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Abstract

Existing techniques for keyword/attribute search in
structured P2P overlays suffer from several problems: un-
balanced load, hot spots, fault tolerance, storage redun-
dancy, and unable to facilitate ranking. In this paper, we
present a general keyword index and search scheme for
structured P2P networks that avoids these problems, and
in which object insert, delete, and search can be efficiently
performed. Some experimental results are also presented to
support our claim.

1 Introduction

A distinguishing characteristic of DHT-based structured
P2P networks( e.g., Tapestry [13], Pastry [9], Chord [11],
and CAN [7]) is that search is deterministic: given the iden-
tifier of an object (and only through the identifier), the un-
derlying location and routing scheme guarantees to find the
object within reasonable cost. Search by identifiers, how-
ever, is useful only when we have full knowledge on what
resources we want, but often times we have only partial in-
formation. So much attention has been paid to build a more
flexible search service, such as keyword/attribute search, on
top of the networks.

The most common way to implement keyword search in
information systems is by inverted index. An inverted index
is a set of entries of pairs (ω, O), where ω is a keyword, and
O is the set of objects containing this keyword; see Figure 1.
Once an inverted index is built, a set of keywords can be
entered to find all objects that contain these keywords. For
example, in Figure 1, by taking the intersection of the sets
associated with keywords term1, term2, and term3, we can
find the object (i.e., Object1) that has all these keywords.

To implement keyword search over a P2P network, a dis-
tributed version of inverted index can be built. A straightfor-
ward way to decentralize an inverted index is to distribute
the entries so that each keyword is assigned a unique node to
handle the objects that have this keyword. By incorporating
into DHT networks, one can use a given keyword as key to
determine the node that is responsible for the keyword, and
obtains the set of objects that contain this keyword from
the node. By taking appropriate join operations (e.g., inter-
section), one can retrieve objects with a given keyword set.

Object1
{term1,
term2,
term3}

Object2
{term1,
term3,
term5}

Object3
{term1,
term2,
term4}

term1 {Object1, Object2, Object3}
word1 {Object1, Object2, Object3}term2 {Object1, Object3}
term3 {Object1, Object2}
term4 {Object3}
term5 {Object2}

Key List of Objects

... ...

Figure 1. An inverted index of three objects.

This approach is used in [8, 14]. Some other systems use a
similar approach, but add on more features. For example,
in [2] multiple keywords are additionally treated as a single
entry if they are highly correlated. This saves bandwidth
and speeds up search process, but at the expense of extra
storage. Correlation between keywords is also not easily
available in distributed environment. In [1], each resource
(object) is described by an attribute-value tree (AVTree), in
which each link represents an attribute with a value repre-
sented by the child node. Each path from the root in an
AVTree (called a strand) is a sequence of attribute-value
pairs that can be treated as a keyword to describe the re-
source. Then, the concept of inverted index can be used
to search resources with a given sequence of attribute-value
pairs. Note that some strands are sub-paths of other strands.
This means that some nodes are handling resources that
have already been handled by other nodes, and some may
handle a set of resources significantly larger than the others
do.

The above approaches have some common problems.
The first one concerns load balance. In a real world corpus,
keyword frequency—the count of a keyword’s occurrence
in objects—varies enormously. The distribution typically
follows Zipf’s law, meaning that a few keywords occur very
often while many others occur rarely (in power-law rela-
tionship). So, simply mapping each entry of an inverted in-
dex to a node in DHT networks makes the storage required
for indexing at each node extremely uneven.

The second problem concerns storage redundancy. If
an object σ contains keywords ω1, . . . , ωk, then creating
entries for each keyword (and any combination of them)
means that information about the object is repeatedly stored



at k (or more) different places. (A typical object has a
few to dozens of keywords in its metadata.) This redun-
dancy also makes delete/insert an object very expensive, as
it has to deal with multiple peer accesses in the network.
Note that redundancy is necessary in coping with fault toler-
ance. However, the redundancy incurred by the above index
scheme does not help solve fault tolerance naturally because
the number of keywords of an object has no correlation with
the failure probability of the object.

Moreover, even though an object is indexed at several
places, each keyword is still handled only by a single node.
Any failure to the node would then block all queries involv-
ing this keyword. The system is also vulnerable to hot spots,
as nodes responsible for some popular keywords may be
queried much more frequently than the others.

The last problem concerns object ranking. If the object
space is huge, a query composed of a few popular key-
words may yield a set with a very large number of ob-
jects. One would certainly prefer some ranking mechanism
to help select relevant objects, but such feature is absent
from the above work. Ranking, in general, requires some
global knowledge. For example, in information retrieval,
the concept of inverse document frequency (IDF) has been
used to measure how importance a keyword is. It is defined
as the logarithm of the ratio of number of documents in a
collection to the number of documents containing the key-
word [4]. So infrequent words have high IDF and common
words such as ‘mp3’ have low IDF. IDF can be easily calcu-
lated when indexing service is centralized; but in a decen-
tralized environment, the cost is high to get a good measure
of it.

In this paper, we present a general keyword index and
search scheme for DHT networks. The main idea is to rep-
resent each object as an r-bit vector according to its key-
word set. By viewing these r-bit vectors as points in an
r-dimensional hypercube, many interesting properties can
be obtained:

First, the index entries of a single keyword are handled
by a set of nodes. The population of this set depends on
the popularity of the keyword: the more the popularity of
a keyword, the more the number of nodes responsible for
the keyword. As a result, the load of nodes can be balanced
even though keyword distribution might follow Zipf’s Law,
and no node is likely to be swamped even if it handles a
very popular keyword. Moreover, since a number of nodes
are responsible for a single keyword, any failure of them
cannot block queries involving the keyword.

Secondly, an object σ associated with a keyword set K
can be efficiently and deterministically located if the set
K is given. This is analogous to name/identifier search in
DHT networks. As discussed earlier, DHT networks use
an object’s name to determine its handling node. There-
after, locating the object is simply a message routing to the
node, which can be done very efficiently in the networks. In
our index scheme, we use the keyword set associating with
an object to determine a unique node to index the object.
When the set is known, locating the object is as efficient
as name search in DHT networks. In contrast, this kind of
‘pin search’ is usually very expensive in existing P2P net-
works. Likewise, object insert and delete can also be done

efficiently, as no unnecessary redundancy is introduced in
our scheme to index objects.

Third, in a search operation, in addition to objects whose
keyword sets match exactly with a given keyword set K,
one may also wish to retrieve objects whose keyword sets
contain K. All these objects can be easily and efficiently
retrieved in our index scheme. Moreover, the larger the set
K a user has specified, the more restriction a user has placed
on his target objects. Accordingly, our index scheme will
require fewer number of nodes to be contacted. On the other
hand, when a small set of K is given, a large number of
objects may satisfy the search request. In this case, a user
often expects to see only a small subset of them. Our index
scheme can also support this kind of operations effectively
and efficiently.

In the above search operation, when the number of
matching objects is large and a user only expects to see a
portion of them, our index scheme facilitates a variety of
ways to help users rank the matching objects. Specifically,
objects in our index scheme are easily distinguished by the
number of keywords they associate. For example, let K be a
set of keywords. Our index scheme can easily locate objects
that are associated with exactly the set K of keywords, ob-
jects that are associated with K plus one more keyword, K
plus two more keywords, and so on. Moreover, within each
category, e.g., K plus one more keyword, objects can fur-
ther be distinguished by the extra keyword they have, e.g.,
K plus a specific keyword σ1, K plus a specific keyword
σ2, and so on.

This interesting feature allows upper level applications to
retrieve objects in the order they wish. For example, an ap-
plication might prefer more specific objects to be retrieved
first. In this case, when a search request with a keyword set
K is issued, our index scheme can return objects contain-
ing this keyword set K in the order by giving preference to
those with more extra number of keywords. On the other
hand, if an application prefers more general objects, then
our index scheme can give preference to those with fewer
number of extra keywords. Furthermore, our index scheme
may also sample some objects in each category described
above, e.g., objects that have an extra keyword σ1, an extra
keyword σ2, . . ., two extra keywords σ1, σ2, two extra key-
words σ1, σ3, . . ., and so on; and then return these sample
objects along with their extra keyword(s) to help users re-
fine their queries. Note that no global knowledge is required
to implement this ranking mechanism.

The rest of the paper is organized as follows. Sec-
tion 2 presents our system model and formalize the keyword
search problem; Section 3 presents the keyword index and
search scheme; and Section 4 presents some experimental
results. Related work and conclusions are offered in Sec-
tion 5.

2 System Model

We envisage a P2P application system as a four-layer
structure shown in Figure 2. Typically, applications such
as file sharing, document retrieval, storage sharing, and ser-
vice discovery, are placed on top of a P2P overlay, which in
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Figure 2. System Architecture.

turn is built on a physical network. Here we have inserted
a keyword/attribute search layer in between the application
layer and the P2P overlay to facilitate object retrieval.

To provide guaranteed search—that is, if an object is re-
siding somewhere in the network, then it can be located with
reasonable cost—our keyword/attribute search layer is built
on a DHT network. To make the layer as general as possi-
ble, we do not assume any specific DHT overlay, but rather a
generalized structure on which our keyword/attribute search
layer can be linked to. The following section presents such
a generalized DHT overlay.

2.1 A generalized Model of DHT Networks

A DHT network (or simply a DHT) is an overlay built
upon a physical network. The overlay can be modeled by a
directed graph G = (V, E), where V is the set of nodes in
the network, and E is the set of links between nodes. Each
node u is assigned an a-bit unique identification. When no
ambiguity is possible, we simply use u for the identification.
An edge (u, v) in E means that u knows a direct way to send
a message to v.

A set O of objects is shared among the network. Each
object σ ∈ O also has a unique ID, and has a set of replicas
spread in the network. For every node u storing a copy
of σ, we use (σ, u) to denote reference to the replica. The
reference (σ, u) typically consists of the IP/port of u and the
physical address of σ within the node. A reference to σ must
be obtained in order to access a copy of σ. So references
serve as some index to objects, and locating an object is
equivalent to locating a reference to the object. In DHTs, a
reference of an object is not necessarily stored at the same
node that stores the physical copy of the object. The set of
references maintained at a node v is denoted by Refsv.

Associated with the overlay G is a distributed object lo-
cation and routing (DOLR) scheme for accessing objects
in the network. A DOLR scheme involves a mapping
L : O → {0, 1, . . . , 2a − 1}, and one routing mechanism.
The mapping L deterministically and uniformly maps each
object σ ∈ O (by its ID) to exactly one node—represented
as an a-bit binary string—to handle the object. The routing
mechanism determines, for every two nodes u and v in V ,
at least one (u, v)-path in G.

Three operations are supported by the DOLR scheme for
accessing objects: Insert , Delete, and Read . When node
u publishes a copy of object σ, it invokes the operation
Insert(x, σ, u) to place the reference (σ, u) of the copy to

a node x whose ID equal to L(σ). The operation proceeds
as follows: First, the node x is determined. Then, an in-
sert request for (σ, u) is forwarded hop by hop to x along a
(u, x)-path in the overlay. When the insert request arrives
at x, the reference (σ, u) is added to Refsx. Accordingly,
Delete and Read operations can be derived based on the
Insert operation.

The above DOLR scheme requires every potential node
ID in {0, 1, . . . , 2a − 1} be assumed by a unique node in
the network. In practice, nodes may join and leave the net-
work dynamically. Furthermore, to avoid ID collision the
size of the node ID space (i.e., 2a) is typically much larger
than the actual number of nodes that may participate in the
network. So not all potential node IDs have a mapping to
actual nodes, and the DOLR scheme must have a surrogate
routing mechanism to handle absence of nodes. That is, if a
node v is absent, then the scheme will find an existing node
S(v) in V to play the role of v so that every message to v
will be automatically routed to S(v). As a result, we may
assume that the overlay is reliable and self-organizing.

2.2 The Keyword Search Problem

Insert, delete, and read operations in the DOLR scheme
require the target object ID be known. Some applica-
tions may need to locate an object with only keywords (at-
tributes). To provide keyword search service on the overlay,
we assume that each object σ ∈ O is associated with a set
Kσ of keywords. For any object σ, we say that a keyword
set K can describe σ if K ⊆ Kσ.

For each set K of keywords, we define a set OK of ob-
jects, where OK = {σ |σ ∈ O, K ⊆ Kσ}. That is, OK

is the set of objects that can be described by K. The size
|OK | is called the keyword frequency of K.

To provide keyword search service, we need to design a
distributed index scheme so that an object can be located by
specifying a few keywords in a query. Two functions can be
identified in the service:

Pin Search: Given keyword set K, the service should re-
turn the set {σ |Kσ = K} of objects that are associ-
ated with exactly the keyword set K.

Superset Search: Given keyword set K and some thresh-
old t, the service should return a set of min(t, |OK |)
objects that can be described by K.

In practice, superset search can be designated as cumula-
tive, where the results returned by consecutive searches with
the same keyword set must be different. This is typically
used in large information system such as Google in which
users can ‘browse’ through large matching object sets steps
by steps.

3 The Keyword Index and Search Scheme

Our distributed index scheme is built on a logical
structure—an r-dimensional hypercube vector space—over
a DHT network. To present this index scheme, we first in-
troduce the hypercube, and then the relationship between
the logical structure and the underlying DHT network.



000 001

010 011

100 101

110 111

(b) (c)

0100 0101

0110 0111

1100 1101

1110 1111

(a)

0000 0001

0100 0101

0010

0110 0111

0011

1000

1100 1101

1001

1110 1111

1010 1011

Figure 3. (a) H4, (b) H4(0100), (c) H3.

3.1 An r-Dimensional Hypercube Vector Space

An r-dimensional hypercube Hr(V, E) has 2r nodes.
Each node u in V is represented by a unique r-bit binary
string. We use u[i] to denote the ith bit of u (counting from
the right). For every two nodes u, v in V and every integer i
in {0, 1, . . . , r− 1}, there exists an (undirected) edge (u, v)
in E if, and only if, u differs from v only at the ith bit. We
say that the (u, v)-edge crosses the ith dimension, and u is
v’s neighbor in the ith dimension, and vice versa.

For each node u ∈ V , we define a set One(u) of inte-
gers as follows: One(u) = {i |u[i] = 1, 0 ≤ i ≤ r − 1};
that is, the positions at which u has bit one. Similarly,
we define Zero(u) = {i |u[i] = 0, 0 ≤ i ≤ r − 1}.
For example, if v = 010100, then One(v) = {2, 4} and
Zero(v) = {0, 1, 3, 5}. Let u, v be two r-bit vectors. We
say that v contains u if and only if u[i] ⇒ v[i], ∀0 ≤ i < r;
that is, One(u) ⊆ One(v).

The following two definitions will be used in subsequent
sections.

Definition 3.1 Let Hr = (V, E) be a hypercube and u ∈
V be a node. A subhypercube induced by u, denoted by
Hr(u), is a subgraph G = (U, F ) of Hr such that every
node w ∈ V is in U if and only if w contains u, and every
edge e ∈ E is in F if and only if its two end points are in U .

By the definition, all nodes w in U have bit ‘1’ at each
position in One(u). If we remove those bits, then each
node w becomes an (r − |One(u)|)-bit string; that is, a
|Zero(u)|-bit string. Furthermore, in the resulting graph
every two nodes have an edge if and only if they dif-
fer in exactly one bit. That is, the resulting graph is a
|Zero(u)|-dimensional hypercube. So Hr(u) is isomorphic
to a |Zero(u)|-dimensional hypercube. Figure 3 illustrates
H4(0100) induced by node 0100 in H4, which is isomor-
phic to H3.

Broadcast can be done very efficiently in hypercubes
through the use of spanning binomial trees [3]. The fol-
lowing gives the definition.

(a)
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Figure 4. (a) H4(0100), (b) SBTH4
(0100).

Definition 3.2 Let Hr = (V, E) be a hypercube of dimen-
sion r and u ∈ V be a node. The spanning binomial tree
rooted at u, denoted by SBT (u), is a tree consisting of the
nodes in V and the edges defined by the following: For any
node v ∈ V , let p be the dimension satisfying v[p]⊕u[p] = 1
and v[i] ⊕ u[i] = 0, ∀i < p (p = −1, if u = v). Let
Zv = {p − 1, p − 2, . . . , 1, 0} (Zv = ∅ if p ≤ 0). Then the
parent of v in SBT (u) is
{

v[r − 1] . . . v[p + 1]v[p]v[p − 1] . . . v[0] if p 6= −1
∅ if p = −1

and its children are
{

v[r − 1] . . . v[p] . . . v[j] . . . v[0], ∀j ∈ Zv if p 6= −1

v[r − 1] . . . v[j] . . . v[0], ∀j ∈ {r − 1, . . . , 1, 0} if p = −1

By the definition, a spanning binomial tree SBT (u) of
Hr has depth r, and a node v in the mth level of SBT (u)
(where root u is at level 0) has Hamming distance m from
u. (The Hamming distance between any two r-bit binary
strings u and v is Hamming(u, v) =

∑r−1
i=0 (u[i]

⊕

v[i]).)
That is, in a spanning binomial tree, every node that is i
depth from the root has exactly i bits different from the root
in their binary representation. This important property will
later be used in our keyword search scheme.

Recall that a subhypercube induced by a node u in Hr,
i.e., Hr(u), is isomorphic to a |Zero(u)|-dimensional hy-
percube. We can similarly define spanning binomial trees
on Hr(u) by masking the bits occurring at the positions in
One(u) for every node in Hr(u). In the paper we will need
the spanning binomial tree rooted at u on Hr(u). We call
this tree the spanning binomial tree induced by u, and de-
note it by SBTHr

(u). Figure 4 illustrates SBTH4
(0100).

3.2 Map to a DHT Network

Our index scheme is based on an r-dimensional hyper-
cube Hr(V, E). The hypercube can be constructed directly
from a physical hypercube (e.g. HyperCuP [10]), or concep-
tually built on an underlying DHT network G = (V ′, E′).
To construct Hr(V, E) over G = (V ′, E′), we simply need
a mapping g : V → V ′ so that every logical node in the hy-
percube has a corresponding physical node in the network.
Depending on the applications, the dimensionality r of the
hypercube may be smaller or larger than a—the size of the



node identification in the DHT layer. When r is larger, we
have more logical nodes than physical nodes. To balance
load, we will need g to be a hash function that can uniformly
map the nodes in V to V ′. When r is smaller than a, only a
portion of the physical nodes in the DHT layer will actually
be responsible for indexing objects. This allows some lee-
way in selecting indexing nodes. In fact, many researches
have observed that nodes in P2P networks are not homoge-
neous: some are more stable/powerful than the others. So
we may select stable/powerful nodes to serve as indexing
nodes in the hypercube.

3.3 An Index Scheme over the Hypercube

We now present an index scheme on a hypercube
Hr(V, E). Throughout the rest of the section, unless stated
otherwise, all nodes refer to the nodes in the hypercube. Let
W be the set of all keywords considered in the system. Let
h : W → {0, 1, . . . , r − 1} be a uniform hash function that
maps every keyword in W to an integer in {0, 1, . . . , r−1}.
We define a mapping Fh : 2W → V as follows: Fh(K) =
u if, and only if, One(u) = {i |h(σ) = i, σ ∈ K}. In other
words, Fh(K) is the node with a binary number whose bits
are set by the hash function h according to the keywords in
K. We say that u is responsible for K if Fh(K) = u. Thus,
for every possible set of keywords in the system, there is a
node in the hypercube responsible for the set. Note that a
node may be responsible for more than one set of keywords
(as Fh(K) might be equal to Fh(K ′) for some K and K ′).
We use Ru to denote the set of keyword sets for which u is
responsible; that is, Ru = {K ⊆ W |Fh(K) = u}.

To build the index scheme, for each object σ that is asso-
ciated with keyword set Kσ, we let the node Fh(Kσ) in
the hypercube maintain an entry 〈Kσ , σ〉 in its index ta-
ble. We say that σ is indexed at the node, and we use Ou

to denote the set of objects that are indexed at u; that is,
Ou = {σ ∈ O |Kσ ∈ Ru}.

Given a keyword set K, we can locate a copy of object
associated with K by first finding the node in Hr that is re-
sponsible for K. The node is determined by Fh(K). Once
the node is located, its index table can be searched to obtain
the ID of an object σ that is associated with the keyword set
K. Then, a call Read(σ) to the underlying DHT network
will invoke the DOLR scheme to return a copy of σ. So pin
search is directly supported by the scheme.

Although pin search is quite effective in locating a par-
ticular object, one would often want results based on the
superset of keywords they submit in a query set K, i.e., the
superset search. To locate copies of those objects, we need
to find all those nodes that are responsible for a superset
of K. Recall that a subhypercube Hr(u) of Hr induced
by u consists of all nodes w in V that contain u (that is,
u[i] ⇒ w[i]). So every node in the subhypercube is respon-
sible for a keyword set that is a superset of K, and every
node in Hr that is responsible for a superset of K is also
in the subhypercube. This property allows us to search for
only the subhypercube if we wish to find out any other ob-
ject that can also be described by K.

Moreover, when searching the subhypercube, we can ex-

plore the spanning binomial tree rooted at u, i.e., the tree
SBTHr

(u). Recall that a node v at depth i in the tree
has Hamming distance i from the root. For every key-
word set Kv ∈ Rv and Ku ∈ Ru, if Ku ⊆ Kv, then
|Kv| − |Ku| ≥ i; that is, Kv contains at least i more
keywords than Ku. This means that if we search the tree
SBTHr

(u) in a breadth-first style, then we can locate ob-
jects whose associated keyword sets gradually enlarge dur-
ing the search, thereby allowing the upper-level applications
to retrieve relevant objects more effectively.

The following two lemmas summarize the above proper-
ties. Their proofs are straightforward.

Lemma 3.1 Let u ∈ V be a node in Hr = (V, E), and
K ⊆ W be a keyword set for which u is responsible. Then,
all objects that can be described by K are indexed at some
node in the subhypercube Hr(u) induced by u.

Lemma 3.2 Let u ∈ V be a node in Hr = (V, E), and let
Hr(u) be a subhypercube induced by u and SBTHr

(u) be
the spanning binomial tree rooted at u in the subhypercube.
For every node v in the tree, if v is at depth d, then for every
keyword set Ku ∈ Ru, every keyword set Kv ∈ Rv such
that Ku ⊆ Kv has at least d more keywords than Ku.

Finally, when performing a search, a typical scenario is
that a user starts by specifying a set of keywords, browses
through some returned objects, and then adds more key-
words to refine the search. The following lemma says that
the second query has a search space within the first one. An
implication of the lemma is that we can cache some infor-
mation about the nodes visited in earlier queries for search
refinement, so as to save bandwidth.

Lemma 3.3 Let K1, K2 ⊆ W be two keyword sets. If
K1 ⊆ K2, then Hr(Fh(K2)) is a subhypercube of
Hr(Fh(K1)).

In the following we present detailed access operations
to the index scheme. Each node u in the hypercube Hr

maintains an index table Tblu of entries of the format:
〈keyword set , object id 〉. An entry 〈K, σ〉 in the table
means that there is an object σ in the network that is asso-
ciated with keyword set K. The set of entries 〈K, σ1〉, . . .,
〈K, σn〉 with same keyword set can obviously be combined
into a single entry 〈K, {σ1, . . . , σn}〉.

Insert

When a node u in the DHT publishes a copy of object σ, it
uses the function L to determine the node (i.e., L(σ)) in the
DHT network that handles references of σ. Then, u invokes
the operation Insert(L(σ), σ, u) in the underlying DOLR
scheme to place the reference 〈σ, u〉 of the copy to the node
L(σ). When the node L(σ) adds the reference to its ref-
erence list, the insert operation ends if a copy of σ already
exists. If no copy of σ is there, then an index of the object
is created and inserted into the hypercube. To do so, let Kσ

be the set of keywords associated with σ. Node L(σ) com-
putes the node Fh(Kσ) in the hypercube that is responsi-
ble for Kσ . The node Fh(Kσ) corresponds to the physical



node g(Fh(Kσ)) in the DHT network. Then, node L(σ)
invokes the operation Insert(g(Fh(Kσ)), Kσ, σ) in the un-
derlying DOLR scheme to place an index entry 〈Kσ , σ〉 at
node g(Fh(Kσ)).

Delete

If a node u in the DHT wishes to delete a copy of ob-
ject σ it has previously published, it uses the same proce-
dure as in the insert operation to locate the node that han-
dles the reference 〈σ, u〉. Then, u invokes the operation
Delete(L(σ), σ, u) in the underlying DOLR scheme to re-
move the reference from node L(σ). The delete operation
ends if there is other copies of σ. Otherwise, no copy of
σ exists in the network, so the index of the object should
also be deleted from the hypercube. The index delete pro-
cess is similar to the insert process. Node L(σ) invokes
the operation Delete(g(Fh(Kσ)), Kσ , σ) in the underlying
DOLR scheme to delete the index entry 〈Kσ , σ〉 from node
g(Fh(Kσ)).

Superset Search

A superset search operation composed of a keyword set K
and some threshold t must return a set of min(t, |OK |) ob-
jects that can be described by K. By Lemma 3.1 the search
space can be limited within the subhypercube Hr(Fh(K)).
Although any node in the subhypercube may potentially in-
dex some objects that can be described by K, there are sub-
tle difference between the objects. By Lemma 3.2, if a node
x is d steps away from the root in the spanning binomial tree
SBTHr

(Fh(K)), then every object indexed at x that can be
described by K is associated with a keyword set that con-
tains at least d more keywords than K has, and so is likely to
be less general (and thus more specific on a certain subject)
than the objects with exactly the keyword set K. Depending
on the applications, we can explore the spanning binomial
tree in a breadth-first style from either top down, or bottom
up. The former returns search results by giving preference
to more general objects, while the latter to more specific
objects. Here we present the first approach; the other alter-
native can be done with only a slight modification.

Let v = Fh(K) be the node that is responsible for K.
A node u that initiates a superset search request sends v
a T QUERY (K, t, u,−,−), where K is the queried key-
word set, t is a threshold, and u is a direct contact to the
node u collecting the results; the other two fields are not
used in the initial request, but will be used later on dur-
ing the operation. (‘T’ in T QUERY stands for “super-
set search with Top-down approach”.) When v receives
the request, it examines its index table to find all entries
〈K ′, O〉 with K ′ ⊇ K, and then sends the object IDs (up
to t count) in the entries directly to u. The search opera-
tion ends if t object IDs have been returned. Otherwise, v
records the remaining number of object IDs to be collected
in a counter c. Node v also initializes a queue U of pairs
(x, d), 0 ≤ d ≤ r−1, where x is a direct contact to a node x
in SBTHr

(v), and d is an index for computing the children
of x in SBTHr

(v). The queue U is initialized as follows:

For each i in Zero(v), (y, i) is added to U , where y is v’s
neighbor in the ith dimension.

Then, the search operation proceeds by the steps below:

1. If U is not empty, the first pair (w, d) is re-
moved from U , and v sends w a message
T QUERY (K, c, u, d, v). Node v then proceeds to
Step 3 to wait for the result. If U is empty, the search
operation terminates.

2. For each node w receiving a message
T QUERY (K, c, u, d, v), w first examines its
index table to find all entries 〈K ′, O〉 with K ′ ⊇ K,
and then sends the object IDs (up to c count) in the en-
tries directly to u. Let c1 be the number of object IDs
returned. The search operation can stop if c1 ≥ c, and
in this case w sends v a message T STOP to inform
v of this. Otherwise, w prepares a list L consisting of
the following pairs: {(x, i) | i < d ∧ i ∈ Zero(w) and
x is w’s neighbor in the ith dimension }. Then w sends
a message T CONT (c1, L) to v.

3. Node v terminates the search operation on receiving a
message T STOP from w. Otherwise, it waits until
w sends it a message T CONT (c1, L). Then, v adds
the pairs in L to U , sets c to c− c1, and goes to Step 1
to continue the operation.

As noted in Section 2.2, superset search can be made cu-
mulative to let consecutive searches browse through a large
matching set steps by steps. In the above operation, cumu-
lative superset search can be easily implemented by letting
the root node v = Fh(K) keep the queue U for subsequent
queries until the search has completed.

3.4 Remarks

We make some comments on the performance of the in-
dex scheme. First, we observe that the indexing node of
an object is determined uniquely by its keyword set. So
even if objects σ1, . . . , σn all contain some popular key-
words ω1, . . . , ωk, it is likely that the keyword sets of these
objects still differ in some way, and so the objects are to be
indexed by more than one node. The more the popularity
of the keywords, the more the number of objects contain
these keywords, and so the more the number of nodes are
to index the objects. So storage load can be balanced even
if keyword frequency follows Zipf’s law. Moreover, since
there are a number of nodes to index a keyword, no single
node failure can block all queries involving the keyword.

Second, because the storage load for indexing a popular
keyword (or a keyword set) is distributed to a number of
nodes, the query load to the keyword can also be distributed
to the nodes as well, so as to avoid hot spots. To see this,
suppose a class S of objects has some common keywords.
As commented above, if the set S is large, the objects will
likely to have some other keywords to distinguish them. If
a user knows more about the additional keywords, our in-
dex scheme can quickly locate the subclass of objects he is
looking for. However, if a user has little knowledge about



S, he is likely to use just some popular keywords to search.
This kind of simple queries, in fact, play a major part in
user query behavior [8], and so are inevitable to any infor-
mation system. A consequence of this to our index scheme
is raising a potential hot spot to the nodes handling exactly
some very popular keyword sets. Note that in this circum-
stances it is reasonable to assume that the user needs only
a portion of S. This leaves much leeway to upper-level ap-
plications in resolving queries. For example, query expan-
sion [5, 6] can be used to expand keyword sets. Moreover,
the applications can add some keywords, based on, say, the
user’s preference or his past logs, to help him locate his
interest. This customization not only improves search qual-
ity, but also alleviates the potential hot spot. Nevertheless,
many DHT overlays have their techniques in dealing with
hot spots, and they can be assumed by the underlying DHT
layer in our system to cope with the problem. For exam-
ple, in Tapestry [13], if some node has been queried very
often, then the results will be cached along the path to the
querying nodes, thereby preventing the hot node from being
swamped.

Third, each object is indexed by only one node, regard-
less of how many keywords it has. So, unlike distributed
inverted index, the scheme does not introduce extra cost to
index an object. Object insert, delete, and pin search there-
fore takes only one lookup operation in the DHT overlay,
as opposed to k operations usually required by distributed
inverted index, where k is the number of keywords an ob-
ject has. Replication certainly helps increase fault tolerance
(at the cost of extra storage and consistency maintenance),
but this is up to the applications. Note that replication here
refers to the index information that is used for keyword
search. Object replication is orthogonal to index replica-
tion, and has already been assumed in our DHT model (see
Section 2.1). If one wishes, (index) replication can be done
in two ways. One is to deal with it directly in the index
layer, for example, by building a secondary hypercube. The
other is, again, to assume this function as part of the under-
lying DHT overlay, as many existing DHT overlays already
have their techniques for replication and fault tolerance.

Fourth, when the hypercube is conceptually built from
a DHT, each node in the hypercube has a direct mapping
to a physical node in the DHT. So every message sent be-
tween two nodes in the hypercube during insert, delete, and
search operations is easily translated to be a message sent
between two physical nodes in the DHT. So no routing in-
formation in the hypercube is necessary for the operations;
the underlying DHT can take the responsibility for locat-
ing any destination node. Still, when search in a spanning
binomial tree, a node may need to contact its immediately
children, which are actually its neighbors in the hypercube.
So caching neighboring information, as well as search re-
sults in the hypercube, does help reducing communication
cost and boosting performance in the search. We will ad-
dress the cache issue in the experiment in Section 4.

Finally, we observe that the index scheme is decompos-
able: instead of using a single large hypercube to index ob-
jects, we can divide the entire keyword set into smaller, dis-
joint subsets, and then use a hypercube for each subset to
index objects. This is useful when objects have multiple

attributes, among which some of them are less frequently
used in search than the others. we can use several smaller
vectors to describe an object. A large index vector results
in a large dimension of indexing hypercube, which in turn
increases search complexity (see the section below). De-
composing keyword sets therefore increases search perfor-
mance.

3.5 Complexity Analysis

In this section we analyze the search cost in our scheme.
Pin search is clearly quite effectively: it takes only one mes-
sage transmission for query and another one for returning
the result. Insert and Delete operations are also quite effi-
cient: each takes only one message to update a node’s index
table, as each object is indexed at only one node.

For superset search that is composed of a keyword set
K ⊆ W and is initiated by a node u ∈ V , the cost of
the operation consists of three parts: (i) transmitting the
query from u to the node v that plays the logical node
Fh(K) in the hypercube layer; (ii) search in the subhyper-
cube Hr(Fh(K)); and (iii) transmitting the IDs of all ob-
jects in OK to node u by the nodes that receive the search
request.

When searching in the subhypercube, query messages
are sent sequentially from the root Fh(K) to the other
nodes so that the operation can be terminated when it re-
turns enough matching objects. The size of the subhyper-
cube Hr(Fh(K)) is 2r−|One(Fh(K))|. So if local comput-
ing time is negligible compared to the message transmis-
sion time, the operation requires 2r−|One(Fh(K))| message
transmission time in the DHT overlay, and costs at most
2·2r−|One(Fh(K))| messages. One can also speed the search
process by sending query messages simultaneously to the
nodes in the spanning binomial tree SBTHr

(Fh(K)) that
are at the same level. In this case, the time complexity can
be sped up to r − |One(Fh(K))|.

The above analysis depends on the parameter
|One(Fh(K))|, which can be calculated as follows.
Recall that One(Fh(K)) is defined to be the set
{i |h(σ) = i, σ ∈ K}, where h is a hash function that uni-
formly and independently maps every keyword in W to an
integer in {0, 1, . . . , r − 1}. Let |K| = m. Then the proba-
bility that |One(Fh(K))| = j, j ∈ {1, 2, . . . , min(r, m)},
is equivalent to the probability that m distinct balls are
distributed into r distinct buckets such that exactly j out of
the r buckets are nonempty. So

P(|One(Fh(K))| = j)

=
(

r

j

)
∑j

i=0(−1)i
(

j

i

)(

1 − i+r−j

r

)m(1)

So the expected value of |One(Fh(K))| is

E(|One(Fh(K))|)

=
∑j=min(r,m)

j=1 j ·
(

r

j

)
∑j

i=0(−1)i
(

j

i

)(

1 − i+r−j

r

)m

4 Experimental Results

We conduct some experiments to see the performance of
the hypercube index scheme. The object set we use consists
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Figure 5. The distribution of keyword set
sizes.

of 131,180 records from the website directory of PCHome
(http://www.pchome.com.tw), the largest local portal site in
Taiwan. Each website record is maintained manually by ex-
perienced editors, and contains the following six fields: ID,
Title, URL, Category, Description, and Keyword. Table 1
shows some examples.

Each record is treated as an object to be indexed in our
hypercube scheme, and the set of words in the Keyword
field is treated as the keyword set associating with the ob-
ject. The distribution of keyword set sizes is shown in Fig-
ure 5. On average, each object is associated with 7.3 key-
words.

In the first experiment, we study how the dimensionality
r of the hypercube affects load distribution in the hyper-
cube. For each given r, we build a hypercube of dimension
r, and assign each object in our data set a node in the hy-
percube responsible for indexing the object. Then we rank
the load of nodes from heavy to light, and determine the
percentage of objects each node handles. The results are
shown in Figure 6 for r = 6 to 16. A perfectly balanced of
load would be a straight line with a slope 1. This line is also
shown in the chart for reference. Another reference lines
in the charts are obtained by simply hashing the objects di-
rectly to the nodes. These lines are referred to as ‘DHT-r’ in
the charts. A typical DHT network hashes objects (by their
names) to determine their handling nodes, as well as to bal-
ance load. So the reference lines provide a guideline to see
if our index scheme can achieve the load balance of regular
DHT networks. From Figure 6, we see that the ‘DHT’ lines
deviate slightly from the ‘Perfect’ line. That is, although the
direct hashing scheme is considered quite balanced in load,
it is unlikely to achieve a perfect scenario.

We see from the figure that the load distribution im-
proves when r increases from 6 to 10—at which the scheme
achieves the load balance of DHT, but becomes worse when
r increases from 10 to 16. We draw eight more charts in
Figure 7 to further explore the relationship between r and
the load distribution. In each chart, there is a node distribu-
tion in the hypercube with respect to the number of bit one
in their IDs. More precisely, each point (x, y) in the line,
x ∈ {0, 1, . . . , r}, represents the percentage (the y value)
of nodes that have an ID u such that |One(u)| = x. As ex-
pected, the line follows normal distribution with mean r/2.
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The other line is object distribution. Each point (x, y) in the
line represents the percentage of objects indexed at those
nodes u such that |One(u)| = x. Note that the node distri-
bution curve is always centered in each chart, while the ob-
ject distribution curves has their top positioned at roughly
the same x-value (as the data set is fixed). So when r in-
creases, the object distribution curve appears to move (left)
toward the node distribution curve, then separates apart.

Intuitively, indexing load will be balanced if an object
distribution can approach the node distribution. From the
charts we see that the two distributions are most close to
each other when r is around 10. That explains why the curve
r = 10 in Figure 6 is closer to the perfect load line than the
others.

One would be more interesting to see how r can be de-
termined without experiment. In fact, the above observa-
tion does highlight us some clue in choosing r. We see
that the object distribution curve in Figure 7 is determined
by the keyword set sizes distribution in Figure 5. So if a
distribution of keyword set sizes is known, then by using
Equation (1), we can calculate an appropriate r to let object
distribution approach node distribution in Figure 7, thereby
to balance the index load.

For comparison, we have also drawn load distribution of
the distributed inverted scheme in Figure 6. To draw the
distribution, for each keyword used in the data set, we hash
the keyword to determine a node in the hypercube to handle
the keyword, and then insert all objects (by their references)
containing the keyword to the node. The load distribution
of this scheme is referred to as ‘DII-r’, where r is the hy-
percube dimension. To avoid clouding the chart, here we
only show r = 10, 12, and 14. From the figure we see that
the scheme results in very unbalanced load as compared to
ours.

The second experiment studies query (superset search)
performance of our index scheme. To conduct the experi-
ment, we build a hypercube of dimension r, and index the
data set in the hypercube. We then issue some queries to
the hypercube, and measure the number of nodes need to
be contacted to resolve the queries. For the queries, we use



ID Title URL Category Description Keyword
11 Hinet http://www.hinet.net 0818013020 Largest ISP in Taiwan ISP, telecommunication, network, download
18491 TVBS News http://www.tvbs.com.tw 0318201207 Providing daily news, entertainment news, TVBS, news

and news search

Table 1. Two website records from PCHome.
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Figure 7. Object vs. node distribution.

query logs collected at PCHome in some two-week period.
Each log records the set of keywords of a query, the time of
the query, and the originator (IP address) of the query; but
here only the keyword set and the time information will be
used. For each size m, we sample some popular keyword
sets of size m from the query logs, and use the keyword sets
as queries to the hypercube index scheme. The results for
r = 8, 10, and 12 and m = 1, 2, . . .5 are shown in Figure 8.

Observe that if the node Fh(K) responsible for keyword
set K has j bits of ‘1’ (i.e., |One(Fh(K))| = j), then
a query of keyword set K in the worst case may have to
search 2r−|One(Fh(K))| nodes in the hypercube (see Sec-
tion 3.5). That is, 2−|One(Fh(K))| of the total nodes in the
hypercube. If |K| = m, and m is relatively small as com-
pared to r, then One(Fh(K)) has high probability to be m.
So the percentage of nodes that could be searched is approx-
imately 2−m at 100% recall rate. So from Figure 8 we see
that if all matching objects need to be returned, then approx-
imately 2−m of nodes need to be contacted in both r = 10
and 12. For r = 8, as the value is small, the percentage is
higher than 2−m for all m > 1. From the charts we also see
that the search space depends approximately linearly on the
recall rate. This is because the indexing load in our scheme
is distributed evenly among nodes.

We commented in Section 3.4 that cache may help boost
performance of the system. In the third experiment we study
query performance of the index scheme in the presence of
cache. The setting is similar to the previous one, except
that we install a cache at each node. We use a simple FIFO
scheme to manage the cache. The capacity of the cache is
α× |O|

2r , where α is some parameter, and |O|
2r is the average

index size per node. For a fixed recall rate, we measure the

percentage of nodes need to be contacted with respect to α.
The results are shown in Figure 9. Each line in the figure
represents the effect of cache for a fixed r and recall rate.
The X-axis represents the α parameter—the cache capacity
relative to the average index size. For r = 10, the average
index size per node is 131, 180/210, which is about 128,
and for r = 12 the average index size is about 32. A point
in the line represents the average percent of nodes need to
be contacted per query under the specified recall rate. The
average is obtained by supplying all queries (about 178,000)
given at some day to PCHome to the hypercube. We see
that with only a small fraction of the index size as cache,
the performance improved is already huge. With only 1/6
of the index size as cache, less than 1% of nodes need to
be contacted even if we demand 100% recall rate for both
r = 10 and 12.1

5 Related Work and Conclusions

In contrast to the distributed inverted index approach,
our hypercube index scheme uses a clustering approach to
group objects based on their keyword sets. In our scheme,
objects are clustered together based on their keyword sets.
If two objects σ1 and σ2 respectively have keyword sets
K ∪ K1 and K ∪ K1 ∪ K2 for any K, K1, and K2, then
σ1 is placed in the cluster C with keyword set K logically
no farther to C than σ2 is. Note that with respect to key-
word set K, we can say that σ2 is more specific than σ1,

1A statistic of the query logs we obtained from PCHome shows that, on
average, the ten most popular queries account more than 60% of the total
queries per day. This also explains why cache will be so effective in our
system.
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Figure 8. Query performance—cacheless.
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Figure 9. Query performance—with cache.

but whether σ2 is semantically closer to K is up to ap-
plications, although our index scheme allows σ2 to be re-
trieved before σ1, or vice versa. Our goal here is not to
build a text-search documents retrieval system, but a gen-
eral purpose keyword/attribute search layer on top of which
various applications—including documents retrieval—can
be built. Content-based full-text search in large peer-to-
peer distributed information systems has been investigated
in pSearch [12] by gracefully incorporating information
retrieval techniques into CAN (Content-Addressable Net-
work) [7]. A typical implementation of pSearch requires a
CAN of dimension ranges from 50 to 350 [12], which is an
overkill for searching objects with only a few to dozens of
keywords in their metadata, such as multimedia documents,
computing resources, and web services. We believe that a
good keyword/attribute search layer must offer a determin-
istic yet flexible search so that all objects matching some
specified attributes can be precisely located, and returned in
a way the applications wish, with minimum knowledge on
the global state. Such function is particularly useful in re-
source and service discovery, and in multimedia documents
sharing; and these are the target of our work.
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