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ABSTRACT 
 
The paper presents a high-performance architecture of the 
bit-plane coder for the embedded block coding algorithm 
in JPEG 2000. The architecture adopts a pipeline structure 
and is dedicated to generate two context-symbol pairs per 
clock cycle. A novel method called Dynamic Significance 
State Restoring (DSSR) allows reduction of on-chip 
memories. The overall design is described in VHDL and 
synthesized for FPGA and ASIC technologies. Simulation 
results show that for FPGA Stratix devices, the engine can 
process about 22 million samples at the frequency of 66 
MHz. 

 

1. INTRODUCTION 
 
The JPEG 2000 image compression [1], [2] can be 
exploited in such applications as surveillance systems, 
digital cameras and digital cinema chain. The use of 
Motion JPEG 2000 instead of video compression 
standards (MPEG-1/2/4, H.26x) may be desired. In 
particular, JPEG 2000 enables the use of the same 
resources as for image capturing, ability to handle many 
image sources in any order, the ease of changing the 
frame-rate, and flexible access to an arbitrary frame.  

Since JPEG 2000 involves a computational-intensive 
algorithm, hardware acceleration may be indispensable to 
achieve real-time performance. The bottleneck of the 
JPEG 2000 system arises from the block performing 
embedded block coding with optimised truncation 
(EBCOT). This limitation is caused mainly by time-
dependent operations in the context adaptive binary 
arithmetic coder (CABAC) included in the EBCOT block. 
However, the bit-plane coder (BPC), which is another part 
of EBCOT module, may also decrease the throughput 
because of bit-level operations and intervals introduced by 
fractional bit-plane coding. 

There are various architectures for EBCOT proposed in 
literature [3]-[7]. Most of them focus on optimisation 
methods for the BPC and assume that the CABAC can 
process at most one context-symbol pair per clock cycle. 

In [8], we presented the VLSI implementation of the 
CABAC able to code two context-symbol pairs per clock 
cycle. To benefit from the increased throughput of the 
CABAC, the BPC has to adjust its speed to balance the 
CABAC. This paper presents the architecture which meets 
this requirement. The core adopts pipeline arrangement 
optimised to achieve the clock rate as high as possible. 
Moreover, a novel method called Dynamic Significance 
State Restoring (DSSR) is proposed to reduce on-chip 
memories. The architecture of the BPC has been described 
in VHDL and synthesized for commercial FPGA and 
ASIC technologies. The estimated clock rate is 66 MHz 
for FPGA Stratix devices. 

The rest of the paper is organized as follows. Section 2 
reviews the algorithm of the bit-plane coder. The proposed 
DSSR method is described in Section 3. Architecture 
design is illustrated in Section 4. Implementation results 
are given in Section 5, and the Conclusion in Section 6. 

 
2. BIT-PLANE CODING ALGORITHM 

 
The bit-plane coder is the first stage of the EBCOT 
algorithm. The BPC generates context-symbol pairs on the 
basis of quantization indices grouped in code-blocks. Input 
data are read in the sign-magnitude format and analysed 
bit-plane wise starting from the most significant bit-plane 
(MSB) with a non-zero element to the least significant bit-
plane (LSB). Each bit-plane is scanned in three coding 
passes called significance propagation, magnitude 
refinement, and cleanup. A bit plane is divided into 
horizontal stripes of four rows (see Figure 1). They are 
scanned from top to bottom. Each stripe is scanned in 
column fashion from left to right. Each column is scanned 
bit by bit from top to bottom. Each coefficient in a code-
block has an associated variable which indicates whether 
or not the coefficient is significant. The state changes from 
insignificant to significant at a bit-plane where the most 
significant non-zero magnitude bit of the corresponding 
coefficient is found. Two additional variables are 
necessary to identify coding pass and bit-plane at which a 
coefficient changes its state.  

At the beginning of each bit-plane processing 
(exclusive of the first one), the significance coding pass is 

0-7803-9332-5/05/$20.00 ©2005 IEEE



performed. In this pass, all coefficients which are 
insignificant and have at least one of their immediate eight 
neighbours significant are coded. The neighbour 
coefficient states are mapped into one of nine contexts. 
The generated symbol equals the value of the scanned bit. 
If it is one then sign coding follows taking into account 
states and signs of four (horizontal and vertical) neighbour 
coefficients. They are mapped onto five contexts. In 
conjunction with the sign, they determine symbol. The 
magnitude refinement pass follows the significance 
propagation pass and includes coefficients which have 
become significant in previous bit-planes. There are three 
possible contexts. The cleanup pass processes the 
remaining coefficients which have not been coded in the 
first two passes. Here, contexts and symbols are produced 
as in the significance propagation pass. Additionally, the 
standard defines the run-length and UNIFORM contexts. 

  
3. REDUCTION OF THE STATE MEMORY 

 
The state information is used to determine the context and 
the pass in which a coefficient is coded. Each coefficient 
state consists of three binary variables: the significance 
state, the first refinement indicator, and the significance 
pass membership. Direct mapping onto hardware involves  
the use of a 12K bits memory so as to match the maximal 
possible size of the code block [2]. An approach 
demonstrated in [3] and [7] makes it possible to reduce the 
state variables to two bits per sample, decreasing the size 
of the state memory by 4K bits. The proposed dynamic 
significance state restoring (DSSR) technique allows the 
reduction of the size of the state memory to 1K bits. 
Instead of storing state variables in the memory, the 
technique reconstructs them by analysing several bit-
planes in parallel. Most notably, prior to coding a bit-
plane, the significance state of each coefficient can be 
determined on the basis of bit-planes located above the 
current one. For example, if a coefficient has any non-zero 
bit in these bit-planes, its state is significant. In the 
magnitude refinement pass, it is necessary to distinguish in 

which bit-plane such a coefficient has become significant 
(the first magnitude indicator). This information is derived 
by checking the position of the most significant non-zero 
bit. 

The significance pass membership variable indicates 
which coefficients have been checked at the significance 
propagation pass of the current bit-plane. Remaining 
coefficients which are insignificant have to be coded in the 
following cleanup pass. Additionally, the variable allows 
the context formatter to determine which coefficients have 
become significant at a given point of processing. In 
particular, coefficients having first non-zero bit in the 
current bit-plane become significant after checking at 
either the significance pass or the cleanup pass. The choice 
depends on the significance pass membership variable. 
The variable corresponding to a given coefficient is set 
active whenever at least one of immediately neighbouring 
coefficients has changed its significance state earlier than 
the current one, which has happened either during the 
processing of one of upper bit-planes or in the significance 
pass of the current bit-plane. The first case is derived from 
upper bit-planes, as described above. In the second case, 
the changes of the significance pass membership variables 
propagate through neighbouring coefficients which follow 
in the scan order and have their first non-zero bit in the 
current bit-plane. The propagation terminates on 
coefficients which remain insignificant, i.e. they have 
zero-valued bits in the current bit-plane. As a consequence 
of these propagation dependencies, the significance 
propagation has to be performed in each pass to restore the 
significance pass membership variables.  

 The context formation process for bits located on 
boundaries of the current stripe refers to states of 
coefficients located in neighbouring stripes. This means 
that states should be reconstructed for boundary 
coefficients located just above and below of the current 
stripe. Moreover, the context formation for sign coding 
refers to their signs. When all available coefficients belong 
only to the current stripe, the sign and the state 

Stripe 
n-1

Stripe 
n

Stripe 
n+1

Memory  X

Memory  Y

Memory  X 

Memory  Y

CURRENT 
SQUARE 

 
Figure 2. Proposed memory arrangement for 
significance pass membership variables 
  

Code Blocks in subbands on
various decomposition levels

Bit planes in a code block

Stripes in a
bit plane

Columns in a stripe

Bits in a column

`

 
Figure 1. Hierarchy of a code-bock 



information for coefficients located in neighbouring stripes 
has to be conveyed by means of a dedicated memory. In 
this case, each state of a boundary coefficient occupies 
three bits to store the sign, the significance state, and the 
significance pass membership. If boundary coefficients 
from neighbouring stripes are available, only the 
significance pass membership indicator, which occupies 
one bit per a boundary coefficient, has to be stored in the 
memory. In each pass, the states from neighbouring stripes 
are read only at the current stripe. Hence, rewriting them 
by states of coefficients located on boundaries of the 
current stripe saves the memory space. This arrangement 
does not disturb the coding process because two adjacent 
stripes share the same memory entries exchanging data in 
compliance with the scan order. The memory has to be 
divided into two parts to accesses two boundaries of the 
stripe in parallel, as shown in Figure 2. 
 

4. ARCHITECTURE 
 
The designed architecture for the BPC block is shown in 
Figure 3. The bit-plane coder adopts the pipeline 
arrangement to shorten critical paths and employs on-chip 
memories to provide quick data access. All memory 
modules use two separate ports to write and read. Input 
memories buffer coefficients and have the capacity 
matching maximal possible size of the code-block (64 x 
64). Consecutive coefficients from a given row are 
grouped so as to read/write four of them at one clock 
cycle.  

Square-based scanning requires access to 16 
coefficients, each of which provides its sign and one bit 
from a selected bit-plane. However, using the DSSR 
technique involves reading additionally 20 coefficients 
surrounding the scanned square. To facilitate access to 
coefficients from six rows in parallel, the architecture 
incorporates six memory modules (see Figure 4). The left 

border column of six states is obtained by registering one 
column from the previous square. The right border column 
is obtained by means of the look-ahead technique which 
analyses coefficients from the following square available 
at the preceding pipeline stage. Two memory modules are 
used to convey the significance pass membership variable 
between stripes, as discussed in Section 3. Sizes of 
memories incorporated into the design are summarized in 
Table 1. 

At the beginning, input memories are initialised with 
quantized coefficients. Following the initialisation, 16 
coefficients from a selected square along with eight ones 
located in neighbouring stripes are read in each clock 
cycle. Next, bits corresponding to some bit-planes are 
selected and loaded into registers. The selected bit-planes 
include the currently scanned one, three bit-planes located 
just below (computation of reductions in distortion), and 
the sign one. Additionally, state registers are set for two 
variables that are restored by checking upper bits of 
coefficients. These operations are accomplished at the 
stage 1 of the pipeline architecture. The stage 2 performs 
the significance propagation to restore states of 
coefficients corresponding to the analysed square of bits 
and immediate neighbourhood. The result for border 
coefficients of the current stripe is written back into 
memories. Four bit-planes of the processed square, 
updated significance state variables, signs, and pass 
membership indicators, which are necessary to form 
contexts and symbols, are provided to the stage 3. At the 
stage 3, four (or less) bits coded in the current pass with 
state variables of their neighbours are selected and 
forwarded to the next stage. If there are more than four 
coded bits, this operation requires additional clock cycles 
and halting previous stages. The stage 4 identifies context 
labels for selected bits on the basis of neighbour state 
variables and signs. Calculated contexts and symbols are 
written into the FIFO buffer. A single cell of the FIFO is 
comprised of 32 bits and is able to keep four or more 
context-symbol pairs (special packing method is applied). 
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Figure 3. Diagram of the bit plane coder 
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Figure 4. Memory arrangement for coefficients 
  



The last stage is not synchronized with others because it 
reads data from the FIFO and restores context labels and 
symbols to submit them to the arithmetic coder. The FIFO 
is accessed when necessary to adjust the rate of two 
context symbol pairs per clock cycle required by the 
CABAC block. 

 
5. IMPLEMENTATION RESULTS 

 
The proposed architecture is described in VHDL. 
Performance analysis was conducted with a set of images. 
The results are summarized in Table 2. Provided the BPC 
block generates data continuously, number of clock cycles 
utilized for encoding equals near the half of the total of 
symbols. 

Digital synthesis has been performed targeting FPGA 
Stratix devices and AMS 0.35m m technology. The 
architecture attains the working frequency of 66 MHz for 
ALTERA Stratix devices. It enables the system to encode 
about 22 million pixels greyscale image within 1 s, which 
corresponds to the colour image size of 2400 x 3000. The 
designed module consumes about 4K Logic Elements for 
Stratix devices, which corresponds to 14K gates in AMS 
0.35m m technology. The total size of on-chip memories is 
57K bits. The amount of logic resources in the architecture 
not enhancement by DSSR is similar. So, the reduction of 
on-chip memories has been achieved without an additional 
cost. 
 

6. CONCLUSIONS 
 
This paper describes the architecture of bit-plane coder 
able to generate two symbols per one clock cycle. The 
design adopts the pipeline structure and benefits from the 
DSSR method to reduce on-chip memories. Digital 
synthesis has been performed for FPGA and ASIC 
technologies to verify timing performances. The estimated 
working frequency is 66 MHz targeting FPGA Stratix 
devices. It allows the system to encode about 22 million 
coefficients within 1 s, which corresponds to the colour 
image size of 2400 x 3000. 
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Table  2. Number of clock cycles needed to encode 
512x512 images, lossless compression (5x3 filter core), 
two decomposition levels 

Clock cycles 

Code Block 16 x 16 Code Block 64 x 64 Image 

grayscale color grayscale color 

Baboon 855237 2527810 907628 2664069 
Lena 616321 2002392 691754 2182245 
Jet 621466 1753902 699838 1990875 
Peppers 699795 2196092 777866 2378313 

  

Table  1. Summary of memories incorporated into the 
design 

function index 
Number of 

entries 
Data width 

[bits] 
coefficients A 128 40 

coefficients B 128 40 

coefficients C 256 40 

coefficients D 256 40 

coefficients E 128 40 

coefficients F 128 40 

states X 128 4 

states Y 128 4 

contexts-symbols FIFO 512 32 
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