
Scalable, Server-Passive, User-Anonymous Timed Release Cryptography

Aldar C-F. Chan
University of Toronto, Canada
aldar@comm.utoronto.ca

Ian F. Blake
University of Toronto, Canada

ifblake@comm.utoronto.ca

Abstract

We consider the problem of sending messages into the fu-
ture, commonly known as timed release cryptography. Ex-
isting schemes for this task either solve the relative time
problem with uncontrollable, coarse-grained release time
(time-lock puzzle approach) or do not provide anonymity
to senders and/or receivers and are not scalable (server-
based approach). Using a bilinear pairing on any Gap
Diffie-Hellman group, we solve this problem by giving
scalable, server-passive and user-anonymous timed release
public-key encryption schemes allowing precise absolute
release time specifications. Unlike the existing server-based
schemes, the trusted time server in our scheme is com-
pletely passive — no interaction between it and the sender
or receiver is needed; it is even not aware of the existence
of a user, thus assuring the privacy of a message and the
anonymity of both its sender and receiver. Besides, our
scheme also has a number of desirable properties includ-
ing a single form of update for all users, self-authenticated
time-bound key updates, and key insulation, making it a
scalable and appealing solution. It could also be easily gen-
eralized to a more general policy lock mechanism.

1. Introduction

The idea of “sending information into the future”, that
is, encrypting a message so that it cannot be read (or de-
crypted) by anyone, including the designated recipients
of the message, until a pre-determined, specified “release
time” instant (chosen by the sender) is called timed release
encryption. This problem was first discussed by May [15] in
1993 and further elaborated by Rivest et. al. [19]. Besides,
the coordinated bit reveal of Beaver and So’s [1] distributed
unpredictable bit generator could also be considered as a
time-lock mechanism of the generated bit.

When considering the notion of specified time, we need
to distinguish between relative time (the amount of time be-
tween events, say one hour from the last information ex-
change) and absolute time (the exact time output of a uni-

versal common reference, say 2:00AM, January 18, 2003
GMT from the Denver Atomic Clock used in Global Po-
sitioning System (GPS)). In the context of this paper, we
mainly consider the latter that is more interesting since the
relative time specification could be implemented with the
absolute time specification but not the reverse.

Since time is a critical aspect of many applications in
distributed computing and networks, timed release encryp-
tion has several interesting real-world applications. In fact,
there are many applications which depend on a common as-
sumption of an absolute time reference in the future, that is,
opening a document or proving the authenticity of a state-
ment before a specified time is not allowed. An example
is a sealed bid in which a bidder wants to seal his bid for
a government tender so that it cannot be opened before the
bidding period is closed so as to avoid anyone (say one of
the government agents handling the bids) disclosing the in-
formation of his bid to his competitors who can gain ad-
vantage through this information. Another example is the
Internet programming contest where teams located all over
the world can only be granted access to the challenge prob-
lems at a certain time. As can be seen from these two exam-
ples, the essence of the timed release encryption problem is:
a message has to be sent earlier prior to its desired release
time and we need to ensure that it cannot be read before that
moment. In the Internet programming contest example, we
need to ensure that every participating team can access the
problems when the contest starts; to avoid fairness issues
arising from uncontrollable1 network congestion or delivery
delay, we want to ensure that every team has received the
problem set well before the contest starts but cannot open
it. This is the problem timed release encryption addresses.

Since its introduction, timed release encryption has been
found useful in a number of scenarios, including electronic
auctions, key escrow, chess moves, release of documents
(like memoirs) over time, payment schedules, press releases
and etc.. Bellare and Goldwasser [2] proposed the use of
timed release encryption in key escrow; they suggested that

1Compared to the whole message, a timely delivery of the timing refer-
ence/update (within a reasonably small delay jitter bound) could be more
easily achievable.



the delayed release of escrow keys may be a suitable deter-
rent in some contexts to the possible abuse of escrow.

Since the problem was posed in 1993, there have been a
number of proposals for timed release encryption schemes,
based on two approaches — time-lock puzzles [2, 19, 14,
6, 12] and trusted servers [15, 19, 4, 17]. However, none
of these are fully satisfactory. Although no trusted server
is needed, schemes based on the time-lock puzzle approach
could only solve the relative time problem with a coarse-
grained approximate release time, dependent on the speed
of the recipients’ machines and when the decryption is
started. That is, they could only guarantee that a receiver
cannot retrieve a certain message from its ciphertext for at
least a certain minimum amount of time since he starts de-
crypting it; neither could they guarantee that the message
can be retrieved immediately after the sender’s desired re-
lease time has passed (if the recipient does not start decrypt-
ing the message immediately upon receiving it or he uses a
machine slower than what the sender expected). Besides,
the time-lock puzzle approach could take up considerable
computational resources for decryption. Hence, in general
these schemes (based on the time-lock puzzles) would be
impractical. On the other hand, the existing schemes using
trusted servers require interaction between the server and
the sender or the receiver of a message, or even both. These
schemes sacrifice the anonymity of users for solving the ab-
solute time problem with a precise release time implemen-
tation. This interaction leaks out to the server the identi-
ties of the senders and/or the receivers, and sometimes the
server would even know the release time and the content
of all messages [15]. In addition, the fact that the server is
actively involved in the encryption or decryption of every
message limits the scalability of these schemes.

It is thus fair to say that there does not exist a satis-
factory solution to the problem of constructing a scalable,
non-interactive and user-anonymous timed release encryp-
tion scheme, in which any encrypted messages could only
be opened by the designated recipients at or after a precisely
specified absolute release time (that can possibly be in the
infinite future), as indicated by a common time reference
server, and neither the sender nor the recipient of a message
needs to interact with that server (which is completely pas-
sive) while encrypting or decrypting messages.2 Based on
a bilinear pairing over any Gap Diffie-Hellman group, we
give a scalable solution. The main contribution of this paper

2Although the server in the offline version of the Rivest’s scheme [19]
is passive and is not involved in any encryption or decryption, it needs to
(periodically) publish well in advance a long list of public keys for epochs
in the future. This scheme is not scalable as a sender has to wait for the
server to publish a public key (corresponding to his chosen release time)
not in the existing list. In contrast, a sender in our scheme could choose
any release time in the (possibly infinite) future at his own will without
relying on any information from the server and the server only needs to
publish information (for receivers) whose corresponding time has passed.

is the model of a completely passive time reference server in
timed release cryptography and the demonstration of its fea-
sibility through designing scalable, server-passive and user-
anonymous schemes which allow a precise absolute release
time specification. Although we could use the hybrid cryp-
tography paradigm to combine any public key encryption
with an identity based encryption to achieve this goal,3 the
resulting constructions are considerably less efficient than
our schemes in terms of computation and/or ciphertext size.
Our schemes could have 50% reduction in most cases.

In our schemes, the time server merely provides a com-
mon absolute time reference, in the form of a sequence
of signed messages called time-bound key updates (re-
leased/published when the referenced time instants come),
and does not interact with either the sender or the receiver.
Unlike the offline version of the Rivest’s scheme [19], it
does not need to pre-establish or remember any informa-
tion of key updates for time instants in the future4. Neither
does it need to remember any keys or information about the
senders or receivers. In fact, the server would not even be
aware of the existence of a sender or receiver unless queried
by one of them (which is not necessary in most scenar-
ios). The anonymity of the sender and receiver of a mes-
sage and the privacy of the message and its release time are
thus guaranteed. Our schemes are provably secure under
the intractability assumption of the bilinear Diffie-Hellman
(BDH) problem over any Gap Diffie-Hellman group in the
random oracle model [3]. Besides, our first encryption
scheme has a number of nice additional properties, render-
ing it an efficient and scalable solution to the timed release
encryption problem requiring precise release time and com-
plete recipient privacy. These include:

• The time-bound key update needed for the decryption
at a particular release time is identical for all receivers;
regardless of the number of receivers, the time server
just need to publish/broadcast a single update enough
for all receivers to recover their messages, thus making
the scheme scalable.

• The key update published by the time server is a short
signature inherently authenticating itself. Thus, no ad-
ditional overhead of a server signature is needed.

• Certifying the authenticity of a receiver’s public key
can be done by a separate CA (Certificate Authority)
not related to the time server. Although the public key
of a receiver is tied to the time server public key, a

3We could use a public key encryption scheme to encrypt a sub-key
K1 and use an identity based encryption scheme to encrypt another sub-
key K2. These two sub-keys are then combined to feed into a symmetric
key encryption scheme for encrypting the actual messages.

4In fact, the server does not need to remember the information of any
key updates since it can generate a key update for any particular instant
directly using its private key.



change of time servers does not need re-certification
of the new public key.

• With slight modifications, our scheme inherently satis-
fies the key insulation property.

• Our scheme could be used as a more general policy-
lock encryption scheme.

We discuss the previous work on timed release encryp-
tion in the next section. Then we present our model and
the preliminaries needed in Section 3 and 4 respectively. In
Section 5, we give our constructions and discuss their prop-
erties. Finally, we conclude with a discussion of future work
on the resilience against missing updates.

2. Related Works

There are two main approaches adopted in the previous
work, one based on the so called “time-lock puzzles” and
the other on a trusted server.

2.1. Time-Lock Puzzle Approach

Time-locked puzzles were first suggested by Merkle [16]
and extended by Bellare et. al. [2] and Rivest et. al. [19].
The idea is that a secret is transformed in such a way that
any machine (serial or parallel), running continuously, takes
at least a certain amount of time to solve the underlying
computational problems (puzzles) in order to recover the
secret. This minimum amount of time is the relative release
time with respect to the start of solving the puzzle and could
be different for different machines.

In [2], Bellare and Goldwasser presented a time-lock
puzzle based on the heuristic assumption that exhaustive
search on the key space is the fastest method to recover the
key of DES. However, Rivest et. al [19] pointed out that
this only works on average since for a particular key, ex-
haustive search may find the key well before the assigned
time. Rivest et. al. then proposed another time-lock puzzle
based on the hardness of factoring which does not have this
problem. In their puzzle, if factoring is difficult, repeated
squaring mod n (where n = pq) is the fastest method to re-
cover the secret. Using a function similar to this time-lock
puzzle, a number of extensions for timed applications were
introduced [6, 14, 12]. Mao [14] added a zero-knowledge
proof to it and constructed a timed release RSA signature.
Boneh and Naor [6] introduced the notion of (verifiable)
timed commitments. Based on timed commitments, Garay
et. al. [12] constructed timed release signatures.

Although elegant in the complexity theoretic sense, the
time-lock puzzle approach is impractical, consumes a large
amount of computational resources and lacks flexibility.
Since time-lock puzzles try to make “CPU time” and “real

time” agree as closely as possible, it can only solve the rela-
tive time problem (with reference to the start of solving the
puzzle) with an approximately controllable time (different
machines work at different speeds) and the puzzle does not
automatically become solvable at a given time (if solving
is not started immediately upon receipt). If absolute and
precise timing of information release is essential, like the
sealed bid scenario mentioned above, the approach based
on a trusted time server is inevitable.

2.2 Trusted Server Approach

In order to support precise release time, an absolute or
common time reference is necessary to synchronize the
senders and receivers. Hence, the need of a trusted time
server to provide this common reference is inevitable. Al-
though inevitable, the time server should have as little in-
volvement in the users’ communication as possible, ideally
with no interaction, to ensure scalability and anonymity.
The time server should merely provide a common time
reference for users by periodically releasing unforgeable
time-embedded information that is necessary for decrypt-
ing timed release ciphertexts. However, none of the existing
schemes could efficiently satisfy this requirement.

May [15] suggested that a third party can be used as a
trusted escrow agent to store messages from senders and re-
lease them to the receivers at a specified release time. This
does not scale well as the agent has to store all escrowed
messages until their release time. Moreover, no anonymity
is guaranteed because the server knows the message, its re-
lease time, and the identities of the sender and receiver.

Rivest et. al [19] used a combination of symmetric key
and asymmetric key encryption to solve the problem. In
their scheme, a server has a sequence of keys used for a
symmetric key encryption like DES and releases them peri-
odically. As the sequence of keys could be generated from
a one way function, the server does not have to remember
anything except the seed. The major disadvantage of this
scheme is the sender has to interact with the server and give
it his message, hence, his identity as well as his message and
its release time are known to the server (anonymity guaran-
teed for receivers only). This interaction also limits its scal-
ability. To eliminate this interaction, the authors suggested
that the symmetric key encryption could be replaced by a
public key encryption; however, the problem is the server
has to publish in advance a huge number of public keys
(corresponding to time instants in the future), whose pri-
vate keys will be released in the future, or the senders can-
not freely choose the desired release time of their messages.
Hence, it is not scalable. Besides, a considerable amount of
computation is also needed for encryption and decryption.

The distributed unpredictable bit generator in [1] has an
implicit coordinated reveal property, namely, the consent



from a certain minimum fraction of the involved parties is
needed before the generated bit is revealed to all. However,
when used for timed release encryption, interaction between
the sender and time server seems to be necessary.

While interaction between the sender and server is
needed in [19], Di Crescenzo et. al. [9] proposed a scheme
in which interaction is needed between the receiver and the
server only. In their scheme, the receiver has to run a con-
ditional oblivious transfer with the server, in which they en-
gage in a multiple-round, interactive, and private conver-
sation to evaluate the public predicate whether the release
time is less than the server’s current time. If it is true, the
receiver gets the message, otherwise, he gets nothing. In
addition, the server does not learn any information about
the identity of the sender, the message and its release time;
in particular the server does not learn whether the release
time is less than, equal to, or greater than the current time.
This protocol has a logarithmic complexity in the time pa-
rameter. However, the necessity of interaction between the
server and the receiver makes the protocol not scalable and
subject to denial of service attacks5, and have no guarantee
on the receiver’s anonymity.

In all the schemes discussed so far, the information sent
by the server is not inherently authenticated; the server
needs to sign them. When proposing the use of bilinear
maps to construct identity based encryption (IBE), Boneh
and Franklin [4] named time released encryption as one of
its applications. Then Mont et. al. [17] implemented their
idea. In this scheme, a sender uses a receiver’s identity aug-
mented with a release time as the latter’s public key (for that
specified time instant) to encrypt messages. The server will
give the receiver his private keys when the corresponding
release time instants come. Although no certification of the
receiver’s public key is needed, this scheme is not scalable if
the time granularity is small since the server needs to gener-
ate and individually transmit to each receiver his secret key
at the start of each time epoch. Besides, the server could
decrypt all the messages.

When investigating the application of the additive prop-
erty of a bilinear pairing for a multiple trusted authority
implementation in identity-based encryption, Chen et. al.
[8] suggested that one of the authorities could be used for
binding time information so as to give a timed press release
application. This could be considered as an identity-based
timed release encryption scheme. As independent work, we
have come up with the same construction; it was later de-
termined that it uses the idea in [8]. The main gain is the
very desired property of using a single key update for all
receivers. As in any identity based schemes, identity based

5An adversary could keep querying the server with a ciphertext whose
release time is in the very far future, hence overloading the server. Since
the protocol is designed not to allow the server know the exact release time,
the server cannot detect this kind of denial of service attacks.

timed release encryption could only provide moderate se-
curity (even though multiple servers could be used to lower
the risk) since the server would be able to decrypt any mes-
sages for any users; key escrow is inherent. Constructing a
non-identity based timed release encryption scheme seems
to remain unknown and we will give one in this paper in
which only a receiver would be able to know the decryption
keys of the messages sent to him and nobody else, providing
the highest possible privacy.

In [13], the notion of an oblivious envelop is proposed,
which is in essence an encryption lock requiring a server’s
signature to unlock. In this sense, our scheme can be con-
sidered as an encryption, having an extra lock layer, which
requires the receiver’s private key, in addition to the time
server’s signature, to unlock.

3 Our Model

As can be seen, the existing techniques using a trusted
time server either require interaction between the server and
the sender [19] or receiver [9], or let the server know and
deliver all the secret keys [4] or messages [15]. In some
cases, there may just be a unidirectional channel between
the server and a user, thus making these schemes (requiring
interaction) out of function or impractical. As a result, we
only consider techniques without requiring any online in-
teraction. As usual, if the sender of a message is available
at the release time, the solution to the timed release encryp-
tion problem is trivial. Therefore we assume that the sender
is not available at the release time and has to send out the
message before that.

In our model, we consider a passive server, that is, the
server does not interact with either the sender or the re-
ceiver. Neither does it need to remember any keys or in-
formation about the senders or receivers. In fact, the server
would not even be aware of the existence of a sender or
receiver unless queried for time information (which is not
necessary in most scenarios). Our model is analogous to
the GPS scenario in which the satellites or the control cen-
ter, where the Denver Atomic Clock is placed, are not aware
of how many GPS receivers exist on earth while providing
a precise time to them, and groups of users, based on this
timing information from the GPS, can coordinate or syn-
chronize their tasks (without the involvement of the satel-
lites or the control center) while dispersed over the earth.
What the server needs to do in our schemes is just merely to
periodically output and publish/broadcast a certified piece
of information, the time-bound key update It, which indi-
cates the current time t (down to whatever granularity is
needed), and to keep a list of old key updates (whose re-
lease time has passed) at a publicly accessible place. The
fact that the server does not need to remember any informa-
tion about the senders or receivers in our model implies that



the time-bound key update It is identical for all users for a
particular t. That is, our model achieves the most desirable
property that the server just needs to broadcast a single It

for all receivers for a particular t.
When a sender wants to send a message with a certain

release time, he just uses the public keys of the receiver and
the server to encrypt the message and the release time in
such a way that both the receiver’s private key and the cor-
responding It are necessary for decryption. Upon receiving
a timed release encrypted message, the receiver is usually
very curious of its content and would wait (in alert) the re-
lease of the corresponding time-bound key update from the
server. Once the update It (identical for all users) is pub-
lished, everyone using the server’s public key can verify the
authenticity of It and if needed plug it into computation to
decrypt a message (sent to him) with release time at t. Since
the server’s private key is unknown, nobody can create a It

for an arbitrary time even after observing other values of It′

unless t = t′. In case a receiver has missed a particular
key update, he could still look up from the list of old key
updates to get the right update to decrypt a message whose
release time has passed.

The only trust we assume on the server is that it out-
puts a consistent absolute timing and does not give out any
time-bound key updates It before its release time. The first
assumption means that if the server now outputs “02:01:01
AM JAN 18, 2003 GMT”, an hour later (according to an
accurate timing device, say a cesium clock) it should output
a time within a reasonable error bound of “03:01:01 AM
JAN 18, 2003 GMT”. The second assumption means that
the server should not give out any It at an instant t′ where
t′ < t. From our viewpoint, these two are reasonable and
easily achievable assumptions.

Putting pieces together, we can now state the problem.
Timed Release Encryption (TRE) Problem: How can a
sender, without talking to the time server, encrypt a mes-
sage with a release time (defined using the notion of time
marked by the server) in the future using a receiver’s public
key (as well as the time server’s public key) such that the
receiver can decrypt this message with his private key only
after the release time has passed as indicated by a signed
piece of information on the current time (i.e. time-bound
key update) published by the time server that would learn
nothing about the identities of the two parties, the messages
or its release time?

Besides, in a secure and private timed release public key
encryption scheme, only the intended receiver holding the
corresponding private key and at a time instant after the
specified release time (enforced by a trusted time server)
could recover a secret. To achieve the highest possible pri-
vacy, even the trusted authority or time server should not be
able to decrypt a message sent to any users6.

6Identity based encryption schemes do not satisfy this requirement be-

4 Preliminaries

Throughout this paper, we will use the following nota-
tions, definitions and computational assumptions.

We denote the set of all binary strings by {0, 1}∗, the
finite field of integers modular q (where q is a prime) by
Zq, and Zq\{0} by Z

∗
q . Below are the computational as-

sumptions we have used in this paper. Let G1 be a cyclic
additive group whose order is a prime q and G2 be a cyclic
multiplicative group with the same order q.

Definition 1 Discrete Log (DL) Problem in G2

Given g1, g2 ∈ G2, find an integer a ∈ Z
∗
q such that g2 = ga

1

whenever such an integer exists.

Definition 2 Discrete Log (DL) Problem in G1

Given P,Q ∈ G1, find an integer a ∈ Z
∗
q such that Q = aP

whenever such an integer exists.

Definition 3 Decisional Diffie-Hellman (DDH) Problem
in G1

Given P ∈ G1, aP , bP and cP for some unknowns a, b,
c ∈ Z

∗
q , decide whether c ≡ ab (mod q).

Definition 4 Computational Diffie-Hellman (CDH)
Problem in G1

Given P ∈ G1, aP and bP for some unknowns a, b ∈ Z
∗
q ,

find abP .

Definition 5 Bilinear Pairing
A bilinear pairing is a map ê : G1 × G1 → G2 with the
following properties:

1. Bilinearity: ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈
G1, a, b ∈ Z

∗
q .

2. Non-degeneracy: ê(P,Q) �= 1 unless P or Q is an
identity element of G1.

3. Computability: There is an efficient algorithm to
compute ê(P,Q).

Definition 6 Bilinear Diffie-Hellman (BDH) Problem
Given P ∈ G1, aP , bP and cP for some unknowns a, b,
c ∈ Z

∗
q , find ê(P, P )abc.

With carefully chosen groups, the DL problem is usu-
ally assumed to be difficult for most instances (DL as-
sumption). Both the decisional and computational Diffie-
Hellman problems are also assumed difficult in such
groups; however, if a bilinear pairing exists in the under-
lying additive group, the decisional Diffie-Hellman prob-
lem over it can be solved in polynomial time by testing
whether ê(aP, bP ) = ê(P, cP ). This leads to the Gap

cause the server also possess a user’s private key.



Diffie-Hellman (GDH) Assumption that for a certain addi-
tive group G1, the decisional Diffie-Hellman problem on it
can be solved in polynomial time but there is no polynomial
time algorithm to solve the computational Diffie-Hellman
problem (with the help of an oracle who can solve the deci-
sional Diffie-Hellman problem) with non-negligible proba-
bility. The additive group G1 is called a Gap Diffie-Hellman
group which can be found in supersingular elliptic curves
over a finite field, with the bilinear pairing derived from a
Weil or Tate pairing.7 The bilinear Diffie-Hellman problem
is usually assumed to be difficult and is the basis of the se-
curity of our schemes. It is obvious that solving the DL or
GDH problem over G1 implies solving the BDH problem.
Besides that, the DL problem over G2 should also be hard
so that the DL problem over G1 is not easily solved. Hence,
we need the assumption that BDH problem is hard. As long
as the BDH assumption holds, our schemes are secure in the
random oracle model [3].

5 Timed Release Public Key Encryption
Constructions

In this section, we will describe a simple construction
of timed release encryption based on bilinear maps. The
security of this scheme is based on the hardness of the Bi-
linear Diffie-Hellman (BDH) Problem over a Gap Diffie-
Hellman (GDH) group. These constructions are one-way
encryption [4] semantically secure against chosen plaintext
attacks in the random oracle model [3]. For the sake of
clarity and simplicity, the Fujisaki-Okamoto Transform [11]
has not been applied in the following discussion. Similar to
the technique in [4], this transform can be applied to our
schemes to obtain chosen-ciphertext secure schemes. Al-
ternatively, the REACT conversion introduced by Okamoto
and Pointcheval [18] could be used instead.

5.1 Timed Release Encryption (TRE)

Suppose G1 and G2 are additive and multiplicative
cyclic groups of order q (prime) respectively and ê : G1 ×
G1 → G2 is a computable, non-degenerate bilinear map.
Given the following cryptographic hash functions:

H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}n

where n is the size of plaintext. The TRE scheme
runs as follows.

Server Key Generation: The time server randomly picks
a generator of G1, say G, and a private key s ∈ Z

∗
q , and

computes the public key sG. G and sG are made pub-
lic. The public key of the server is PKS = (G, sG)

7They motivate our choice of notating the image in multiplicative no-
tation and the preimage in additive notation.

User Key Generation: Each user picks a secret key a ∈
Z
∗
q and computes the public key PKU = (aG, asG).

The secret key a could be generated by applying a
good hash function to a human-memorable password
chosen by the user. (Note that the public key here is
not directly derived from the user’s identity; a CA type
of certification is still needed.)

Time Server Broadcast: At a time instant T ∈ {0, 1}∗,
the time server publishes a time-bound key update of
the form sH1(T ). Every user can verify its authen-
ticity8 by checking ê(sG,H1(T )) = ê(G, sH1(T )),
where (G, sG) is the server’s public key.

At a particular instant t as described by a string T ,
the server sends out to every user its signature on the
string T , that is sH1(T ), to certify it is now instant t.

Encryption: Given a message M , a receiver public key
(aG, asG), a server public key (G, sG), and a release
time T ∈ {0, 1}∗,

1. Verify that ê(aG, sG) = ê(G, asG); proceed
with the encryption only if this is true.

The verification is to ensure that the receiver’s
public key is of the form a × sG so that he really
needs the server’s timed release information (the
time-bound key update) to decrypt the message.

2. Randomly pick r ∈ Z
∗
q and compute rG and

rasG.

3. Compute:
K = ê(rasG,H1(T )) = ê(G,H1(T ))ras.

4. Then the ciphertext is: C = 〈rG,M ⊕ H2(K)〉.

Decryption: Given a ciphertext C = 〈U, V 〉, a receiver’s
private key a, and the needed time-bound key update
σS(T ) = sH1(T ) from the server,

1. Compute:K ′ = ê(U, σS(T ))a.

2. Recover M by computing V ⊕ H2(K ′).

If C is a correct ciphertext with release time T ,
then U = rG and V = M ⊕ H2(K) with K =
ê(G,H1(T ))ras. The decryption works because:

K ′ = ê(U, σS(T ))a = ê(rG, sH1(T ))a

= ê(G,H1(T ))ras = K

and V ⊕ H2(K ′) = M ⊕ H2(K) ⊕ H2(K) = M .

8Note that the authenticity of a time-bound key update is implicitly
provided by the content itself, and the time server does not need to generate
an additional signature for this purpose.



A Sketch of Security Proof for TRE

1. Given G, sG, it is difficult to find s (DL problem).
Hence, the server’s private key s should be safe.

2. Given (G, sG) and (aG, asG), it is difficult to find
a. The argument is as follows: Suppose we have a
polynomial time algorithm A1(G, sG, aG, asG) = a
which solves the above problem, we can use it to solve
the DL problem in the following way: Given G and
aG, we randomly pick a b and can easily compute bG
and baG (which is equal to abG); using A1(), we can
find a = A1(G, bG, aG, abG). So this problem is at
least as difficult as the DL problem. Hence, given the
public keys, the user’s private key a should be safe.

3. Rewriting any sH1(Ti) as wisG (for some unknown
wi) and using the same argument as item 2, the prob-
lem of finding s from {G, sG, sH1(T1), sH1(T2), . . .}
is at least as difficult as the DL problem. The server’s
private key s is thus safe.

4. Now, suppose a cheating receiver attempts to find
sH1(T ) from sH1(Ti), Ti �= T . If we rewrite H1(T )
as wiH1(Ti), the problem becomes to find swiH1(Ti)
from H1(Ti), wiH1(Ti), sH1(Ti), which is equivalent
to the Computational Diffie-Hellman Problem over a
Gap Diffie-Hellman group. That is, finding a particu-
lar key update from another should be hard. However,
this does not rule out the possibility that a list of key
updates, say {sH1(T1), . . . , sH1(Ti), . . .}, could help
decrypt a ciphertext having a different release time T .
We show in the appendix that this possibility could be
neglected if we consider H1() as a random oracle.

5. A rough proof of the time locking property9 could be
as follows. Suppose we take H1() as a random ora-
cle.10 Hence, we could assume that a cheating receiver
cannot exploit the knowledge about other key updates
and from his viewpoint, H1(T ), for a given release
time T , is just an arbitrary point in G1 (The proof can
be found in the appendix.). If another hash function
H2() is used to match the length of the pairing to that
of the message, it is also modeled as a random oracle.

The challenge for a cheating receiver is to decrypt,
without the corresponding key update sH1(T ), a ci-
phertext with release time T not of his choice. In
order to decrypt this ciphertext, he needs to com-
pute ê(G,H1(T ))ras from the information he knows,
namely rG, sG and a. Suppose we have an al-
gorithm A2() able to achieve this goal, that is,

9The time locking property ensures that a user cannot retrieve a mes-
sage before receiving the key update of the desired release time.

10When we assume H1() is a random oracle, an adversary cannot eval-
uate it by himself but is forced to access an oracle to find any H1(T )’s.

A2(rG, sG,H1(T ), a) = ê(G,H1(T ))ras. We could
use A2() to solve the bilinear Diffie-Hellman prob-
lem as follows. Recall that the BDH problem is to
find ê(G,G)xyz from xG, yG, and zG. We could
set H1(T ) = zG and a = 1 and give them together
with xG and yG as a problem instance to A2(). Then,
A2(xG, yG, zG, 1) = ê(G, zG)xy = ê(G,G)xyz .
That is, we could use A2() as a subroutine to solve
the BDH problem.

Hence, as long as the BDH problem is difficult, the re-
ceiver, even with his private key, cannot decrypt an en-
crypted message before its specified release time (i.e.
without the needed time-bound key update from the
time server) unless he colludes with the time server.

6. In TRE, the secrecy of messages of a receiver is guar-
anteed and it is rare that the time server can decrypt
a significant amount of encrypted messages sent to a
receiver. The time server could only cheat at the very
beginning by giving all users its chosen generator of
the form G = H1(T ) for some T at which it wishes to
eavesdrop messages; hence, the probability of success-
ful wide scale eavesdropping is still negligible. In fact,
this concern could be eliminated if a sender can avoid
using T that would give H1(T ) = G. There should not
be a large difference, from the sender’s point of view,
between using T and using T plus one second, but the
resulting two H1() images could be very different.

5.2 Identity-based Timed Release En-
cryption (ID-TRE)

This scheme is essentially the idea used in [8]. For the
sake of simplicity, in the following discussion, the time
server is the same entity as the trusted server assigning pri-
vate key to users in an ID-based encryption scheme [4]; in
real cases, it could be a different entity. Using the same
notations as in TRE, the ID-TRE protocol runs as follows.

Sever Key Generation: The server randomly picks a gen-
erator of G1, say G, and then picks s ∈ Z

∗
q as his pri-

vate key and computes sG. G and sG are made public.

User Key Generation: For a user i with IDi, the server
computes and gives him sH1(IDi), to be used as his
private key, and his public key is his identity IDi.

Time Server Broadcast: The time server periodically
publishes a signed piece of information sH1(T ) (the
time-bound key update), indicating the current time
T ∈ {0, 1}∗. Its authenticity is inherent as in TRE.

Encryption: Given a message M , a receiver identity IDi

and a release time T ∈ {0, 1}∗,



1. Compute KE = H1(IDi) + H1(T )

2. Pick a random r ∈ Z
∗
q .

3. Compute K = ê(sG,KE)r = ê(G,KE)rs.

4. Compute the ciphertext C = 〈rG,M ⊕H2(K)〉.
Decryption: Given a ciphertext C = 〈U, V 〉, a user’s pri-

vate key sH1(IDi), and the needed time-bound key
update sH1(T ) for release time T ,

1. Combine the private key sH1(IDi) with the key
update sH1(T ) to get the decryption key:
KD = sH1(IDi) + sH1(T ) = sKE .

2. Compute the pairing K ′ = ê(U,KD).

3. Recover M by computing V ⊕ H2(K ′).

If C is a correct ciphertext with release time T , then
U = rG and V = M⊕H2(K) with K = ê(G,KE)rs.
The decryption works because:

K ′ = ê(U,KD) = ê(rG, sKE) = ê(G,KE)rs = K

and V ⊕ H2(K ′) = M ⊕ H2(K) ⊕ H2(K) = M .

A Sketch of Security Proof for ID-TRE

1. Regarding the security of the server’s and receiver’s
private keys, points 1, 3, and 4 for TRE apply here.

2. When a cheating receiver does not have sH1(T ),
whether he can decrypt a ciphertext before the re-
lease time would depend on whether he can com-
pute ê(G,H1(T ))rs from sG and rG. This is be-
cause the needed pairing ê(G,H1(ID) + H1(T ))rs

can be decomposed as a product of two pairings, i.e.
ê(G,H1(ID))rsê(G,H1(T ))rs , and the first half is
computable by the user. Applying the same argument
used for TRE, this problem is at least as difficult as
the Bilinear Diffie-Hellman (BDH) Problem. As long
as the BDH problem is difficult, a receiver could not
decrypt an encrypted message (sent to him) before its
release time unless he colludes with the time server.

5.3 Discussions

We will discuss a number of desirable properties of TRE.

5.3.1 A Single, Self-authenticated Time-bound Key
Update

As can be seen, only a single time-bound key update for
release time T , in the form sH1(T ), is needed for all re-
ceivers, making this TRE scheme considerably scalable —
no matter how many users there are, only one time-bound
key update for each release time T is needed. Besides, no
secure channel is needed for delivering the key updates.

The time-bound key update is self-authenticated and the
time server does not need to create an additional signature
to convince the users of its authenticity. In fact, its form
sH1(T ) is equivalent to the short signature in [5], a release
time T (in the form of a string of arbitrary length) signed by
the server with its private key s.

5.3.2 Generalization to a Policy Lock

In TRE, the time server essentially sends out a signed mes-
sage on T ∈ {0, 1}∗ which could be of the form “It is
now time t”, and this signed message is one of the ingre-
dients needed to decrypt a time-lock encryption along with
the receiver’s private key. It is possible to generalize it to
a more general policy-lock encryption mechanism as fol-
lows. The server could be treated as a witness known to the
sender and receiver. He could sign messages of an arbitrary
form C ∈ {0, 1}∗ describing the conditions (specified by
the sender) under which the receiver can recover a locked
message. Possible forms of C are “It is an emergency”,
“The receiver has completed his requested task X”, etc..

5.3.3 Key Insulation Property and Applications to Key
Evolution

Although simple, the TRE scheme has the property of very
good key insulation to provide resilience against key expo-
sure. In most cryptosystems, the private key is directly used
in decryption; so when the decryption is done on an insecure
device, key exposure could be the biggest threat. There has
been work, such as [10], proposing techniques which update
the private key while keeping the public key unchanged but
augmented with a time index. In these schemes, the lifetime
of a public key is divided into a number of epochs in each
of which a different private key is used. Given a number
of private keys for different epochs, an adversary could not
determine others so that compromised keys in some epochs
would not leak out those in others or lead to a total break.
In fact, the TRE scheme proposed here achieves the key in-
sulation goal for free.

In TRE, we could avoid using the secret key a directly
in decrypting any ciphertexts; instead we could use Ki =
aH1(Ti) as the key for an epoch between time instants Ti

and Ti+1 to do all the decryption on the relatively inse-
cure device. The original secret key a could be stored in
a safe device (say a smart card) or derived from a certain
human-memorable password (using a good cryptographic
hash function). When a new key update for instant Ti is re-
ceived from the time server, the user computes aH1(Ti) in
a safe device and then stores it in the relatively insecure de-
vice; this computation could be done in a micro-controller-
based smart card. In case a human-memorable password is
used to derive the secret key a, the computation of aH1(Ti)



could be done on the insecure device and all the intermedi-
ate results are deleted once the computation is completed.
Due to the security guarantee in TRE, any compromised Ki

would not leak out Kj , j �= i.

5.3.4 Overhead of Changing Time Servers

In TRE, the certificate authority (CA) and the trusted time
server need not be the same entity. In fact, as long as the
aG part of a public key is certified, the validity of its asG
part could be verified easily. In TRE, it is the receiver who
chooses the time server. In some cases, the sender may not
trust the time server S chosen by the receiver and request
the receiver to give him a public key using another time
server S ′. At a first glance, the receiver might have to go
through the same certification process with the CA in order
to convince others this is his new public key with Server
S ′. But in fact, the receiver does not need to get a new
certificate in order to achieve this because using the original
public key, other users can verify the authenticity of the new
public key as follows: Suppose (aG, asG) is the original,
CA-certified public key and (aG, as′G) is the new public
key11. By verifying that ê(G, as′G) = ê(s′G, aG) (where
s′G is the public key of the new time server S ′ and aG
is a part of the old receiver public key which is certified),
any users can tell whether the new key is really from the
claimed receiver since aG has been certified in the original
public key and only people knowing a (the private key) can
create as′G satisfying the above condition.

5.3.5 Using Multiple Time Servers

To lower the risk that a cheating receiver colludes with
the time server so that he could receive a time-bound key
update before its dedicated release time, the sender could
use multiple time servers so that the receiver now needs to
collude more servers to cheat. Suppose there are N time
servers (specified by the sender) each using a secret key si

and a generator Gi ∈ G1, where 1 ≤ i ≤ N , their cor-
responding public keys and time-bound key updates for T
are then (Gi, siGi) and siH1(T ) respectively. To encrypt
a message M , the sender asks the receiver to give him a
new public key of the form Knew = a

∑N
i=1 siGi. Us-

ing the same trick as above, the sender could verify the
validity of the new receiver public key and send a cipher-
text of the form 〈rG1, rG2, . . . , rGN ,M ⊕H2(K)〉 where
K = ê(rKnew,H1(T )). Arranging terms, K is equal to
∏N

i=1 ê(Gi,H1(T ))rasi . The receiver now needs to get all

11For simplicity in discussion, we assume the new time server uses the
same generator G. In fact, the generator of the new time server needs
not be the same as the old one. Even if a different G is used, the same
discussion applies because we can re-write the new generator G′ as G′ =
xG for some unknown x ∈ Z

∗
q and take s′x as the new private key in the

discussion.

siH1(T ), each from one of the N servers, together with his
private key a to compute K which is needed for decryp-
tion (Note that if we denote Ki = ê(Gi,H1(T ))rasi , where
1 ≤ i ≤ N , we could compute Ki in the following way:
K ′

i = ê(rGi, siH1(T ))a = ê(Gi,H1(T ))rasi = Ki.).

Although the properties of ID-TRE is not as appealing as
TRE and key escrow is inherent in it (as in all other identity-
based schemes), the time-bound key update for a particular
time instant T in ID-TRE is still identical for all receivers;
the time server just needs to broadcast a single key update
for each T , thus offering good scalability.

6 Conclusions

In this paper, we provide a solution to the problem of
server-passive and user-anonymous timed release encryp-
tion. We give two constructions that can achieve timed re-
lease encryption with a precisely specified absolute release
time without needing any interaction between the server and
the sender or receiver. The schemes are scalable since only
a single, identical time-bound key update for all users is
needed for any particular time instant.

In the schemes discussed in this paper, a key update from
the time server, sH1(T ), could only be used to decrypt mes-
sages with release time T , but not any Ti < T . In this pa-
per, we assume that the server posts all the old, published
updates at a public place (say on a webpage) for the users
to look up, so missing an update would not cause a prob-
lem. As future work, we wish to design schemes resilient
to missing updates. A possible approach could be using the
hierarchial identity based encryption in a way similar to for-
ward secure encryption [7].

Acknowledgement

The authors would like to thank Nigel Smart for pointing
out that the idea they used to construct the identity-based
timed release encryption was proposed in [8]. They also
thank the anonymous reviewers for the useful comments
and making them aware of the references [1] and [13].

References

[1] D. Beaver and N. So. Unpredictable bit generation without
broadcast. In Advances in Cryptology — Eurocrypt’1993,
Springer-Verlag LNCS vol. 765, pages 424–434, 1993.

[2] M. Bellare and S. Goldwasser. Encapsulated key-escrow.
MIT LCS Tech. Report MIT/LCS/TR-688, Apr. 1996.

[3] M. Bellare and P. Rogaway. Random oracles are practi-
cal: A paradigm for designing efficient protocols. In proc.
ACM Conference on Computer and Communication Secu-
rity (CCS’93), pages 62–73, Nov. 1993.



[4] D. Boneh and M. Franklin. Identity-based encryption
from the Weil pairing. In Advances in Cryptology —
Crypto’2001, Springer-Verlag LNCS vol. 2139, pages 213–
229, 2001.

[5] D. Boneh, B. Lynn, and H. Shacham. Short signatures from
Weil pairing. In Advances in Cryptology — Asiacrypt’2001,
Springer-Verlag LNCS vol. 2248, pages 514–532, 2001.

[6] D. Boneh and M. Naor. Timed commitments (extended
abstract). In Advances in Cryptology — Crypto’2000,
Springer-Verlag LNCS vol. 1880, pages 236–254, 2000.

[7] R. Canetti, S. Halevi, and J. Katz. A forward secure public
key encryption scheme. In Advances in Cryptology — Eu-
rocrypt’2003, Springer-Verlag LNCS vol. 2656, pages 236–
254, 2003.

[8] L. Chen, K. Harrison, N. P. Smart, and D. Soldera. Applica-
tions of multiple trust authorities in pairing based cryptosys-
tems. In InfraSec 2002, Springer-Verlag LNCS vol. 2437,
pages 260–275, 2002.

[9] G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan. Con-
ditional oblivious transfer and time-release encryption. In
Advances in Cryptology — Eurocrypt’99, Springer-Verlag
LNCS vol. 1592, pages 74–89, 1999.

[10] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated pub-
lic key cryptosystems. In Advances in Cryptology — Euro-
crypt’2002, Springer-Verlag LNCS vol. 2332, 2002.

[11] E. Fujisaki and T. Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. In Advances in
Cryptology — Crypto’99, Springer-Verlag LNCS vol. 1666,
pages 537–554, 1999.

[12] J. Garay and M. Jakobsson. Timed release of standard dig-
ital signatures. In Financial Crypto’2002, Springer-Verlag
LNCS vol., 2002.

[13] N. Li, W. Du, and D. Boneh. Oblivious signature-based
envelop. In ACM Symposium on Principles of Distributed
Computing (PODC)2003, pages 182–189, July 2003.

[14] W. Mao. Timed-release cryptography. In SAC’01, Springer-
Verlag LNCS vol. 2259, pages 342–357, Aug. 2001.

[15] T. May. Time-release crypto, Feb. 1993. Manuscript.
[16] R. C. Merkle. Secure communications over insecure chan-

nels. Communications of ACM, 21(4):294–299, Apr. 1978.
[17] M. C. Mont, K. Harrison, and M. Sadler. The HP time vault

service: Innovating the way confidential information is dis-
closed at the right time. In HP Lab. Report HPL-2002-243,
2002.

[18] T. Okamoto and D. Pointcheval. REACT: Rapid enhanced-
security asymmetric cryptosystem transform. In Cryptog-
raphers’ Track RSA Conference CT-RSA 2002, Springer-
Verlag LNCS vol. 2271, pages 159–175, 2002.

[19] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock
puzzles and timed-release crypto. MIT LCS Tech. Report
MIT/LCS/TR-684, 1996.

Appendix

In the paper, we consider a simpler adversary model in
which the adversary A2() views H1(T ) as an arbitrary point
in G1. Considering H1() as a random oracle, we show here
that this assumption is valid and the knowledge of a limited

number of other key updates will not help decrypt a cipher-
text with a particular release time. We achieve this by show-
ing how A2() can be implemented with another adversary
A3() which, with the help of other key updates, can decrypt
a ciphertext whose release time is of his choice with a non-
negligible probability ε of success. This equivalently means
if solving the problem for A2() is hard, so is that for A3().
As shown in the paper, the task A2() solves is at least as
hard as the BDH problem, then so is that A3() solves, which
is the very problem of breaking the TRE time lock.

We will show how A2() could simulate the adversary en-
vironment A3() works with to get it help solve its problem.
Suppose now A2() receives the following problem instance:
Given rG, sG, and Q ∈ G1, find ê(G,Q)rs. (Without loss
of generality, a is dropped here.)

When we model H1() as a random oracle, A3() is forced
to query an oracle under full control of A2() in order to
evaluate H1(). A2() simulates the H1() queries as follows.
All the previous queries are kept in a list; if the current query
Ti is in the list, return the previous reply. If not, it generates
a new one by first picking a random number bi ∈ Z

∗
q and then

returning H1(Ti) = biQ with probability δ or H1(Ti) =
biG with probability (1−δ). The new entry (Ti, bi,H1(Ti))
is added to the existing H1() query list. It is clear that A3()
cannot distinguish the query output from a random one.

Since A3() can have access to other key updates sH1(Ti),
Ti �= T (with T being his choice of challenge yet to be de-
cided). A2() can simulate the update query as follows: If Ti

is in the H1() query list, it retrieves it, otherwise generates a
new one and adds it back to the list. Then, if H1(Ti) = biQ,
this run of A2() fails, otherwise it returns sH1(Ti) = sbiG
(which can be computed by A2() from sG and bi).

A3() is then asked to pick a challenge T . A2() does the
same procedures for any further H1() queries. If H1(T ) =
bG, this run of A2() fails, otherwise (i.e. H1(T ) = bQ)
A2() gives A3() the following ciphertext: C = 〈rG,X〉
where X is randomly picked. A2() keeps on replying
any H1() and update queries from A3(). At the end,
A3() should return a plaintext of the form M = X ⊕
H2(ê(G,H1(T ))rs) = X ⊕ H2(ê(G,Q)rsb) with a proba-
bility of success ε. Suppose A3() has made at most qu key
update queries; then a run of A2() does not abort with prob-
ability δ(1 − δ)qu . That is, we could find H2(ê(G,Q)rsb)
with probability δ(1 − δ)quε. If H2() is an invertible func-
tion, we could get ê(G,Q)rs (what A2() needs to find) as
b is known. If H2() is a hash function and modeled as a
random oracle, we randomly pick an entry in the list of pre-
vious H2() queries and would still have a good probability in
picking the desired preimage of H2(). It could be observed
that A3() should not be able to distinguish the simulation
played by A2() from a real adversary environment.


