Polyphonic Audio Key Finding
Using the Spiral Array CEG Algorithm

Ching-Hua Chuan‡ and Elaine Chew‡
University of Southern California Viterbi School of Engineering
‡Department of Computer Science, ‡Epstein Department of Industrial and Systems Engineering
Integrated Media Systems Center, Los Angeles, CA
{chinghuc, echew}@usc.edu

Abstract
Key finding is an integral step in content-based music indexing and retrieval. In this paper, we present an $O(n)$ real-time algorithm for determining key from polyphonic audio. We use the standard Fast Fourier Transform with a local maximum detection scheme to extract pitches and pitch strengths from polyphonic audio. Next, we use Chew’s Spiral Array Center of Effect Generator (CEG) algorithm to determine the key from pitch strength information. We test the proposed system using Mozart’s Symphonies. The test data is audio generated from MIDI source. The algorithm achieves a maximum correct key recognition rate of 96% within the first fifteen seconds, and exceeds 90% within the first three seconds. Starting from the extracted pitch strength information, we compare the CEG algorithm’s performance to the classic Krumhansl-Schmuckler (K-S) probe tone profile method and Temperley’s modified version of the K-S method. Correct key recognition rates for the K-S and modified K-S methods remain under 50% in the first three seconds, with maximum values of 80% and 87% respectively within the first fifteen seconds for the same test set. The CEG method consistently scores higher throughout the fifteen-second selections.

1. Introduction and Background
In tonal music, the relations among pitches that generate the key constitute one of the main features of a melody. Having the key information will be valuable for content-based music indexing and retrieval. In this paper we propose a method for extracting tonal features from polyphonic audio in real time. Using the pitch class and pitch strength information from the standard Fast Fourier Transform (FFT), the Spiral Array Center of Effect Generator (CEG) (see [2],[3]) algorithm generates the key and returns the key name in a completely automatic fashion. Our choice of the CEG algorithm is distinct from existing approaches which typically use Krumhansl & Schmuckler’s (K-S’s) [10] probe tone profile method. We choose the CEG method for several reasons. The Spiral Array is a hierarchical model that represents pitches, intervals, chords, and keys within a single spatial framework, allowing for comparisons and analyses of tonal structures for multiple purposes. The CEG algorithm performs an efficient nearest-neighbor search for the closet key in the 3-dimensional Spiral Array model. The Spiral Array model offers ways to solve the pitch-spelling problem efficiently (see[4][5][6]), which provides us with the capability to determine the key completely automatically. The CEG algorithm has also been shown to perform better in differentiating keys with similar pitch classes than other methods [3]. We extend the CEG algorithm from key finding using symbolic data to key finding from polyphonic audio. With the pitch class and pitch strength information generated by the standard FFT, we show that the CEG algorithm provides a correct rate of over 90% within the first three seconds, and achieves a maximum correct rate of 96%, when tested on 61 audio samples of Mozart’s symphonies. For comparison, we also feed the same pitch class and strength information to the K-S method and Temperley’s modified version of the K-S method [18]. The K-S and improved K-S methods provide results of less than 50% in the first three seconds and reach maxima of 80% and 87% respectively.

Related work in audio tonal description includes approaches proposed by Gómez & Herrera [9] and Pauws [14]. Both approaches use the standard FFT as the basis for their pitch detection methods and the K-S method for key finding. Gómez & Herrera used three times the traditional resolution of the pitch frequency spectrum of the FFT method for pitch detection. They used a Harmonic Pitch Class Profile as input to the K-S method to find the key. Pauws incorporated rules for avoiding noise and emphasizing pitch loudness, and applied the K-S method to generate the key. Gómez & Herrera reported an 84% correct key detection rate among 878 excerpts of classical music. Pauws used 237 classical piano sonatas as the test set and his method returned a result of 59.1% within 5 seconds, and reached the maximum of 72.2% within 30 seconds. Also a form of tonal description, but stopping short of determining key, Tzanetakis, Ermonlinsky, and Cook [7] generated pitch histograms in audio and symbolic music for information retrieval and genre classification.

Some pitch detection method must first be applied to extract pitches from polyphonic audio in order to find the key of any acoustic music excerpt, including a live performance, a CD or a tape recording. Most algorithms for pitch detection are designed to extract precisely every pitch present and none others. We hypothesize that such exact pitch detection may not be necessary for key finding using the CEG algorithm, and that pitch information from the harmonics may actually assist in determining key more quickly and accurately. Firstly, octave imprecision is not a relevant issue in key finding. Secondly, pitches that belong to the same key are close to each
other in the Spiral Array model. These pitches also tend to form the strongest harmonics of a tone. Since the CEG algorithm generates a center of effect (CE) from pitch information and determines the key by a nearest neighbor search, the key recognition procedure is not affected by octave displacement, nor is it strongly affected by the addition of harmonics.

In this paper, we propose a heuristic peak selection algorithm to determine pitch class and pitch strength information from a standard FFT. Approaches that use sophisticated signal processing methods to precisely identify each pitch in an excerpt have been proposed in the literature [12][13][14][15]. To reduce the computational complexity of exact pitch detection, Tolonen and Karjalainen built a two-channel model [19]. Instead of using signal processing methods alone to improve the correctness of pitch estimation, Szczesba & Czyzewski [17] added a neural network module for pitch prediction. Another approach based on neural network proposed by Dziubinski & Kostek [8] reduced the octave and harmonic errors to build an octave immune pitch detection system. The approach which has the highest correct rate reported so far was proposed by Abdallah and Plumbley [1]. They used a probabilistic model to transcribe a live recording of Bach’s Fugue in G-minor No. 16, with only one note error for the first nine and a half bars. Research for extracting every single pitch in audio improves the correct pitch detection rate by eliminating the harmonic and octave errors. However, these information may benefit key determination either by emphasizing the root pitch or by constructing the stronger harmonics of a tone.

We use the CEG algorithm proposed by Chew [2][3] to determine key from pitch class and strength information. Other researchers have proposed solutions to the key finding problem. In 1971, Longuet-Higgins & Steedman [11] proposed an algorithm that used the Harmonic Network, a two-dimensional array representing salient pitch relations, to differentiate between major and minor keys by shape mapping. In 1986, Krumhansl & Schmuckler developed a widely accepted model called the probe tone profile method (henceforth referred to as the K-S method), which constructs pitch class profiles for major and minor keys by using user ratings from probe tone experiments. By calculating the correlations among the pitch information and the template key profiles, the key is determined as the one with the highest correlation value. In 1999, Temperley [18] improved upon the K-S method by modifying the key profiles to emphasize the differences between diatonic and chromatic scales. Temperley also adjusted the weights of the forth and seventh pitches so as to differentiate the keys which have highly similar pitch class signatures. These approaches have been used in numerous key-findings projects.

The rest of the paper is organized as follows. Section 2 explains the pitch detection method and the CEG algorithm using the Spiral Array model. Section 3 describes the evaluation experiments and presents the key finding results for the CEG algorithm, K-S method, and Temperley’s improved K-S method. Discussions and conclusions follow in Section 4.

2. The CEG Algorithm for Audio Key Finding

In this section, we present an \(O(n) \) algorithm to determine the key from polyphonic audio based on the CEG algorithm. The sequence of actions is depicted graphically in Figure 1. The method consists of two stages – pitch detection and key finding. The pitch detection part is responsible for recognizing and transforming polyphonic audio into pitch class and pitch strength information. The key finding part uses the Spiral Array CEG algorithm to generate the key. Both stages are described in Sections 2.1 and 2.2 respectively.

2.1 Pitch Detection

We use the standard FFT to generate the frequency spectrum that gives pitch class and strength information (see Figure 2). Relations between pitches are reflected on the logarithmic scale in frequency, and a range of frequencies maps to each pitch. The midpoints between adjacent reference frequencies [21] act as the boundaries for the frequency bands of each pitch. We limit the frequency range to be from 32 Hz (C1) to 1975 Hz (B6). We select 0.37 seconds as our sampling interval because harmonics produce negligible effects at this sampling size. The information we obtained after performing an FFT is a collection of frequency peaks as shown in the example in Figure 2(b). Due to the limited resolution of FFT, numerous local maxima may be found within a pitch frequency band. We employ a heuristic peak selection algorithm to determine the pitch classes present and their relative strength.

Our Local Maximum Selection method for peak selection is based on the following assumptions: (1) a peak value is defined as one that is larger than the average value to its left in the frequency band and that to its right; and (2) within each pitch frequency band, at most one peak value (the highest one) can exist.

We map the peak values into 12 pitch classes with the distance of one semitone between adjacent pitches. This

![Figure 1. The system contains two main parts: Pitch Detection and Spiral Array Model with CEG key finding algorithm.](image1)

![Figure 2. A polyphonic audio sample (a chord with 6 pitches played simultaneously) is shown in wave format (a) in the time domain and (b) in the frequency domain after an FFT.](image2)
mapping procedure results in pitch strength quantities for each pitch class. The mapping is designed for key finding purposes and octave relationships are ignored as they do not affect the key. Hence, we sum the peak values for all frequency bands related by octaves to obtain the pitch strength value for a pitch class. The pitch strength values are normalized by first dividing by the largest value, then by the sum of all values. A visual representation of pitch class and strength is shown in Figure 3(a). The pitch with larger strength is shown in darker color. Details of the procedure are outlined in Table 1.

Table 1. Algorithm for extracting Pitch Class and Strength

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Assign pitch names to pitch classes (pitch spelling):</td>
</tr>
<tr>
<td>2.</td>
<td>Determine key:</td>
</tr>
<tr>
<td>3.</td>
<td>Normalize step 1: divide all pitch strength values by the largest one</td>
</tr>
<tr>
<td>4.</td>
<td>Normalize step 2: divide all pitch strength values by their sum</td>
</tr>
</tbody>
</table>

2.2 The Spiral Array Model and Pitch Strength Weighted CEG Key Finding Algorithm

The Spiral Array Model, proposed by Chew in 2000, is a 3-dimensional model that represents pitches, intervals, chords and keys in the same three-dimensional space for easy comparison. On the Spiral Array, pitches are represented as points on a helix, and adjacent pitches are related by intervals of perfect fifths, while vertical neighbors are related by major thirds as shown in Figure 3(b). Central to the Spiral Array is the idea of the center of effect (CE), the representing of tonal thirds as shown in Figure 3(b). Central to the Spiral Array is the representing of tonal thirds as shown in Figure 3(b). The Spiral Array space as shown in Figure 4. Instead of using the selection is performed by a nearest neighbor search in the given in [2] and [3].

In the Center of Effect Generator (CEG) algorithm, key selection is performed by a nearest neighbor search in the Spiral Array space as shown in Figure 4. Instead of using the relative pitch durations as the CE weights, we use the normalized pitch strengths to generate the CE. For example, Figure 3(c) shows the CE of three pitches {F, A, and E}, weighted by their pitch strengths. In order to map numeric pitch classes to their appropriate pitch names in the Spiral Array, we use the pitch spelling method described in [4] and [5]. The key finding process is described in Table 2.

Table 2. Method for Determining Key

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Assign pitch names to pitch classes (pitch spelling):</td>
</tr>
<tr>
<td>2.</td>
<td>Determine key:</td>
</tr>
</tbody>
</table>

CEG algorithm has been implemented successfully in a real-time application, MuSA.RT [6], which presents opportunities for an alternate input modality (audio rather than MIDI) and pre-processing method (approximate pitch detection).

2.3 Comparisons with Other Methods

We also implement the K-S method and Temperley’s modified K-S method to examine the performance of CEG algorithm. In the K-S and modified K-S methods, each key is represented by a unique numerical key profile. Key finding is done by correlating the duration profile of the pitch classes with the key templates. The template with the highest correlation is chosen as the key. The key profiles for K-S method and Temperley’s (T) method are shown in Figure 5, where the x-axis shows the number of half steps from the tonal center and the y-axis shows the average ratings.

3. Evaluation Results

To evaluate the key finding system, we choose Mozart’s symphonies. The test set consists of a total of 61 files...
The first movement is often cast in sonata form, in which the music departs from and returns to the main key. The second and third movements are frequently in related keys while the last movement would return to the home key. For these reasons, we use only the first fifteen seconds of the first movements so that the test samples are likely to remain in the stated key for the entire duration of the sample.

First, we transform the MIDI files into wave format and run the pitch detection method every 0.37 seconds to obtain the cumulative pitch class and strength information. We use this same pitch information as the input to the CEG algorithm, the K-S method, and Temperley’s improved K-S method. The results at each 0.37 second time chunk are shown in Figure 6. An answer is considered to be wrong if the algorithm’s choice of key is different from the stated one.

Table 3. The Mozart Symphonies

<table>
<thead>
<tr>
<th>Symphony #</th>
<th>Key</th>
<th>Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>