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ABSTRACT 
 
Virtual avatars in many applications are constructed 
manually or by a single speech-driven model which needs 
a lot of training data and long training time. It’s an 
essential problem to build up a user-dependent model 
more efficiently. In this paper, a new adaptation method, 
called the partial linear regression (PLR), is proposed and 
adopted in an audio-driven talking head application. This 
method allows users to adapt the partial parameters from 
the available adaptive data while keeping the others 
unchanged. In our experiments, the PLR algorithm can 
retrench the hours of time spent on retraining a new user-
dependent model, and adjust the user-independent model 
to a more personalized one. The animated results with 
adapted models were 36% closer to the user-dependent 
model than using the pre-trained user-independent model. 
 

1. INTRODUCTION 
 

With the rapid development of multimedia technology, 
the virtual avatar has been widely used in many 
applications, like cartoon or computer game characters and 
news announcers. Nevertheless, huge amount of 
manpower is needed in adjusting the avatar frame by 
frame to achieve a vivid and precise synthetic facial 
animation. A real-time speech-driven synthetic talking 
head, or so-called audio-to-visual synthesis system, is 
expected, which can provide an effective interface for 
many applications. In an audio-to-visual synthesis system, 
it needs a model established for describing the 
correspondence between the acoustic parameters and the 
mouth-shape parameters. In other words, the 
corresponding visual information is to be estimated for 
some given acoustic parameters, such as the phonemes, the 
cepstral coefficients or the line spectrum pairs.  

A number of algorithms have been proposed for the 
task of mapping between acoustic parameters and visual 
parameters. The conversion problem is treated as one of 
finding the best approximation from given sets of training 
data. These approaches were briefly discussed by Chen 
and Rao [1], including vector quantization, Hidden 
Markov Models (HMM), and neural networks. However, 

the speech-driven systems were generally made to be user-
independent for satisfactory average performance, which 
means a decrease in accuracy rate for a specific user. To 
maintain a high performance, a time-consuming retraining 
procedure for a new user-dependent model is unavoidable 
since there is no reported adaptation method for this 
application in the literature. 

On the other hand, speaker adaptation methods have 
been extensively studied in the speech recognition field. 
There are two main categories in the adaptation methods. 
The first is the eigenvector-based speaker adaptation 
method [2]. The other is based on the acoustic model, and 
is simpler than the former since the normalization for the 
training data is not necessary. A user-independent model is 
statistically established with the training data of several 
speakers in the beginning, and the parameters are then 
modified with certain adaptation data of a new user. The 
adaptation schemes include Maximum a Posteriori (MAP) 
Estimation [3], Maximum Likelihood Linear Regression 
(MLLR) [4], VFS [5], and nonlinear neural network [6]. In 
these methods, they tried to adjust the model parameters to 
maximize the occurrence probability of the new 
observation data. Among them, the MLLR method is more 
widely adopted for its simplicity and effectiveness when 
the set of adaptation data is small.  

In this study, we try to integrate the MLLR adaptation 
approach with the audio-to-visual conversion of Gaussian 
Mixture Model (GMM). However, to obtain the precise 
visual adaptation information of a new user is not feasible 
in a usual environment, since some markers, infrared 
cameras, and post-processing are needed. This makes the 
MLLR not fully adequate to adapt only the audio 
parameters while keeping the visual part the same. In other 
words, we require another appropriate adaptation, by 
means of which the new model will map the new audio 
parameters of a new user to the original visual movement.  

A new adaptation method, called partial linear 
regression (PLR), is proposed in this paper. It is derived 
from the MLLR and put into practice in an audio-driven 
talking head system (Fig. 1). Rather than a time consuming 
retraining procedure, a simple adaptation with a small 
amount of additional data will be sufficient to adjust the 
model so as to be more applicable to the new user. 
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The rest of the paper is organized as follows. In 
Section II, we describe the audio-driven talking head 
system which uses the Gaussian mixture model to 
represent the relationship between audio and video feature 
vectors. Section III provides a detailed description of the 
proposed PLR model adaptation algorithm. Some 
experimental results are described in Section IV, and 
section V concludes the paper. 
 

2. AUDIO-DRIVEN TALKING HEAD SYSTEM  
 
2.1. System Architecture  

 
Figure 1. (a) Flowchart of training phase; (b) Flowchart of 
testing and updating phases  

 
The flowcharts of the training and the testing phases of 

our audio-driven talking head system are described in 
figure 1. In the audio signal processing, we extract 10th-
order line spectrum pair (LSP) coefficients from every 
audio frame of 240 samples. In the training phase, the 
frame rates of the audio and video signal generally differ 
from each other. After labeling the beginning and the 
ending points of every training word manually, we use 
linear interpolation to align the audio and visual feature 
vectors and cascade them into a single vector. The 
Gaussian mixture model, derived by the EM algorithm, is 
then adopted to represent the distribution of the audio-
visual vector. 

In the testing phase (Fig 1(b)), to obtain the optimal 
estimator of the visual vector from an audio vector is 
actually to calculate the conditional expectation using the 
trained GMM. However, voice features of the current user 
may be distinct from others’. An adaptation would be 
necessary to modify the pre-trained GMM more suitable to 
the new user. 

 
2.2. Gaussian Mixture Model 

The density function of Gaussian mixture model is 
defined as  
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2.3. Audio-to-Visual Conversion 

For two vectors v, a modeled as jointly Gaussian, the 
optimal estimator of v given the value of a in mean-
squared error sense is actually the conditional expectation 
of v given a. For a Gaussian mixture model, similarly, the 
marginal probability function of a can be obtained from 
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which is the optimal estimator for GMM in mean-squared 
sense 
 

3. PARTIAL LINEAR REGRESSION 
 

In MLLR of mean adaptation [4], the purpose is to 
maximize the likelihood of the new observation data by 
linear-regressively adjusting the mean vectors of every  

Gaussian kernel, i.e. 'i
i

1 
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 
µ W

µ
 .  

The MLLR method performs well even when the 
amount of the adaptation data is insufficient. It modifies 
every single value in all the mean vectors of the Gaussian 
kernels. In other words, if we can gather both audio and 
visual adaptation data at the same time, the MLLR will be 
qualified for the task of model adaptation in the audio-to-
visual conversion. Unfortunately, to obtain the precise 
visual adaptation information, the 3-dimensional 
movements of specific control points, of a new user is not 
feasible in an ordinary environment, since some markers, 
infrared cameras, and post-processing are needed. Only 
audio adaptation data is available. This makes the MLLR 
not conformable to our demand. In our application, we 
may merely want to adapt audio mean vectors, µa,i, and 
keep the correspondence between audio and visual vectors 



unchanged. Another appropriate adaptation is 
indispensable, by means of which the new model will map 
the audio parameters of a new user to the original visual 
movement. MLLR is then modified and integrated with the 
concept of conditional expectation used in audio-to-visual 
conversion part, mentioned in Section 2.3.  

In Section 2.3, with the conditional expectation, the 
corresponding visual information, E[v|a], can be estimated 
for some given acoustic parameters in the audio-to-visual 
conversion. Oppositely, we can evaluate the audio 
information from its corresponding visual parameters, 
E[a|v], by the same token. The concept of our proposed 
PLR is, by adjusting the audio mean vectors µa,i linear 
regressively, to minimize the distance between the 
adaptation data a and the optimal estimator of   given the 
value of v, corresponding to a. To do so, the new user has 
to pronounce the words we have pre-defined. 

Suppose we have J adaptation data aj, j=1,2,…J. Our  
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For simplicity, we can solve this question as a least square 
problem. That means 
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4. EXPERIMENTAL RESULTS 

 

4.1. Experimental Data 
The audio ground truth data was captured with a 

microphone with a 8KHz and 16-bits mono channel, and 
the facial movement was captured by 6 infrared cameras, 
120 fps, with 27 particular markers (1 is the root) stuck on 
certain feature points of the user’s face (Fig 2).  

 
Figure 2. A snapshot of video grabbed from the 
digital video camera during motion capturing 

For each of the 3 male subjects in our experiment, we 
recorded 413 Chinese words. The start and the end point 
of each word were labeled manually, and 10 LSP 
coefficients were calculated from each voice segment of 
240 samples, and then cascaded with their corresponding 
visual feature vectors. We choose the horizontal and the 
vertical moving distance of the 8 points around the mouth 
as the visual feature, because only these points are more 
related to the audio variation. The dimension of the visual 
vectors is 16. In order to preserve the mouth movement 
information, only the visual data of one person was 
adopted and used for the other subjects as a duplicate. In 
this way, there could be a standard for comparing the 
estimated result from the audio-to-visual conversion no 
matter a user-dependent or user-independent model was 
used. However, the frame number of audio vectors is 
absolutely not the same as that of visual vectors because of 
the different sample rate and the varying length between 
different people. Therefore, we normalized the audio 
vectors to the visual vectors in each word by linear 
interpolation and resulted in 19315 audio-visual vectors 
totally for each user. GMMs with 10 kernels were used to 
approximate the relationship between the audio feature 
and the visual feature factor.  
 
4.2. Experiment I 

The odd audio-visual vectors and the even vectors are 
used as the training data and testing data, respectively. 
Three kinds of model were established: 
(1) For each of the 3 users, a user-dependent voice to 
mouth movement model (Modeli, i=1,2,3) was established 
using their own audio training data and same visual data.  
(2) Training the user-independent voice to face movement 
model (Modelall) using the mixed data (the 3k+i vectors 
from the training data of the i-th user, where k∈Z and 
i=1,2,3.) of all the users. 



(3) With the proposed PLR method, we adjusted the 
model Modelall with the other audio-visual vectors, not 
used in the training of Modelall, to obtain Modelall-i, 
i=1,2,3 , which will be more consistent to user i. 

After the GMMs are established and adapted, we can 
directly derive the corresponding facial movement vector 
with a given audio vector. In the testing phase, the visual 
vector conducted from a certain model was compared with 
the ground truth data. The mean values of the difference 
with the mouth width normalized to 100 are recorded in 
table I. As the result shows, the relationship between the 
performances of the GMMs applied to the i-th user is:  

, 1,2,3i all i allModel Model Model i−> > =  
 

Table 1. Mean of the difference between the 
original data and the value obtained from GMM 

Mean  GMM 
User 1 User 2 User 3 

Modelall 4.45 4.57 4.60 
Modelall-1 3.72 4.51 4.55 
Modelall-2 4.73 4.22 4.56 
Modelall-3 4.41 4.44 4.21 
Model1 2.95  4.28  4.34  
Model2 4.39 3.42  4.56  
Model3 4.67  4.35  3.30 

 
4.3 Experiment II 

Instead of using the all odd audio-visual vectors as the 
training data, we randomly choose 5, 10, 15, 20, 25, and 
30 words from the recorded 413 Chinese words, and use 
the audio-visual vectors of these selected words as the 
adaptation data. The user-dependent models trained in 
experiment I, Modeli, were consequenctly used as the 
reference. Each random selection was given 3 trials. The 
whole 413 words were used as the testing data and the 
difference between the estimated visual vector and the 
ground truth was shown in figure 3. The value ‘0’ in the 
adapting words axis means that no adaptation is 
implemented, and the corresponding value is the result of 
the original user-dependent model, Modeli, applied on the 
new user. The word ‘odd’ stands for using the odd vectors 
as the adaptation data as in experiment I (about 206 words, 
quantitatively). 

As the figure shows, there is a trend that the 
difference between the estimated value and the ground 
truth decreases while the number of adaptation words 
increases. When the set of adaptation data is small, the 
selected words will be critical to the result of model 
adjustment. With inappropriate extra data, the 
performance of adapted model could be worse, even than 
using the original user-dependent model. When the 
number of adaptation words expands to about 20, the 
effect of applying PLR for model adaptation will be 
affirmatively positive. 

User 2 => 1
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Figure 3. One result of model adaptation with 
different number of adaptation words 

 
5. CONCLUSION 

 
We have proposed a new adaptation algorithm using 
partial-linear-regression. The PLR method can be used in 
updating a part of the mean vector in Gaussian mixture 
model, keeping the corresponding relationship unchanged. 
This is due to that the precise visual data of a new user can 
not be obtained easily, and we may only collect the audio 
information in the adaptation procedure. As the 
experimental result in Table 1 shows, we can derive a 
more adequate model for the new user via the PLR 
adaptation algorithm, rather than a time-consuming re-
training task. The set of adaptation data plays a very 
important role when it is small and randomly selected. The 
adjusted model could outperform the original one only if 
the words were chosen appropriately. How to choose more 
efficient adaptation data is an important issue and this is 
still under investigation, although it is obvious that if the 
more adaptation data is used, the better performance there 
will be. 
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