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Abstract

This paper describes a personalized k-anonymity model for
protecting location privacy against various privacy threats
through location information sharing. Our model has two
unique features. First, we provide a unified privacy person-
alization framework to support location k-anonymity for a
wide range of users with context-sensitive personalized pri-
vacy requirements. This framework enables each mobile
node to specify the minimum level of anonymity it desires
as well as the maximum temporal and spatial resolutions it
is willing to tolerate when requesting for k-anonymity pre-
serving location-based services (LBSs). Second, we devise
an efficient message perturbation engine which runs by the
location protection broker on a trusted server and performs
location anonymization on mobile users’ LBS request mes-
sages, such as identity removal and spatio-temporal cloak-
ing of location information. We develop a suite of scalable
and yet efficient spatio-temporal cloaking algorithms, called
CliqueCloak algorithms, to provide high quality personal-
ized location k-anonymity, aiming at avoiding or reducing
known location privacy threats before forwarding requests to
LBS provider(s). The effectiveness of our CliqueCloak al-
gorithms is studied under various conditions using realistic
location data synthetically generated using real road maps and
traffic volume data.

1 Introduction
Advances in sensing and tracking technologies create new

opportunities for location-based applications but they also
create significant privacy risks. According to the report
by Computer Science and Telecommunications Board on IT
Roadmap to a Geospatial Future [2], location based services
(LBSs) are expected to form an important part of the fu-
ture computing environments that will seamlessly and ubiqui-
tously integrate into our life (examples include NextBus [8],
CyberGuide [1], or FCC’s Phase II E911 Rules). Although
with LBSs mobile users can obtain wide variety of location-
based information services, and businesses can extend their
competitive edges in mobile commerce and ubiquitous ser-
vice provisions, extensive deployment of location based ser-
vices may open doors for adversaries to endanger location
privacy of mobile users and to expose LBSs to significant

vulnerabilities for abuse [16]. Location privacy threats de-
scribe the risk that an adversary learns the locations that a
subject visited, as well as times during which these visits took
place. Through these locations, the adversary can receive
clues about private information such as political affiliations,
alternative lifestyles, or medical problems. The two classes
of most popular privacy threats to LBSs are communication
privacy threats, exemplified by the passive-logging based at-
tacks, and location privacy threats, represented by space or
time correlated inference attacks. Even when a subject does
not disclose her identity at a private location, an adversary
may still gain this information through location tracking or
space and time correlation inference. In case that a subject is
identified at any point, her complete movements can also be
exposed.

One way to reduce location privacy risks is to promote
k-anonymity preserving management of location informa-
tion and develop efficient and scalable system-level facilities
for protecting location privacy with location k-anonymity.
Anonymity can be seen as “a state of being not identifiable
within a set of subjects, the anonymity set” [9]. The concept
of k-anonymity is originally introduced in the context of re-
lational data privacy research [11]. It addresses the question
of “How can a data holder release a version of its private data
with scientific guarantees that the individuals who are the sub-
jects of the data cannot be re-identified while the data remain
practically useful” [14].

In the context of LBSs and mobile users, location k-
anonymity refers to k-anonymous usage of location informa-
tion. A subject is considered k-anonymous with respect to
location information if and only if the location information
sent from a mobile user to a LBS is indistinguishable from
the location information of at least k − 1 other subjects (e.g.
different mobile nodes) [6]. Location perturbation is an ef-
fective technique in dealing with location privacy breaches
exemplified by the above cases and is effective for support-
ing location k-anonymity. If the location information sent by
each mobile node is perturbed by replacing the position of
the mobile node with a coarser grained spatial range, such
that there are several other mobile nodes within that range,
say k of them, then the adversary will have uncertainty in
matching the mobile node to a location-identity association
she has obtained through external observation or knowledge.
This uncertainty will increase with the increasing value of k,



providing better privacy.

In this paper, we describe a personalized k-anonymity
model for protecting location privacy against various privacy
threats through location information sharing. There is a close
synergy between location privacy and k-anonymity. Larger
k in location anonymity usually implies higher guarantees
for location privacy. Therefore, to ensure that a subject is
k anonymous, one can perturb the location information by re-
placing it with a relatively large spatial region (range) or by
delaying the message long enough. However, this has two
downsides. First, low spatial resolution in location pertur-
bation may lead the LBS provider to provide more coarse
grained location-dependent information to the mobile user,
which may deteriorate the quality of service; or it may result
in sending more than required information back to the mobile
user, which is going to be filtered out by the mobile node, re-
sulting in communication and processing overhead. Second,
the extra delay introduced through temporal cloaking of loca-
tion information may decrease the perceived service quality
of the mobile user.

The development of our location privacy model exhibits
two distinct features. First, it enables each mobile node to
specify the minimum level of anonymity it desires as well
as the maximum temporal and spatial resolutions it is will-
ing to tolerate when requesting for k-anonymity preserving
location-based services. Concretely, instead of imposing a
uniformed k for all mobile users, we provide efficient algo-
rithms and system level facilities to support personalized k at
per-user level. Each user can specify a different k-anonymity
level, and can change this specification at per-message gran-
ularity. Furthermore, each user can specify her preferred spa-
tial and temporal tolerance values that should to be respected
while maintaining the desired level of location k-anonymity.
We call such tolerance specification (service quality) and
preference of k value (location privacy), the anonymization
constraint of the message. By providing a unified framework
to support location k-anonymity with variable anonymization
constraints, we allow a wide range of users to benefit from
the location privacy protection with personalized privacy and
quality requirements.

Second, we devise an efficient message perturbation en-
gine which runs by the location protection broker on a trusted
server and performs location anonymization on mobile users’
LBS request messages, such as identity removal and spatio-
temporal cloaking of location information. We develop a suite
of scalable and yet efficient spatio-temporal cloaking algo-
rithms, called CliqueCloak algorithms, taking into account
the tradeoffs between location privacy and quality of service.
Our location perturbation engine can continuously process a
stream of messages for location k-anonymity, and can work
with different CliqueCloak algorithms to perturb the loca-
tion information contained in the messages sent from mobile
users by performing spatio-temporal cloaking. The resulting
three dimensional box, called the spatio-temporal cloaking
box, indicates the acceptable decrease of the spatial resolution

of location information and the tolerable delay of the mes-
sage in an effort to meet the specified anonymity level. Our
experiments show that the proposed personalized location k-
anonymity model, through the use of our perturbation engine
and its CliqueCloak algorithms, can achieve high guarantee
of k-anonymity and high resilience to location privacy threats
without introducing significant performance penalty.

2 Personalized Location k-anonymity
We assume that the LBS system consists of mobile nodes,

a wireless network, anonymity servers, and LBS servers. Lo-
cation information is typically determined by a location in-
formation source, such as GPS receiver in a vehicle. We as-
sume that location information includes temporal information
(when the subject was present at the location) in addition to
spatial information. Mobile nodes communicate with third
party LBS providers through one or a collection of anonymity
servers located at trusted computing bases. The mobile nodes
establish communication with an anonymity server through
an authenticated and encrypted connection. Each message
destined to an LBS provider contains location information of
the mobile node, a timestamp, in addition to service specific
information. Upon receiving a message from a mobile node,
the anonymity server decrypts the message and removes any
identifiers, such as IP addresses, and perturbs the location
information through spatio-temporal cloaking, and then for-
wards the anonymized message to the LBS provider.

In order to capture varying location privacy requirements
and ensure different levels of service quality, each mobile
node specifies its anonymity level (k value), spatial toler-
ance, and temporal tolerance. The main task of a loca-
tion anonymity server is to transform each message received
from mobile nodes into a new message that can be safely (k-
anonymously) forwarded to the LBS provider. The key idea
underlying the location k-anonymity model is two-fold. First,
a given degree of location anonymity can be maintained, re-
gardless of population density, by decreasing the location ac-
curacy through enlarging the exposed spatial area, such that
there are other k− 1 mobile nodes present in the same spatial
area. This approach is called spatial cloaking. Second, one
can achieve the location anonymity by delaying the message
until k mobile nodes have visited the same area located by the
message sender. This approach is called temporal cloaking.

We denote the set of messages received from the mobile
nodes as S. We formally define a messages ms in the set S
as follows: 〈uid, rno, {t, x, y}, k, {dt, dx, dy}, C〉. Messages
are uniquely identifiable by the sender’s identifier, message
reference number pairs, (uid, rno), within the set S. Messages
from the same mobile node have same sender identifiers but
different reference numbers. In a received message, x, y, and
t together form the three dimensional spatio-temporal loca-
tion point of the message, denoted as L(ms). The coordi-
nate (x, y) refers to the spatial position of the mobile node in
the two dimensional space (i.e., x-axis and y-axis), and the
timestamp t refers to the time point at which the mobile node
was present at that position (temporal dimension: t-axis of



the message). The k value of the message specifies the de-
sired minimum anonymity level. A value of k = 1 means
that anonymity is not required for the message. A value of
k > 1 means that the perturbed message will be assigned a
spatio-temporal cloaking box that is indistinguishable from
at least k − 1 other perturbed messages, each from a differ-
ent mobile node. Thus, larger k values imply higher degree
of privacy. One way to determine the appropriate k value is
to assess the certainty with which an adversary can associate
the message with an external location/identity binding. This
certainty is given by, 1/k. This means that P% privacy re-
quires to set the k value to be (1 − P/100)−1. The dt value
of the message represents the temporal tolerance specified by
the user. It means that, the perturbed message should have
a spatio-temporal cloaking box whose projection on the tem-
poral dimension does not contain any point more than dt dis-
tance away from t. Similarly, dx and dy specify the toler-
ances with respect to the spatial dimensions. The values of
these three parameters are dependent on the requirements of
the external LBS and users’ preferences with regard to quality
of service. For instance, larger spatial tolerances may result in
less accurate answers to location-dependent service requests
and larger temporal tolerances may result in higher latencies
of the messages. Let Φ(v, d) = [v − d, v + d] be a func-
tion that extends a numerical value v to a range by amount
d. Then, we denote the spatio-temporal constraint box of a
message ms as Bcn(ms) and define it as (Φ(ms.x,ms.dx),
Φ(ms.y,ms.dy), Φ(ms.t,ms.dt)). The field C in ms de-
notes the message content.

We denote the set of perturbed (anonymized) messages as
T . We formally define a messages mt in the set T as fol-
lows: 〈uid, rno, {X : [xs, xe], Y : [ys, ye], I : [ts, te]}, C〉.
For each message ms in S, there exists at most one corre-
sponding message mt in T . We call the message mt, the per-
turbed format of message ms, denoted as mt = R(ms). The
function R defines a one-to-one and onto mapping from S to
T . Concretely, if mt = R(ms), then mt.uid = ms.uid and
mt.rno = ms.rno. If R(ms) = ∅, then the message ms is not
anonymized. The (uid, rno) fields of a message in T should
be replaced with a dummy identifier (e.g., with h(uid||rno),
where h is a secure hash function) before the message can be
safely forwarded to the LBS provider. In a perturbed mes-
sage, X : [xs, xe] denotes the extent of the spatio-temporal
cloaking box of the message on the x-axis, with xs and xe

denoting the two end points of the interval. The definitions
of Y : [ys, ye] and I : [ts, te] are similar with y-axis and t-
axis replacing the x-axis, respectively. We denote the spatio-
temporal cloaking box of a perturbed message as Bcl(mt) and
define it as (mt.X : [xs, xe],mt.Y : [ys, ye],mt.I : [ts, te]).
The field C in mt denotes the message content. We now de-
scribe how the fields of a perturbed message in set T relates
to its counterpart in set S.

There are three basic properties that must hold between a
raw message ms in S and its perturbed format mt in T . These
are: (i) Spatio-temporal Containment, which states that the

cloaking box Bcl(mt) of the perturbed message should con-
tain the spatio-temporal point L(ms) of the original message
ms. (ii) Spatio-temporal Resolution, which states that for
each of the three dimensions, the extent of the spatio-temporal
cloaking box of the perturbed message on that dimension
should be contained within the interval defined by the maxi-
mum tolerance value specified in the original message. This
is equivalent to stating that the cloaking box Bcl(mt) of
the perturbed message, should be contained within the con-
straint box Bcn(ms) of the original message ms. (iii) Content
Preservation, which ensures that the message content remains
as it is, i.e. ms.C = mt.C.

We formally capture the essence of the location k-
anonymity by the following requirement, which states that,
for a message ms in S and its perturbed format mt in T , the
following condition must hold:

- Location k-anonymity:
∃T ′ ⊂ T, s.t. mt ∈ T ′, |T ′| ≥ ms.k,
∀{mti

,mtj
}⊂T ′ , mti

.uid 	= mtj
.uid and

∀mti
∈T ′ , Bcl(mti

) = Bcl(mt)

The k-anonymity requirement demands that, for each per-
turbed message mt = R(ms), there exist at least ms.k −
1 other perturbed messages with the same spatio-temporal
cloaking box, each from a different mobile node. A key chal-
lenge for the cloaking algorithms employed by the message
perturbation engine is to find a set of messages within a mini-
mal spatio-temporal cloaking box that satisfies the above con-
ditions.

3 Message Perturbation Engine
The message perturbation engine processes each incoming

message ms from mobile nodes in four steps. The first step,
called zoom-in, involves locating a subset of all messages cur-
rently pending in the engine. This subset contains messages
that are potentially useful for anonymizing the newly received
message ms. The second step, called detection, is responsi-
ble for finding the particular group of messages within the set
of messages located in the zoom-in step, such that this group
of messages can be anonymized together with the newly re-
ceived message ms. If such a group of messages is found,
then the perturbation is performed over these messages in the
third step, called perturbation, and the perturbed messages
are forwarded to the LBS provider. The last step, called ex-
piration, checks for pending messages whose deadlines has
passed, and thus are dropped. The deadline of a message
is the high point along the temporal dimension of its spatio-
temporal constraint box.

3.1 Message Anonymization

A main technical challenge for developing an efficient
cloaking algorithm is to find the smallest spatio-temporal
cloaking box, for each message ms ∈ S, within its speci-
fied spatial and temporal tolerances, such that there exist at
least ms.k − 1 other messages, each from a different mobile
node, with the same minimal cloaking box. Let us consider



this problem in two steps (in reverse order): (1) given a set
M of messages that can be anonymized together, how to find
the minimal cloaking box in which all messages in M reside;
and (2) for a message ms ∈ S, how to find the set M contain-
ing ms and the group of messages that can be anonymized
together with ms. A set M ⊂ S of messages are said to be
anonymized together if they are assigned the same cloaking
box and all the requirements defined in Section 2 are satisfied
for all messages in M .

Consider a set M ⊂ S of messages that can be
anonymized together. The best strategy to find a minimal
cloaking box for all messages in M is to use the minimum
bounding rectangle (MBR 1) of the spatio-temporal points of
the messages in M as the minimal cloaking box. This defi-
nition of minimal cloaking box also ensures that the cloaking
box is contained in the constraint boxes of all other messages
in M . We denote the minimum spatio-temporal cloaking box
of a set M ⊂ S of messages that can be anonymized together
as Bm(M), and define it to be equal to the MBR of the points
in the set {L(ms)|ms ∈ M}.

Now let us consider the second step: given a message
ms ∈ S, how to find the set M containing ms and the
group of messages that can be anonymized together with
ms. Based on the above analysis and observations, one way
to tackle this problem is to model the anonymization con-
straints of all messages in S as a constraint graph defined
below and translate the problem into the problem of finding
cliques that satisfy certain conditions in the constraint graph:
Let G(S,E) be an undirected graph where S is the set of
vertices, each representing a message received at the mes-
sage perturbation engine, and E is the set of edges. There
exists an edge e = (msi

,msj
) ∈ E between two vertices

msi
and msj

, if and only if the following conditions hold:
(i) L(msi

) ∈ Bcn(msj
), (ii) L(msj

) ∈ Bcn(msi
), (iii)

msi
.uid 	= msj

.uid. We call this graph the constraint graph.
The conditions (i), (ii), and (iii) together state that, two mes-
sages are connected in the constraint graph if and only if
they originate from different mobile nodes and their spatio-
temporal points are contained in each other’s constraint boxes
defined by their tolerance values.

Given the definition of constraint graph, the following
property holds: Let M = {ms1 ,ms2 , . . . , msl

} be a set
of messages in S. For each message msi

in M , we de-
fine mti

= 〈msi
.uid,msi

.rno, Bm(M),msi
.C〉. Then mti

,
1 ≤ i ≤ l, is a valid perturbed format of msi

if and only if the
set M of messages form an l-clique in the constraint graph
G(S,E) with the additional condition that for any message
msi

in S, we have msi
.k ≤ l (i.e. msi

’s user specified k
value is not larger than the cardinality of the set M ). See
our technical report [4] for a formal theorem (refered to as
ClickCloak Theorem) governing this property.

We demonstrate the application of this property with an
example. Figure 1 shows four messages, m1, m2, m3, and
m4. We assume that each message is from a different mobile

1MBR of a set of points is the smallest rectangular region enclosing all the points

node. We omitted the time domain in this example for ease
of explanation, but the extension to spatio-temporal space is
straightforward. Initially, first three of these messages are in-
side the system. Spatial layout I shows how these three mes-
sages spatially relate to each other. It also depicts the spatial
constraint boxes of the messages. Constraint graph I shows
how these messages are connected to each other in the con-
straint graph. Since the spatial locations of messages m1 and
m2 are mutually contained in each others spatial constraint
box, they are connected in the constraint graph and m3 lies
apart by itself. Although m1 and m2 form a 2-clique, they
can not be anonymized and removed from the graph. This is
because m2.k = 3 and as a result the clique does not satisfy
the Clique-Cloak theorem. Spatial layout II shows the situa-
tion after m4 arrives and constraint graph II shows the corre-
sponding status of the constraint graph. With the inclusion of
m4, there exists only one clique whose size is at least equal
to the maximum k value of the messages it contains. This
clique is {m1,m2,m4}. We can compute the MBR of the
messages within the clique and use it as the spatio-temporal
cloaking box of the perturbed messages and then safely re-
move this clique. Figure 1(b) clearly shows that the MBR
is contained by the spatial constraint boxes of all messages
within the clique.

Although in the described example we have found a sin-
gle clique immediately after m4 was received, we could have
had cliques of different sizes to choose from. For instance, if
m4.k was 2, then {m3,m4} would have also formed a valid
clique according to the Clique-Cloak theorem. We address
the questions of what kind of cliques to search and when to
search for such cliques, in more detail in Section 4.

There are three key points that makes the application of
Clique-Cloak theorem effective in practice: (i) Successful
anonymization of a message msc

results in anonymization
of at least msc

.k − 1 other messages. (ii) The search per-
formed on the constraint graph for the purpose of anonymiz-
ing a message msc

only deals with a small subgraph that con-
sists of msc

and its neighbors (illustrated in Figure 1 for m4,
m5, and m6), and the cost of this step does not depend on
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constraint box of m2

constraint box of m3

constraint box of m4

MBR of {m1,m2,m3,m4}
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Figure 1: Illustration of the Clique-Cloak Algorithm



the scale of the complete constraint graph. (iii) For messages
whose subgraphs on which the search is performed do not
share any messages (exemplified by m4, m5, and m6 in Fig-
ure 1 (e)), the anonymization process can be efficiently par-
allelized. When overlaps exist, simple locking strategies can
be employed to achieve effective parallelization (See [4]).

3.2 Data Structures

We briefly describe the four main data structures that are
used in the message perturbation engine.

Message Queue, Qm: Message queue is a simple FIFO
queue, which collects the messages sent from the mobile
nodes in the order they are received. The messages are
popped from this queue by the message perturbation engine
in order to be processed.

Multi-dimensional Index, Im: The multi-dimensional in-
dex is used to allow efficient search on the spatio-temporal
points of the messages. For each message, say ms, in the
set of messages that are not yet anonymized and are not yet
dropped according to expiration condition (specified by the
temporal tolerance), Im contains a three dimensional point
L(ms) as a key, together with the message ms as data. The
index is implemented using an in-memory R∗-tree in our sys-
tem.

Constraint Graph, Gm: The constraint graph is a dynamic
in-memory graph, which contains the messages that are not
yet anonymized and not yet dropped due to expiration. The
structure of the constraint graph is already defined in Sec-
tion 3.1. The multi-dimensional index Im is mainly used to
speedup the maintenance of the constraint graph Gm, which
is updated when new messages arrive or when messages get
anonymized or expired.

Expiration Heap, Hm: Expiration heap is a mean-heap,
sorted based on the deadline of the messages. For each
message, say ms, in the set of messages that are not yet
anonymized and are not yet dropped due to expiration, Hm

contains a deadline ms.t + ms.dt as the key, together with
the message ms as the data. Expiration heap is used to detect
expired messages (i.e. messages that cannot be successfully
anonymized), so that they can be dropped and removed from
the system.

3.3 Perturbation Engine Algorithms

Upon arrival of a new message, the message engine will
update the message queue (FIFO) to include this message.
The message perturbation process works by continuously
popping messages from the message queue and processing
them for k-anonymity in four steps. The pseudo code of the
message perturbation engine is given in Algorithm 1.

Zoom-in − In this step we update the data structures with
the new message from the message queue, and integrate the
new message into the constraint graph, i.e., search the con-
straint graph containing all the messages pending for pertur-
bation and locate the messages that should be assigned as
neighbors to it in the graph (zoom-in). Concretely, when
a message msc

is popped from the message queue, it is in-

Algorithm 1: Message Perturbation Engine
MSGPERTENGINE()
(1) while true
(2) if Qm �= ∅
(3) msc ← Pop the first item in Qm

(4) Add msc into Im with L(msc )
(5) Add msc into Hm with (msc .t + msc .dt)
(6) Add the message msc into Gm as a node
(7) N ← Range search Im using Bcn(msc )
(8) foreach ms ∈ N , ms �= msc
(9) if L(msc ) ∈ Bcn(ms)
(10) Add the edge (msc , ms) into Gm

(11) G
′
m ← Subgraph of Gm consisting of messages in N

(12) M ← LOCAL-k SEARCH(msc .k, msc , G
′
m)

(13) if M �= ∅
(14) foreach ms in M
(15) Output perturbed message mt ←
(16) 〈h(ms.uid||ms.rno), Bm(M), ms.C〉
(17) Remove the message ms from Gm

(18) Remove the message ms from Im

(19) Pop the topmost element in Hm

(20) while true
(21) ms ← Topmost item in Hm

(22) if ms.t + ms.dt < now
(23) Remove the message ms from Gm

(24) Remove the message ms from Im

(25) Pop the topmost element in Hm

(26) else
(27) break

Algorithm 2: local-k Search Algorithm

LOCAL-k SEARCH(k, msc , G
′
m)

(1) U ← {ms|ms ∈ nbr(msc , G
′
m) and ms.k ≤ k}

(2) if |U | < k − 1
(3) return ∅
(4) l← 0
(5) while l �= |U |
(6) l← |U |
(7) foreach ms ∈ U

(8) if (|nbr(ms, G
′
m) ∩ U | < k − 2)

(9) U ← U\{ms}
(10) Find any subset M ⊂ U , s.t. |M | = k − 1 and M ∪ {msc} forms a clique
(11) return M

serted into the index Im using L(msc
), inserted into the heap

Hm using msc
.t + msc

.dt, and inserted into the graph Gm

as a node. Then the edges incident upon vertex msc
are con-

structed in the constraint graph Gm by searching the multi-
dimensional index Im using the spatio-temporal constraint
box of the message, i.e. Bcn(msc

), as the range search con-
dition. The messages whose spatio-temporal points are con-
tained in Bcn(msc

) are candidates for being msc
’s neighbors

in the constraint graph. These messages (denoted as N in
the pseudo code) are filtered based on whether their spatio-
temporal constraint boxes contain L(msc

). The ones that pass
the filtering step and are different from msc

become neigh-
bors of msc

. We call the subgraph that contains msc
and its

neighbors the focused subgraph, denoted by G
′
m. See lines

3-10 in the pseudo code.

Detection − In this step we apply the local-k search
CliqueCloak algorithm (detection) in order to find a suitable
clique in the focused subgraph G

′
m of Gm, which contains

msc
and its neighbors in Gm, denoted by nbr(msc

, Gm). In
local-k search, we try to find a clique of size msc

.k that in-
cludes the message msc

and satisfies the Clique-Cloak theo-
rem. The pseudo code of this step is given separately in Al-
gorithm 2 as the function local-k Search. Note that the local-



k Search function is called within Algorithm 1 (line 12) with
parameter k set to msc

.k. Before beginning the search, a set
U ⊂ nbr(msc

, G
′
m) is constructed such that for each mes-

sage ms ∈ U , we have ms.k ≤ k (lines 1-3). This means that
the neighbors of msc

whose anonymity values are higher than
k are simply discarded from U , as they cannot be anonymized
with a clique of size k. Then the set U is iteratively filtered
until there is no change (lines 4-9). At each filtering step,
each message ms ∈ U is checked whether it has at least k−2
neighbors in U . If not, the message cannot be part of a clique
that contains msc

and has size k, thus the message is removed
from U . After the set U is filtered, the possible cliques in
U ∪ {msc

} that contain msc
and have size k are enumer-

ated and if one satisfying the k-anonymity requirements is
found, the messages in that clique are returned. Up to values
of k = 10, (where k = 5 is considered as a good level of
anonymity [6]) the search step does not form a bottleneck. In
fact, the subgraph on which we perform the clique search is
localized with respect to msc

and it is very small compared
to the complete constraint graph.

Perturbation − In this step we generate the k-
anonymized messages to be forwarded to the external LBS
providers. If a suitable clique is found in the detection step,
then the messages in the clique (denoted as M in the pseudo
code) are anonymized by assigning Bm(M) (i.e. the MBR
of the spatio-temporal points of the messages in the clique),
as their cloaking box (perturbation). Sender’s identifier, mes-
sage reference number pairs are also replaced with their se-
cure hash value before the actual forwarding takes place.
Then these messages are removed from the graph Gm, as well
as from the index Im and the heap Hm. This step is detailed in
the pseudo code through lines 13-19. In case a clique cannot
be found, the message stays inside Im, Gm, and Hm. It may
be later picked up and anonymized during the processing of a
new message or may be dropped when it expires. We discuss
some more advanced ways of searching cliques in Section 4.

Expiration − In this step we take care of the expired mes-
sages. After the processing of each message, we check the ex-
piration heap for any messages that has expired. The message
on top of the expiration heap is checked and if its deadline has
passed, it is removed from Im, Gm, and Hm. Such a message
cannot be anonymized and is dropped. This step is repeated
until a message whose deadline is ahead of the current time is
reached. Lines 20-27 of the pseudo code deals with message
expiration.

4 Discussions on Possible Optimizations
In this section, first we discuss an improved CliqueCloak

algorithm, called nbr-k search, which utilizes a different crite-
rion in determining what kinds of cliques are searched. Then
we discuss a variation of the CliqueCloak algorithms dis-
cussed so far, that uses a deferred policy with regard to when
cliques are searched. We also provide a brief discussion on
improving the message processing time of CliqueCloak al-
gorithms.

When searching for a clique in the focused subgraph, it

is essential to ensure that the newly received message, say
msc

, should be included in the clique. If there is a new clique
formed due to the entrance of msc

into the graph, it must
contain msc

. However, instead of searching a clique with
size msc

.k, we can try to find out the biggest clique that in-
cludes msc

.k, of course making sure that all messages in-
side the clique has a k value at most equal to the size of the
clique. There are two strong motivations behind the approach.
First, by anonymizing a larger number of messages at once,
it can provide higher success rate (larger number of messages
can be successfully anonymized) which also results in better
performance, as the graph will become less crowded. Sec-
ond, by anonymizing messages that have smaller k’s together
with messages that have larger k’s, it can provide higher rel-
ative level of anonymity (meaning that the user perceived
anonymity levels of the messages are higher than the user
specified anonymity levels). Nbr-k search takes this approach.
It first collects the set of k values the new message msc

and
its neighbors nbr(msc

, G
′
m) have, denoted as L. The k val-

ues in L are considered in decreasing order until a clique is
found or k becomes smaller than msc

.k (in which case the
search returns empty set). For each k ∈ L considered, local-
k Search function is called with appropriate parameters. If a
non-empty set is returned from the call, the search halts and
the messages within the set are returned.

So far we have only considered searching for cliques when
each new message arrives. This may result in many unsuc-
cessful searches, thus deteriorate the performance in terms of
average time to process a message. Instead of immediately
searching for a clique for each message, we can defer this
processing. If a deferred message is not already anonymized
(together with other messages) at the time of its expiration,
we can search for a clique in order to anonymize it before
it expires. However, this latter approach will definitely in-
crease user perceived latency. To overcome this, we can only
perform the clique search phase for a new message msc

, if
the number of neighbors it has at its arrival is larger than
or equal to α ∗ msc

.k. Here, α ≥ 1 is a system parame-
ter that adjusts the amount of messages for which the clique
search is deferred. Smaller values pushes the algorithm to-
ward immediate processing. It can be set statically at com-
pile time based on experimental studies or adaptively during
runtime by observing the rate of successful clique searches
with different α values. We name this variation of the algo-
rithm as Deferred CliqueCloak and the original algorithm
as Immediate CliqueCloak.

There are other dimensions to CliqueCloak algorithms
that can improve the running time performance of anonymiza-
tion (our technical report [4] provides extended study of these
dimensions). Here we discuss one such idea that may sig-
nificantly improve the message processing time for extreme
cases where constraint boxes are large. A progressive search
techniques may be applied, such that when a message is to be
processed for anonymization, we use a progressively increas-
ing set of neighbor nodes as the candidate set. If a smaller



set is not sufficient to anonymize the message, we can add
messages whose spatio-temporal points are further away, af-
ter each progressive step. This helps in decreasing the mes-
sage processing time when the constraint boxes are large,
since such large boxes result in large candidate sets, although
most of the time anonymization can easily be performed with
a much smaller set.

5 Evaluation Metrics
In this subsection we list several evaluation metrics of in-

terest, that can be used to evaluate the effectiveness and the
efficiency of the message perturbation engine.

To evaluate the effectiveness of the proposed location k-
anonymity model, an important measure is the success rate.
Concretely, the primary goal of the cloaking algorithm is to
maximize the number of messages perturbed successfully in
accordance with their anonymization constraints. Success
rate can be defined over a set S′ ⊂ S of messages as the per-
centage of messages that are successfully anonymized (per-
turbed), i.e. |{mt|mt=R(ms),mt∈T,ms∈S′}|

100−1∗|S′| .
Important measures of efficiency include relative

anonymity level, relative temporal resolution, relative spatial
resolution, and message processing time. The first three are
measures related with quality of service, whereas the last one
is a performance measure.

Relative anonymity level is a measure of the
level of anonymity provided by the cloaking algo-
rithm, normalized by the level of anonymity required
by the messages. We define relative anonymity
level over a set T ′ ⊂ T of perturbed messages by

1
|T ′|

∑
mt=R(ms)∈T ′

|{m|m∈T ∧ Bcl(mt)=Bcl(m)}|
ms.k . Note that

relative anonymity level cannot go below 1.
Relative spatial resolution is a measure of the spa-

tial resolution provided by the cloaking algorithm, nor-
malized by the minimum acceptable spatial resolution de-
fined by the spatial tolerances. We define relative spa-
tial resolution over a set of perturbed messages T ′ ⊂ T

by 1
|T ′|

∑
mt=R(ms)∈T ′

√
2∗ms.dx∗2∗ms.dy

||mt.X||∗||mt.Y || , where ||l||, when

applied to an interval l, gives its length. Higher relative spa-
tial resolution values imply more effective cloaking achieved
with a smaller spatial cloaking region.

Relative temporal resolution is a measure of the tempo-
ral resolution provided by the cloaking algorithm, normal-
ized by the minimum acceptable temporal resolution de-
fined by the temporal tolerances. We define relative tempo-
ral resolution over a set of perturbed messages T ′ ⊂ T by

1
|T ′|

∑
mt=R(ms)∈T ′

2∗ms.dt

||mt.I|| . Higher relative temporal res-
olution values imply more effective cloaking achieved by a
smaller temporal cloaking interval and thus with smaller de-
lay due to perturbation. Relative spatial and temporal resolu-
tions can not go below 1.

Message processing time is a measure of the running time
performance of the message perturbation engine. The mes-
sage processing time may become a critical issue, if the com-
putational power at hand is not enough to handle the incoming

Parameter Default value

anonymity level range {5, 4, 3, 2}
anonymity level zipf param 0.6

mean spatial tolerance 100m

variance in spatial tolerance 40m2

mean temporal tolerance 30s

variance in temporal tolerance 12s2

mean inter-wait time 15s

variance in inter-wait time 6s2

Table 1: Message generation parameters

mean of car speeds {90, 60, 50}km/h
for each road type

std.dev. in car speeds {20, 15, 10}km/h
for each road type
traffic volume data {2916.6, 916.6, 250}per hour

Table 2: Car movement parameters

messages at a high rate. In Section 6, we use the average CPU
time needed to process 103 messages as the message process-
ing time.

6 Experiments
We break up the experimental evaluation into two com-

ponents: the effectiveness of the personalized k-anonymity
model in terms of location privacy quality, and the perfor-
mance of the location perturbation engine and algorithms
in terms of scalability. Due to the space restriction, in
this section, we mostly present the first set of experiments
that demonstrates the effectiveness of our perturbation en-
gine in terms of location privacy guarantees under different
settings with regard to various metrics introduced in Sec-
tion 5. A smaller set of experiments is included to give a
summary characterization of message processing time. We
divided the experiments into two, namely success rate and
spatial/temporal resolution. Before presenting our experi-
mental results, we first describe the trace generator used to
generate realistic traces that are employed in the experiments
and the details of our experimental setup.

We have developed a trace generator, that simulates cars
moving on roads and generates requests using the position
information from the simulation. The trace generator loads
real-world road data, available from National Mapping Di-
vision of the United States Geological Survey (USGS) [7] in
SDTS [13] format. We use transportation layer of 1:24K Dig-
ital Line Graphs (DLGs) as road data. We convert the graphs
into Scalable Vector Graphic [12] format using the Global
Mapper [5] software and use them as input to our trace gen-
erator. We extract three types of roads from the trace graph,
class 1 (expressway), class 2 (arterial), and class 3 (collector).
The generator uses real traffic volume data to calculate the to-
tal number of cars on each road type, as described by [6].
Once the number of cars on each type of road is determined,
they are randomly placed into the graph and the simulation
begins. Cars move on the roads and take other roads when
they reach joints. The simulator tries to keep the fraction of
cars on each type of road constant as time progresses. The
cars change their speeds at each joint based on a normal distri-
bution whose parameters are also input to the trace generator.
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We used a map from Chamblee region of state of Georgia
in USA to generate the trace used in this paper. The map
covers a region of ≈ 160km2. The mean speeds and standard
deviations for each road type are given in Table 2. The traffic
volume data is taken from [6] and is also listed in Table 1.
These settings result in approximately 10,000 cars. The trace
has a duration of one hour.

Each car generates several messages during the simula-
tion. Each message specifies an anonymity level (k value)
from the list {5, 4, 3, 2} using a zipf parameter of 0.6, k = 5
being the most popular. The spatial and temporal tolerance
values of the messages are selected independently using nor-
mal distributions whose default parameters are given in Ta-
ble 1. Whenever a message is generated, the originator of the
message waits until the message is anonymized or dropped,
after which it waits for a normally distributed amount of time,
called the inter-wait time, whose default parameters are also
listed in Table 1. All parameters take their default values, if
not stated otherwise. We change many of these parameters to
observe the behavior of the algorithms in different settings.

For spatial points of the messages, the default settings re-
sult in anonymizing around 70% of messages with an accu-
racy of < 18m in 75% of the cases, which we consider to be
very good when compared to the E-911 requirement of 125m

accuracy in 67% of the cases. For temporal point of the mes-
sages, the default parameters also result in a delay of < 10s
in 75% of the cases and < 5s in 50% of the cases.

6.1 Success Rate

Figure 2 shows the success rate for nbr-k and local-k ap-
proaches. The success rate is shown (on y-axis) for different
groups of messages, each group representing messages with
a certain k value (on x-axis). The two leftmost bars show
the success rate for all of the messages. The wider bars show
the actual success rate provided by the ClickCloak algorithm.
The thinner bars represent a lower bound on the percentage
of messages that cannot be anonymized no matter what algo-
rithm is used. This lower bound is calculated as follows. For
a message ms, if the set U = {msi

|msi
∈ S ∧ P (msi

) ∈
Bcn(ms)} has size less than ms.k, the message cannot be
anonymized. This is because, the total number of messages
that ever appear inside ms’s constraint box are less than ms.k.
However, if the set U has size of at least ms.k, the message
ms may still not be anonymized under a hypothetical optimal
algorithm. This is because, the optimal choice may require to
anonymize a subset of U that does not include ms, together
with some other messages not in U . As a result, the remain-
ing messages in U may not be sufficient to anonymize ms. It
is not possible to design an on-line algorithm that is optimal
in terms of success rate, due to the fact that such an algo-
rithm will require future knowledge of messages, which is
not known beforehand. If a trace of the messages is available,
as in this work, the optimal success rate can be computed off-
line. However, we are not aware of a time and space efficient
off-line algorithm for computing the optimal success rate. As
a result, we use a lower bound on the number of messages
that cannot be anonyimized.

There are three observations from Figure 2. First, the nbr-
k approach provides around 15% better average success rate
than local-k. Second, the best average success rate achieved
is around 70. Out of the 30% dropped messages, at least 65%
of them cannot be anonymized, meaning that in the worst
case remaining 10% of all messages are dropped due to non-
optimality of the algorithm with respect to success rate. If we
knew a way to construct the optimal algorithm (with a reason-
able time and space complexity) given full knowledge of the
trace, we could have got a better bound. Last, messages with
larger k values are harder to anonymize. The success rate for
messages with k = 2 is around 30% higher than the success
rate for messages with k = 5.

Figure 3 shows the relative anonymity level for nbr-k and
local-k approaches. The relative anonymity level is shown
(on y-axis) for different groups of messages, each group rep-
resenting messages with a certain k value (on x-axis). Nbr-k
shows a relative anonymity level of 1.7 for messages with
k = 2, meaning that on the average these messages are
anonymized with k = 3.4 by the algorithm. Local-k shows
a lower relative anonymity level of 1.4 for messages with
k = 2. This gap between the two approaches vanishes for
messages with k = 5, since both of the algorithms do not
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Figure 8: Relative temporal and spatial resolution distributions

attempt to search cliques of sizes larger than the maximum
of the k values specified by the messages. The gap in relative
anonymity level between nbr-k and local-k shows that the for-
mer approach is able to anonymize messages with smaller k
values together with the ones with higher k values. This is
particularly good for messages with higher k values, as they
are harder to anonymize. This also explains why nbr-k results
in better success rate.

Figure 4 plots the average success rate (y-axis on the left
side) and the message processing time (y-axis on the right
side) for nbr-k and local-k search approaches with imme-
diate or deferred processing mode. For deferred processing
mode α is taken as 1.4 (as it gave the highest success rate).
Other than the immediate approach providing better success
rate than the deferred approach, the surprising observation
from the figure is that, deferred approach does not provide
improvement in terms of message processing time. Figure 4
also shows (above the x-axis) the number of times clique
search is performed for different approaches. Although the
deferred approach results in slightly higher message process-
ing time, it decreases the number of times the clique search is
performed around 50% (for nbr-k). Here is the reason that the
deferred approach still performs worse in terms of total pro-
cessing time: For k ≤ 10 the index update dominates the cost
of processing the message and the deferred approach results
in a more crowded index. However, the deferred approach
is promising in terms of message processing time, for cases
where k values are really large (thus clique search dominates
the cost). Another potential enhancement is to design a more
efficient multi dimensional index to replace the in-memory
R∗ tree.

Figure 5 plots the success rate for different mean temporal
tolerances and different variances in temporal and spatial tol-
erances. It shows that the algorithm is much less sensitive to
the changes in the variances of the spatial and temporal toler-
ances than the mean temporal tolerance. For instance, when
the mean temporal tolerance is 60s, changing the variance
in both spatial and temporal tolerances from 0.2 times their
means to 1.6 times their means only decreases the success
rate from 80 to 75; whereas decreasing the mean temporal
tolerance from 60s to 15s decreases the success rate by ap-
proximately 40% of its success rate (for instance from 80 to
50 when variances are equal to 0.2 times their means).

Figure 6 plots the average success rate as a function of

mean inter-wait time and mean temporal tolerance. Similarly,
Figure 7 plots the average success rate as a function of mean
inter-wait time and mean spatial tolerance. For both of the fig-
ures, the variances are always set to 0.4 times the means. We
observe that, the smaller the inter-wait time, the higher the
success rate. For smaller values of the temporal and spatial
tolerances, the decrease in inter-wait time becomes more im-
portant, in terms of keeping the success rate high. When the
inter-wait time is high, we have a lower rate of messages com-
ing into the system. Thus, it becomes harder to anonymize
messages, as the constraint graph becomes sparser. Both spa-
tial and temporal tolerances has tremendous effect on the
success rate. Although high success rates (around 85) are
achieved with high temporal and spatial tolerances, as we
will show in the next section, the relative temporal and spa-
tial resolutions are much larger than 1 in such cases, meaning
that the system assigns much smaller spatio-temporal cloak-
ing boxes to the messages compared to the constraint boxes.

6.2 Spatial/Temporal Resolution

In Section 6.1, we have showed that one way to improve
success rate is to increase the spatial and temporal tolerance
values specified by the messages. In this section, we show
that our CliqueCloak algorithms have the nice property that,
for most of the anonymized messages, the cloaking box gen-
erated by the algorithm is much smaller than the constraint
box of the received message (specified by the tolerance val-
ues), resulting in higher relative spatial and temporal resolu-
tions.

Figure 8(a) plots the frequency distribution (y-axis) of the
relative temporal resolutions (x-axis) of the anonymized mes-
sages. Figure 8 shows that in 75% of the cases the provided
relative temporal resolution is > 3.25, thus an average tem-
poral accuracy of roughly < 10s (recalling that the default
mean temporal tolerance was 30s). For 50% of the cases it is
> 5.95 and for 25% of the cases it is > 17.25. This points
out that, the observed performance with regard to temporal
resolutions is much better than the worst case specified by the
temporal tolerances.

Figure 8(b) plots the frequency distribution (y-axis) of the
relative spatial resolutions (x-axis) of the anonymized mes-
sages. Figure 8 shows that in 75% of the cases the provided
relative spatial resolution is > 5.85, thus an average spatial
accuracy of roughly < 18m (recalling that the default mean
spatial tolerance was 100m). In 50% of the cases it is > 7.75
and for 25% of the cases it is > 12.55. This points out that,
the observed performance with regard to spatial resolutions is
much better than the worst case specified by the spatial toler-
ances.

7 Related Work
Previous work on location privacy has mostly focused on

a policy-based approach [3, 10], specialized in telematics or
telecommunication domain. Users may use the policies to
specify the privacy preferences. These policies serve as a lo-
cation information sharing agreement on which data can be



collected and shared, when and for what purpose the data can
be used, and how and to whom it can be distributed. Mobile
users have to trust the LBSs that private location information
is adequately protected. Another approach to location privacy
is location k-anonymity based approach, which depersonal-
izes data through perturbation techniques before forwarding
it to the LBS. Location k-anonymity is first studied in [6]. Its
location perturbation is performed by the quadtree-based al-
gorithm executing spatial and temporal cloaking. However,
this work suffers from several drawbacks. First, it assumes
a system-wide static k value for all mobile users, which hin-
ders the service quality for those mobile nodes whose privacy
requirements can be satisfied using smaller k values. Fur-
thermore, this assumption is unrealistic in practice as mobile
users tend to have varying privacy protection requirements
under different contexts and on different subjects. Second,
their approach fails to provide any quality of service guaran-
tees with respect to the sizes of the cloaking boxes produced.
This is because, the quadtree-based algorithm anonymizes
the messages by dividing the quadtree cells until the num-
ber of messages in each cell falls below k and by returning
the previous quadrant for each cell as the spatial cloaking box
of the messages under that cell. In comparison, our unified
framework for location k-anonymity captures the desired de-
gree of privacy and quality on per-user base, supporting mo-
bile users with diverse context-dependent location privacy re-
quirements. Our message perturbation engine can anonymize
a stream of incoming messages through the use of efficient
CliqueCloak algorithms, where each message can specify an
independent k value, as well as customized spatial and tem-
poral tolerance values to restrict the size of the cloaking box
produced as a result of perturbation.

Samarati and Sweeney have developed a k-anonymity
model [14] for protecting data privacy and a set of general-
ization and suppression techniques [15] for safeguarding the
anonymity of individuals whose information is recorded in
database tables. Our work, although in a different context,
can be viewed as location perturbation of the messages sent
by mobile nodes communicating with LBS providers through
a trusted anonymity server.

8 Conclusion
We have proposed a personalized k-anonymity model for

providing location privacy. Our model allows each mobile
user to define, and modify this definition at the granularity of
single messages, a minimum anonymity level requirement, as
well as upper bounds on the inaccuracy to be introduced by
the cloaking algorithm in temporal and spatial dimensions.
We have developed a novel message perturbation engine to
implement this model, that can effectively anonymize mes-
sages sent by the mobile nodes, in accordance with location
k-anonymity, while satisfying the privacy and quality require-
ments of the users. Several spatio-temporal cloaking algo-
rithms, called CliqueCloak algorithms, are proposed to work
as a part of the perturbation engine. We experimentally stud-
ied the behavior of our CliqueCloak algorithms under vari-

ous conditions, using realistic location data synthetically gen-
erated using real road maps and traffic volume data.
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