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Abstract 

 
 Principal Component Analysis (PCA) has been widely 
used to extract features for pattern recognition problems 
such as object recognition. Oliva and Torralba used  “spatial 
envelope” properties derived from PCA to classify images 
as manmade or natural. While our implementation closely 
matched theirs in accuracy on a similar (Corel) dataset, we 
found that consumer photos, which are far less constrained 
in content and imaging conditions, present a greater 
challenge for the algorithm (as is typical in image 
understanding). We present an alternative approach to more 
robust naturalness classification, using overcomplete 
Independent Components Analysis (ICA) directly on the 
Fourier-transformed image to derive sparse representations 
as more effective features for classification. We 
demonstrated that our ICA-based features are superior to 
the PCA-based features on a large set of consumer 
photographs.  
 

1. Introduction 
 

 Semantic classification of photographs, e.g., indoor vs. 
outdoor, manmade vs. natural, beach vs. desert, is a difficult 
problem studied extensively in the past decade [2]. The 
ability to classify scenes as manmade vs. natural  [3,7,8] is 
useful as part of a hierarchical system of binary classifiers 
[13], which can be easier to design and more accurate than 
multi-class ones. Such a system can aid in content-based 
image retrieval, organization, and  enhancement. 
 We implemented Oliva and Torralba’s algorithm [8] for 
describing images in terms of their “spatial envelope” 
properties, including openness and naturalness. This 
algorithm extracts features from the image’s power  
spectrum by convolving it with Gabor-like filters at 12 
orientations and 5 scales. Because many filters are needed 
to cover the spectrum, they extract only the first 16 principal 
components of the images as determined by performing 
PCA on the training set.  
 Out implementation closely matched the original 
algorithm in the reported manmade-natural classification 
accuracy on a similar data set, composed of Corel 
professional stock photos [8]. However, the accuracy on a 
set of home photos dropped greatly (over 15%), because 
these photographs vary more in content and viewpoint, and 

some are of lower quality. We encountered this drop 
regardless of whether the training set was composed of 
home photos, stock photos, or a combination of both.  
 Figure 1 shows two consumer images misclassified by 
the PCA-based algorithm, along with the power spectrum of 
each image. The manmade image is typical in that it 
contains groups of edges aligned in the same direction, 
causing visible narrow “spikes” in the frequency domain, 
while the edges in the natural image vary in direction, and 
thus produce no such spike.  
 

   

 
Figure 1: Typical manmade and natural consumer snapshots. Note 
that spikes occur in the power spectrum of the manmade image only. 
 
 It does not appear that the PCA-based classifier could 
learn these spike patterns. We hypothesized that much of 
the discriminating information was lost in sampling the 
power spectrum. First, Gabor filter-based sampling of the 
power spectrum does not explicitly capture the correlation 
between edges in a single direction; in particular, if the spike 
lies between the directions in which the image was sampled, 
the spike will be missed entirely. Second, even if the 
features did capture this correlation, it would require a large 
amount of training data to learn it simply because edges 
could line up in any arbitrary direction. Third, even if the 
correlations could be learned, it is possible that the principal 
components would not preserve them because PCA is 
computed over an ensemble of images, in which the 
majority of manmade images contain edges aligned along 

0-7803-9332-5/05/$20.00 ©2005 IEEE



vertical and horizontal directions, and thus overwhelm the 
less frequent cases where edges are off the two main axes, 
e.g., Figure 1(a). Consequently, we found that the algorithm 
in [8] tends to fail mostly (1) when the linear structures in 
the images deviate from the horizontal and vertical 
directions (e.g., due to perspective distortion), (2) when 
there are a large number of edge directions present in an 
image (e.g., the first example in Figure 4), and (3) when 
edges are not as discernable (e.g., distant shots of a city 
scene).   
 We next present an alternative approach to feature 
extraction, using Independent Components Analysis (ICA) 
directly on the power spectrum. We then compare the 
classifiers using our ICA-based features with the PCA 
features-based classifier in [8]. We conclude with directions 
for future work.   
 

2. Independent Components Analysis  
 In the Fourier domain, one can characterize scene 
content as a mixture of Gaussians (moG). Manmade 
structures, typically characterized by many edges clustered 
in a few well-defined directions, appear as sparse, thin 
Gaussians, while a wide Gaussian (corresponding to all low 
frequencies and higher frequencies in many directions) 
appears in nearly every image. Low frequencies occur in all 
natural images and can be ignored, while the high 
frequencies represent natural components (such as people, 
animals, rocks, trees, and plants) and noise. The parameters 
of the underlying moG, if they can be estimated, can be used 
as features to discriminate manmade from natural scenes.  

Independent Components Analysis (ICA) seems well 
suited to this problem: recovering original independent 
sources Si (the “spikes”), from observed data xj (the power 
spectrum). Specifically, ICA assumes that independent 
sources have been linearly mixed into a number of 
observations, recovering the mixing matrix {aij} in 
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 While there are many methods of performing ICA (see 
[6] for a good tutorial), in our problem, the number of 
salient edge directions in manmade scenes often exceeds the 
dimensionality of the Fourier space (two), requiring the use 
of overcomplete ICA.  In speech recognition, Davies and 
Mitianoudis [4] modeled the source distributions as 
mixtures of Gaussians, and were able to estimate the 
parameters of the model by the expectation-maximization 
(EM) algorithm. They overcame the exponential complexity 
by assuming that the source distributions are sparse. In their 
application, audio data was transformed using discrete 
cosine transform (DCT), making them sparse in that space. 
We believe that their algorithm would apply to our Fourier-
transformed images as well. 

 Simply projecting the spectrum into a single dimension 
(i.e., the orientation) and obtaining the maxima of the 
histogram is a simplified form of ICA [15]. Once the 
orientations of the sparse distributions, which correspond to 
the mixing matrix, are uncovered, we can then estimate the 
parameters of the Gaussians from the histogram. Our full 
feature extraction algorithm is as follows: 

1. Compute the FFT of the image, take its power 
spectrum, and convert it to log-space. We use log 
to prevent the high-energy frequency componenets 
from overpowering the distribution, while still 
giving them more weight than low-energy ones. 

2. Threshold the images (conservatively) to reduce 
noise, which can overpower the structure (salient 
peaks) in the histogram. We also remove the 
extremely low frequencies (found in all images), 
because they are quantized in the conversion to 
polar coordinates more heavily than higher 
frequencies (thus undesirably over-weighted).  

3. Project the spectrum into a one-dimensional 
angular histogram. We convert each pixel to polar 
coordinates and create a histogram; we use a bin 
for each angle between 1 and 180 degrees.  

4. Find the spikes (local maxima) in the histogram 
(Fig. 2a). These correspond to the directions with 
the most well-defined energy. We smooth the 
distribution using a sigma filter to eliminate noise. 

5. Compute two features for each spike: 
a. Sparsity (“spikiness”) measures how well 

defined the edge directions are, defined as 
the ratio of height to width of the top 20% 
of the spike. This is the most 
discriminating feature, as manmade 
structures tend to yield narrow spikes. 

b. Energy is given by the height of the 
histogram at the spike. 

6. Retain only the two spikes with highest sparsity, 
since they are most salient. The number of spikes 
was chosen empirically; two was usually enough to 
distinguish manmade from natural images, without 
needing an abundance of training data to populate a 
higher-dimensional space. 

7. Compute the direction of the sharpest spike, S1. 
This allows us to discriminate between horizon 
lines (in natural scenes), which yield sparse spikes 
if they are flat and of high contrast, and vertical 
edges, which usually signify manmade structure. 
The PCA-based algorithm [8] also required 
properly oriented images; we can reorient them 
automatically with good accuracy if need be [1].   

8. Extract 5 features from the two spikes, S1 and S2: 
direction, sparsity, and energy of S1, and sparsity 
and energy of S2. 

 



Figure 2 shows this process for a manmade image. Our 
algorithm was able to classify correctly this image, which 
was misclassified by the baseline algorithm [8]. 
 

 
Figure 2: (a) A manmade image misclassifed by [8], but classified 
correctly by our method. (b) The three highly visible spikes in the 
frequency domain (the building’s walls and two roof lines). (c) After 
thresholding and removing low-frequency data. (d) The 1D projection. 
(e) The smoothed projection. Note that the spikes are highly visible at 
90 and near 180 degrees (the angles are rotated by 90 degrees to 
make all arctangent output positive; the bins near 0/180 degrees are 
copied so spikes near this periodic boundary can be detected). The 
classifier in [8] did not learn to consider oblique angles as manmade, 
possibly because of the paucity of training data with those angles. 
 

3. Experimental Results 
 

 We started with a set of over 24000 Kodak images 
collected with the intention of spanning “photospace”: 56 
photographers from three U.S. cities took pictures during a 
12 month period. We chose a subset randomly selected from 
the original set such that equal proportions of images were 
drawn from each of the three cities. We then removed close-
ups (those containing not enough of the environment to 
determine the class of the image, as in [9]) and images with 
ambiguous classification (containing a large area of both 
manmade and natural components). 
 In our study, we considered only the 1388 images that 
are clearly manmade or natural, and denote this data set as 
DH (for home photos). We further broke it down into 
independent training and test sets, DHTr and DHTe, which 
were taken by different photographers. We also used 1069 
Corel images as dataset DC, leaving out the 28 images 
misclassified by the PCA-based classifier. We trained our 
classifier on DC + DHTr and tested on DHTe and the 28 
Corel images.  
 As a classifier, we chose to use a Support Vector 
Machine (SVM). They have been shown to have accurate 
performance and good generalization properties, even when 
the training data is scarce. Further, the magnitude of the 

output (the distance from the decision surface) can be used 
as a measure of confidence in the algorithm’s output, which 
can in turn be used in image retrieval or in a setting where 
the user is asked to classify ambiguous images.  
 We obtain high accuracy as shown in Figure 3, with 
equal recall for each class of 79%, as compared with the 
baseline performance of 75%. Furthermore, each 
photograph shown in Figures 1 and 2 was classified 
incorrectly by the baseline algorithm, but now correctly by 
the proposed ICA-based algorithm. 
 We verified that this improvement was not due to the 
classifier; even a heuristic classifier using the ICA features 
yielded accuracy of almost 79%. Unfortunately, these 
heuristics did not include a parameter that could be changed 
to obtain a ROC-like curve, nor an indicator of confidence. 

 
Figure 3: Comparison of performance between the ICA-based and 
PCA-based classifiers. The ICA classifier shows approximately 4% 
improvement over the PCA-based classifier at the point of equal class 
recall. 
 

 
 

Figure 4. Examples of images classified incorrectly by the PCA-
based method in [8], but correctly by the proposed ICA-based 
algorithm. 

 As noted above, because our method is to recover spikes 
from the power spectrum explicitly, we expect to achieve 
more accurate results than the PCA-based method of [8]. 
Figure 4 shows example images for which this is the case. 
Note that the direction of many of the edges in these images 
is not vertical or horizontal. Our method can handle these 
oblique angles, which can be due to perspective distortion or 



camera rotation. These images are typical of the 4% of the 
images with improved classification. For distant scenes, ICA 
and PCA both fail, as the edge features become less salient. 
 Figure 5 shows all 28 of the images misclassified 
previously by the PCA-based algorithm.  The 19 outlined in 
green were classified correctly by the proposed ICA-based 
algorithm, while the images outlined in pink remain 
misclassified. The top 11 images are of natural scenes, while 
the remainder are of man-made scenes.  
 

Figure 5. Examples of Corel images classified incorrectly by 
the PCA-based method in [8].  

 
 Furthermore, our ICA-based method uses fewer features 
than the PCA-based method (5 vs. 16), making it very 
efficient.  
 

4. Conclusions and Future Work 
 

 We have shown that sparse features derived from 
performing ICA on the power spectrum of images are more 
effective and more efficient (with fewer features) for 
classifying photos into natural and manmade classes than 
PCA-based features. The main difference from the earliest 
related work to our knowledge in [16], where ICA resulted 
in two different clusters of basis functions (local, spatial 
edge “patches”) to help classify newspaper text from natural 
images, is that we applied ICA to the Fourier domain in 
order to generate optimal features global to the image. 
 Interesting directions for future work include combining 
these cues with color cues (e.g., green and brown are more 
correlated with natural scenes). We also plan to investigate 
using expectation maximization (EM) to learn the 
parameters of the mixture of Gaussians (constrained to be 
zero mean), similar to what Davies did in speech recognition 
[4] but in the presence of a higher magnitude of outliers. 
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