite of the joint use of CPU and GPU, the great num-
ber of particles and the size of images do not allow to track
the object in low computational time. Two improvements
(schematically presented on Fig.2 : right) have been studied
in order to limit this drawback.

The first improvement eliminates the redundancy in com-
putation, which happens in the weighting stage: some ar-
eas of the image do not give informations in the likelihood
computation because they are identical for every particle.
Consequently, one can restrict the processing to a region of
interest (ROI). The determination of this ROI is made in two
steps. First, the set of particles’ object models is rendered

in the same image, which is then transfered in the system
memory. Next, the bounding-box of the ROI is determined
by the CPU and is used to restrict the amount of information
to be transfered from the GPU. The images used to render
the objects are cropped to the ROI and their new dimensions
allow to restrict the data to be transfered from the GPU.

The second improvement restricts the GPU-to-CPU
transfers and speeds up the processing. The images pro-
vided by the sensor and the reconstructed images for each
particles are 8 bits grey levels (one channel per pixel). The
most easier approach consists of working with luminance
images in the GPU, but the drawback is that the modern
GPUs are optimized for RGBA color images (four chan-
nels per pixel). With a RGBA image, the four channels in
one pixel can be processed using SIMD instructions which
means that the instructions can be applied simultaneously
on the four data. To fully exploit this functionnality, we
combine 4 reconstructed images into one RGBA color im-
age returned by the GPU. To this end, the particle-based re-
constructions of the object are projected sequentially while
only allowing the rendering on a single component of the
image (R for particle i, G for particle i+1, ...). The GPU
has a channel mask which allows to prevent writting op-
erations in one or more channels. Then, the CPU get the
corresponding RGBA image and computes the likelihood
for 4 particles simultaneously.



5. Results

The algorithm is applied on synthetic image sequence and
real image sequence to evaluate the performances. In the
first sequence, a cube evolves in a rigid translation/rotation
motion. In the second sequence, a polyhedral object evolves
in a rotation motion (approximately 8 degree per image).
The test hardware is a PC composed of a P4 type processor
at 3GHz (FSB800, Bus AGP x8). The graphics part is per-
formed by a 6800GT nVidia card. The particle filter uses
here 1000 particles.

Fig. 3 presents the tracking results in a synthetic and a
real case. The estimation is overprinted in wireframe. Af-
ter a few iterations, it can be noticed that the filter deliv-
ers an estimation which efficiently tracks the cube and the
polyhedral object. Despite the use of raw data provided by
the graphics card, the mean running times for one iteration
are much lower than one second (0.15s / 0.27s depending
on the size of the ROI) which proves the efficiency of the
architecture for this kind of problem. Indeed, the particle
methods are known to be very expensive in terms of running
time. To our best knowledge, few works exhibit real-time
performances, especially by using realistic object models
(described by several thousands of polygons).

6. Conclusion

We presented a model-based algorithm to track 3D objects.
The strength of this approach lies in a direct estimation of
the 3D parameters in the real world using raw images. The
computational load of the method is here distributed be-
tween the central processing unit and the graphics process-
ing unit of a standard PC. The proposed distributed algo-
rithm allows a real time tracking of complex objects using
a sequential Monte Carlo method.
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Figure 3: Tracking results at several time instants
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