COMPUTATIONAL COMPLEXITY REDUCTION OF INTRA−FRAME PREDICTION IN MPEG−2/H.264 VIDEO TRANSCODERS (WedPmPO1)

Author(s) :
Gerardo Fernandez−Escribano
Pedro Cuenca
Luis Orozco−Barbosa
Antonio Garrido
(Universidad de Castilla−La Mancha, Spain)

Abstract :
MPEG−2 is the most widely digital video−encoding standard in use nowadays. It is being widely used in the development and deployment of digital TV services, DVD and video−on−demand services. However, recent developments have given birth to the H.264/AVC, offering better bandwidth to video quality ratios than MPEG2. It is expected that the H.264/AVC will take over the digital video market, replacing the use of MPEG−2 in most digital video applications. The complete migration to the new video−coding algorithm will take several years given the wide scale use of MPEG−2 in the market place today. This creates an important need for transcoding technologies for converting the large volume of existent video material from the MPEG−2 into the H.264 format and vice versa. However, given the significant differences between the MPEG−2 and the H.264 encoding algorithms, the transcoding process of such systems is much more complex to other heterogeneous video transcoding processes. In this paper, we introduce and evaluate a novel intra−frame prediction algorithm to be used as part of a high−efficient MPEG−2 to H.264 transcoder.
[continued in the next page]
**COMPUTATIONAL COMPLEXITY REDUCTION OF INTRA-FRAME PREDICTION IN MPEG-2/H.264 VIDEO TRANSCODERS (WedPmPO1)**

<table>
<thead>
<tr>
<th>Author(s)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerardo Fernandez-Escribano</td>
<td>Universidad de Castilla–La Mancha, Spain</td>
<td></td>
</tr>
<tr>
<td>Pedro Cuenca</td>
<td>Universidad de Castilla–la Mancha, Spain</td>
<td></td>
</tr>
<tr>
<td>Luis Orozco-Barbosa</td>
<td>Universidad de Castilla–la Mancha, Spain</td>
<td></td>
</tr>
<tr>
<td>Antonio Garrido</td>
<td>Universidad de Castilla–la Mancha, Spain</td>
<td></td>
</tr>
</tbody>
</table>

**Abstract :**

Our evaluation results show that the proposed algorithm considerably reduces the complexity involved in the intra-frame prediction: a key operation in the transcoding process.