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Abstract 

In this paper, a general blind image steganalysis system 
is proposed, in which the statistical moments of 
characteristic functions of the prediction-error image, the 
test image, and their wavelet subbands are selected as 
features. Artificial neural network is utilized as the classifier. 
The performance of the proposed steganalysis system is 
significantly superior to the prior arts.  

 
1. Introduction 

In recent years, digital watermarking has emerged as an 
increasingly active research area. Information can be hidden 
into images, videos, and audios imperceptibly to human 
beings. It provides vast opportunities for covert 
communications. Consequently, methods to detect covert 
communications are called for. This task is especially urgent 
for law enforcement to deter the distribution of children 
pornography images/videos hidden inside normal 
images/videos, and for intelligence agencies to intercept 
communications of enemies. Steganalysis is the art and 
science to detect whether a given medium has hidden 
message in it. On the other hand, steganalysis can serve as an 
effective way to judge the security performance of 
steganographic techniques. In other words, a good 
steganographic method should be imperceptible not only to 
human vision systems, but also to computer analysis. 

The huge diversity of natural images and the wide 
variation of data embedding algorithms make steganalysis a 
tough mission. However, an original cover medium and its 
stego-version (with hidden message inside) always differ 
from each other in some aspects since the cover medium is 
modified during the data embedding. Some data hiding 
method introduces a certain pattern in the stego-images. For 
example, in [1], Fridrich et al. have discovered that the 
number of zeros in the block DCT domain of a stego-image 
will increase if the F5 embedding method is applied to 
generate the stego-image. This feature can be used to 
determine whether there exist hidden messages embedded 
with the F5 method. There are some other findings regarding 
the steganalysis of a particular data hiding method [2, 3]. 
However, this type of steganalysis cannot cope with the real 
world since the data embedding method is often unknown in 
advance. A method designed to blindly detect stego-images 
is referred to as a general steganalysis method. From this 
point of view, the general steganalysis methods have more 
real value for deterring covert communications.  

In [4], Farid proposed a general steganalysis method 
based on image high order statistics. These statistics are 
based on decomposition of images with separable quadrature 
mirror filters. The subbands’ high order statistics are 
obtained as features for steganalysis. It can differentiate 
stego-images from cover images with a certain success rate. 
In [5], a steganalysis method based on the mass center (the 
first order moment) of histogram characteristic function is 
proposed. The second and third order moments are also 
considered for steganalysis. Compared with [4], its 
performance has been improved. However, the performance 
achieved by [5] is still not high enough since it adopts very 
limited number of features extracted from the test image. 
This paper proposes to select statistical moments of 
characteristic functions of the prediction-error image, the test 
image, and their wavelet subbands as features. Artificial 
neural network is used as the classifier. The proposed 
steganalysis system outperforms the existing techniques, say, 
[4,5] significantly. 

The rest of this paper is organized as follows. Section 2 
discusses the proposed features. In Section 3, the used neural 
network classifier is presented. Experimental results are 
presented in Section 4. Conclusion is drawn in Section 5. 

 
2. Features for steganalysis 

Because the dimensionality of image data is normally 
huge, it is unrealistic to use the image data directly for 
steganalysis. A feasible approach is to extract a certain 
amount of data from the image and use them to represent the 
image itself for steganalysis. In other words, they are 
features characterizing the image. Different tasks decide the 
different relation of features with respect to image. In the 
area of facial recognition, the features should reflect the 
shape of target faces in an image, i.e. the main content of the 
image. Minor distortions should not affect the final decision. 
However, in steganalysis, the main content of an image is not 
an issue to be considered since human eyes cannot tell the 
difference between an original image and its stego-version. 
On the contrary, those minor distortions introduced during 
data hiding stand up as the first priority. Therefore, the 
features for steganalysis should reflect those minor 
distortions associated with data hiding. 
2.1. Moments of characteristic function 

It is well-known that an image’s histogram is essentially 
the probability mass function (pmf) of the image (only 
differing by a scalar). Multiplying each component of the 
pmf by a correspondingly shifted unit impulse results in the 
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probability density function (pdf). Obviously, in the context 
of discrete Fourier transform (DFT), the unit impulses can be 
ignored, implying that we can treat pmf and pdf 
exchangeable. Thus, the pdf can be thought as the 
normalized version of a histogram. According to [6, pp. 145-
148], one interpretation of characteristic function (CF) is that 
the CF is simply the Fourier transform of the pdf (with a 
reversal in the sign of the exponent).  

Owing to the decorrelation capability of discrete 
wavelet transform (DWT), the coefficients of different 
subbands at the same level are kind of independent to each 
other. Therefore, the features generated from different 
wavelet subbands at the same level are kind of independent 
to each other. This property is desirable for steganalysis.  

We propose to use the statistical moments of the CFs of 
both a test image and its wavelet subbands as features for 
steganalysis, which are defined as follows. 
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where H(fi) is the CF component at frequency fi, N is the total 
number of points in the horizontal axis of the histogram. 
Note that we have purposely excluded the zero frequency 
component of the CF, i.e., H(f0), from calculating the 
moments because it represents only the summation of all 
components in the discrete histogram. For an image, it is the 
total number of pixels. For a wavelet subband, it is the total 
number of the coefficients in the subband. In either case, it 
does not change during the data hiding process. As shown 
below, its exclusion can enhance moments’ sensitivity to 
data hiding.  
2.2. Why moments of characteristic functions? 

Denote histogram by h(x), which is the inverse Fourier 
transform (in the above-mentioned sense) of the CF, H(f).  
The following formula can be derived straightforwardly. 
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This is to say that the magnitude of the n-th derivative of the 
histogram at x=0 is upper bounded by the n-th moments of 
the CF multiplied by a scalar quantity (simply stated below 
as “upper bounded by the n-th moments of the CF”). Using 
Fourier translation property, it can be shown that this upper 
bound is also valid for 0x ≠ . 

Assume the noise introduced by data hiding is additive, 
Gaussian distributed, and is independent to the cover image, 
which is valid in general for most steganographic techniques, 
including least significant bit-plane (LSB) and quantization 
index modulation (QIM). Although spread spectrum (SS) 
data hiding methods are not designed for steganography and 
often used for copyright protection, we discuss them for 
stegsnalsyis as well. The consideration behind is that blind 
SS data hiding methods can be used for covert 
communication with relatively lower data rates. Note that 
some SS technique can now embed more and more data. 
Furthermore, as shown in experiment (Section 4), the SS 

methods sometimes turn out harder to be steganalyzed than 
the LSB methods. Obviously, the additive Gaussian 
distribution assumption is valid for SS methods as well. This 
assumption leads to that the magnitude of the DFT sequence 
of the noise caused by data hiding is non-increasing. 
Obviously, sequence of the magnitude of CF is non-negative. 
Using the discrete Chebyshev inequality [5,7], we can show 
that the moments defined in Equation (1) are non-increasing 
after data hiding.  

Combining the above two results, one can derive that the 
upper bound of the magnitude of the n-th derivative of the 
histogram will not increase after data hiding. This 
observation will be graphically illustrated in Section 2.4.  
2.3. Prediction-error image  

In steganalysis, we only care about the distortion caused 
by data hiding. It is known that this type of distortion may be 
rather weak and hence covered by other types of noises, 
including those due to the peculiar feature of the image itself. 
In order to enhance the noise introduced by data hiding, we 
propose to predict each pixel grayscale value in the original 
cover image by using its neighboring pixels’ grayscale 
values, and obtain a prediction-error image by subtracting 
the predicted image from the test image. It is expected that 
this prediction-error image removes various information 
other than that caused by data hiding, thus making the 
steganalysis more efficient because the hidden data are 
usually unrelated to the cover media. In other words, the 
prediction-error image is used to erase the image content. 
The prediction algorithm is expressed below [8]. 

max( , ) min( , )
ˆ min( , ) max( , )

a b c a b
x a b c a b

a b c otherwise

≤
= ≥
 + −

                     (3) 

where a, b, c are is the context of the pixel x under 
consideration, x̂  is the prediction value of x.  The location 
of a, b, c can be illustrated in Fig. 1.  

x b 
a c 

Fig. 1 Prediction context. 
2.4. Graphical illustration  

In this section, we use some graphs to illustrate the 
effectiveness of the selected features: moments of CFs. In 
Fig. 2, an original color image from the CorelDraw image 
database [9] with serial no. 173037 is shown in the left. Its 
grayscale image obtained by using irreversible color 
transform is shown in the middle. The prediction-error image 
is shown in the right. The histograms of the four subbands at 
the 1st level Haar wavelet transform are shown in Fig. 3. The 
zoom in of Fig. 3 is shown in Fig. 4. The CFs of these four 
subbands are shown in Fig. 5. Note that due to the space 
limit, these figures are displayed in small size. However, 
readers are strongly recommended to view the figures, from 
Fig. 3 to Fig. 8, clearly by using zoom to 500%. In these 
several figures, the “Orig.” means the graph is for original 
image, while the “cox” stands for stego-image produced by 
using Cox et al.’s SS method [10]. Two numbers are the 1st 
order moments of the corresponding CF’s from the original 
and stego-image, respectively. It is observed that the 
histograms become flatter after data hiding, and this is 



 

reflected by the reduced 1st order moments, respectively, thus 
illustrating the effectiveness of the proposed features. 

Similarly, Fig.’s 6, 7 and 8 provide illustration for 
prediction-error images. Similar observation can be obtained. 
It is noted that the LL1 subbands in Fig. 3 and Fig. 6 are 
rather different, demonstrating the effectiveness of using 
prediction-error image as analyzed in Section 2.3. This will 
be further verified by experimental works presented in 
Section 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
2.5. 78-D feature vector 

In our work, a test image will be decomposed using a 
three-level Haar transform. For each level, there are four 
subbands, resulting in 12 subbands in total. If the original 
image is considered as level-0 LL subband, we have a total of 
13 subbands. For each subband, the first three moments of 
characteristic functions are derived according to Equation (1), 
resulting in a set of 39 features. Similarly, for the prediction-
error image, another set of 39 features can be generated. 
Thus, a 78-D feature vector is produced for the test image. 
Our extensive experimental study has shown that using more 
than three-level wavelet decomposition and including more 
than the first three order moments do not further improve the 
steganalysis performance, while leading to higher 
computational complexity. Hence the 78-D feature vectors 
are used in our proposed steganalysis system. 

3. Neural network classifier 
The design of classifier is another key element in 

steganalysis. In our work, an artificial neural network (NN) 
[11], specifically, the feed forward NN with back-
propagation training algorithm is used as the classifier. It is 
expected that the powerful learning capability possessed by 
the NN will outperform the linear classifiers. The number of 
hidden layers is four. All hidden neurons use the tan-sigmoid 
function. For the one-neuron output layer, all three activation 
functions (linear, log-sigmoid, tan-sigmoid) have been tested 
in the simulation. In the training stage, the outputs of log-
sigmoid and tan-sigmoid neuron have larger mean square 
error (MSE) than the linear neuron output. In the testing 
stage, the linear neuron output provides higher classification 
rate than the non-linear outputs. A heuristic explanation for 
this observation is given below. Because log-sigmoid 
function squeezes the output into the range from 0 to 1 and 
tan-sigmoid function squeezes the output into the range -1 to 
1, more training exemplars or testing patterns may lie on the 
wrong side at the output. Therefore, a reasonable structure is 
composed of four tan-sigmoid neuron hidden layers and one 
linear neuron output layer. In the back-propagation training, 
the computation programming is based on the neural network 
toolbox of Matlab 6.5.   

 
4. Experimental results 

To evaluate the performance of the proposed steganalysis 
system, we use all the 1096 sample images included in the 
CorelDRAW Version 10.0 software CD#3 for experiments 
[9]. The following five typical data hiding methods are used 
in experiments: Cox et al.’s non-blind SS [10] ( 1.0=α ), 
Piva et. al’s blind SS [12], Huang and Shi’s 8 by 8  block SS 
[13], a generic QIM [14] (0.1 bpp (bit per pixel)), and a 
generic LSB (0.3 bpp, both the pixel position used for 
embedding data and the to-be-embedded bits are randomly 
selected). For each image in the CorelDRAW image database, 
five stego-images are generated with these five data hiding 
methods, respectively. For all the data hiding methods, 
different random signals are embedded into different images. 
The evaluation of the proposed steganalysis system is hence 
more general.  

At first, we evaluate the system with each one of the five 
data hiding methods at a time. Randomly selected 896 
original images and the corresponding 896 stego-images are 
used for training. The remaining 200 pairs of the cover 
images and stego-images are put through the trained neural 
network to evaluate the performance. The detection rate is 
defined as the ratio of the number of the correctly classified 
images with respect to the number of the overall test images. 
The 10-time average detection rates are listed in Table 1.  

Next, we combine the five data hiding methods to 
evaluate the blind steganalysis ability of the proposed system. 
Similarly to the above, we start with 1096 6-tuple images. 
Each 6-tuple images consists of an original image, and the 
five stego-images generated by the five data hiding methods. 
We then randomly selected 896 6-tuple images for training, 
and use the remaining 200 6-tuples for testing. Again, the 10-
time average correct detection rates are listed in Table 1. We 
also evaluate the test results of Farid’s method [4] and 

Fig. 2 CorelDraw image no.173037: Original color (left), 
Original grayscale (middle), prediction-error image (right). 

Fig. 3 Original grayscale         Fig.6 Prediction-error

Fig.4  Zoom in of Fig. 3.         Fig.7  Zoom in of Fig. 6.
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Fig. 5 CF of original grayscale   Fig.8 CF of prediction-error



  

Harmsen’s method [5] under the same circumstances. Note 
that the NN converges to MSE<0.05 with our proposed 
features in less than 1,500 iterations during the training, 
while the NN with either Farid’s or Harmson’s features does 
not converge even after 100,000 iterations. Therefore, the 
Bayes classifier [5] is used to obtain the detection rates for 
these two methods listed in Table 1. It can be observed that 
the proposed system outperforms both Farid’s and 
Harmsen’s methods at a significant advantage. 

Table 1 Testing results. 
Detection rate Farid [4] Harmsen [5] Proposed

Cox et al.’s SS 64.9% 78.3% 98.1% 
Piva et. al’s SS 87.8% 79.4% 98.7% 
Huang and Shi’ block SS 76.1% 81.5% 98.8% 
Generic QIM (0.1 bpp)  99.7% 75.7% 99.0% 
Generic LSB (0.3 bpp) 71.9% 56.5% 98.9% 
5 methods combined 68.9% 72.8% 98.7% 

Thirdly, to further evaluate our system, a data hiding 
method, which has not been used in the training process, is 
tested. We apply Hide4PGP [15] to 200 randomly selected 
CorelDraw images. The detection rate is 99.5%. Testing of 
more commercially available data hiding algorithms 
designed for steganalysis is on our agenda of future work. 

Fourthly, to evaluate the effectiveness of using the 
prediction-error image, we conduct the same evaluation as 
stated above to the first 39 features (generated from the test 
images) and the second 39 features (obtained from the 
prediction-error images), separately. Table 2 contains the 
comparison results, which has demonstrated the effectiveness 
of using the prediction-error images. That is, the 
performance of using features obtained from the prediction-
error images is more effective than that obtained from the 
test images. This is expected as analyzed above.  

Table 2 Effectiveness comparison of features from original 
images and features from prediction-error images.  

Detection rate 39D 
(test mage) 

39D(prediction-
error image) 

Cox et al.’s SS 96.2% 96.6% 
Piva et. al’s SS 95.2% 98.8% 
Huang and Shi’s block SS 95.4% 97.9% 
Generic QIM (0.1 bpp) 97.9% 98.7% 
Generic LSB (0.3 bpp)  94.5% 98.7% 
5 methods combined 94.9% 98.4% 
Finally, the effectiveness of using the neural network is 

evaluated. We conduct experiments with our proposed 78-D 
feature vectors but using the Bayes classifier and the neural 
network, respectively, for the five data hiding methods 
individually and jointly. Table 3 contains detection rate for 
Cox et al.’s SS data hiding method and for the combined 
testing. Comparing with the results obtained with the Bayes 
classifier, a 3% to 4% increase in terms of detection rate has 
been achieved by using the proposed neural network. 

Table 3 Comparison of neural network with Bayes classifier. 
Detection rate Bayes classifier Neural network 
Cox et al.’s SS 95.2% 98.1% 
5 methods combined 94.6% 98.7% 

 
5. Conclusion 

In this paper, a novel general steganalysis system is 
proposed. Our contributions are summarized below. 

a) Statistical moments of wavelet characteristic functions 
(CF’s) are proposed to be used for steganalysis for the first 
time. Our theoretical analysis and experimental work have 
pointed out that the moments of wavelet CF’s can reflect the 
differentiation property of the associated histograms, hence, 
reflecting sensitively the changes caused by data hiding. b) 
Excluding zero frequency component of CF’s from the 
calculation of moments has improved the effectiveness of 
moments in steganalysis. Our experimental works have 
shown more than three-percept increase in detection rate. c) 
Prediction-error images are able to enhance the changes 
caused by data hiding by reducing the effect caused by the 
diversity of natural images. d) Artificial neural network 
performs better in steganalysis than Bayes classifier due to 
its powerful learning capability. e) Our combined 
steganalysis approach has pointed out a promising way 
towards blind and practically powerful steganalysis. f) Our 
experiments are conducted over a large number of images, 
which is necessary for steganalysis. g) Our proposed 
steganalysis system has demonstrated a significant 
performance improvement over the prior-arts.  
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