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Abstract

The group mutual exclusion problem extends the tradi-
tional mutual exclusion problem by associating a type with
each critical section. In this problem, processes requesting
critical sections of the same type can execute their critical
sections concurrently. However, processes requesting crit-
ical sections of different types must execute their critical
sections in a mutually exclusive manner. In this paper, we
provide a distributed algorithm for solving the group mu-
tual exclusion problem based on the notion of surrogate-
quorum. Intuitively, our algorithm uses the quorum that
has been successfully locked by a request as a surrogate to
service other compatible requests for the same type of crit-
ical section. Unlike the existing quorum-based algorithms
for group mutual exclusion, our algorithm achieves a low
message complexity of O(q), where q is the maximum size
of a quorum, while maintaining both synchronization de-
lay and waiting time at two message hops. Moreover, like
the existing quorum-based algorithms, our algorithm has
high maximum concurrency of n, where n is the number of
processes in the system. The existing quorum-based algo-
rithms assume that the number of groups is static and does
not change during runtime. However, our algorithm can
adapt without performance penalties to dynamic changes
in the number of groups. Simulation results indicate that
our algorithm outperforms the existing quorum-based al-
gorithms for group mutual exclusion by as much as 50% in
some cases.

1. Introduction

Mutual exclusion is one of the most fundamental prob-
lems in concurrent systems, particularly in distributed sys-
tems. In this problem, access to a shared resource (that is,
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execution of critical section) by different processes must be
synchronized to ensure its integrity by allowing at most one
process to access the resource at a time. Numerous solu-
tions [7, 15, 19, 20, 18] and extensions [9, 8, 5, 6] have
been proposed to the basic mutual exclusion problem. More
recently, another extension to the basic mutual exclusion
problem, called group mutual exclusion, has been proposed
[11]. In the group mutual exclusion problem, every critical
section is associated with a type or a group. Critical sections
belonging to the same group can be executed concurrently
while critical sections belonging to different groups must be
executed in a mutually exclusive manner.

The readers/writers problem can be modeled as a special
case of group mutual exclusion using n + 1 groups, where
n denotes the number of processes. In this case, all read re-
quests belong to the same group and write requests by each
process belongs to a different group. As another application
of the problem, consider a CD jukebox where data is stored
in CDs and only one disk can be loaded for access at a time
[11]. In this example, when a disk is loaded, users that need
data on the currently loaded disk can access the disk con-
currently. While users that need data on a different disk will
have to wait.

Solutions for the group mutual exclusion problem under
shared-memory model can be found in [11, 14, 1, 10]. In
this paper, we investigate the group mutual exclusion prob-
lem under message-passing model. For message-passing
model, solutions to group mutual exclusion have been pro-
posed for ring networks [4, 21] and tree networks [3].
Typically, solutions for ring and tree networks incur high
synchronization delay and have high waiting time. For
a fully connected network, group mutual exclusion algo-
rithms based on modification of the Ricart and Agrawala’s
algorithm for mutual exclusion [19] have been proposed in
[12]. These algorithms have high message complexity and
high message overhead of O(n) and O(n2), respectively.

The quorum-based mutual exclusion algorithm by
Maekawa [16] has also been modified to derive two



quorum-based algorithms for group mutual exclusion [13].
These algorithms use a special type of quorum system
called the group quorum system. In a group quorum sys-
tem, any two quorums belonging to the same group need
not intersect while quorums belonging to different groups
must intersect. The maximum number of pair-wise dis-
joint quorums offered by a group quorum system is called
the degree of the quorum system. In [13], Joung intro-
duce a group quorum system called the surficial quorum

system, which has a degree of
√

2n
m(m−1) , where m is

the number of groups. When used with Maekawa’s algo-
rithm, the surficial quorum system can only allow up to
the degree number of process of the same group to execute
concurrently. To achieve unrestricted maximum concur-
rency, Joung also propose two quorum-based algorithms,
namely Maekawa M and Maekawa S, based on two sepa-
rate modifications to the original Maekawa’s quorum-based
algorithm. The first modification enables quorum nodes
to issue multiple locks for requests belonging to the same
group. The draw-back of this approach is that, in the
event of conflict between requests of different groups, dead-
lock resolution requires multiple locks to be taken back.
This results in a high (worst-case) message complexity of
O(nmin{m,√n}). To overcome this draw-back, Joung
propose a second modification that avoids deadlocks alto-
gether. Specifically, deadlocks are avoided by locking quo-
rum nodes in some fixed order. Although this approach re-
duces message complexity to O(q), the synchronization de-
lay evidently increases from two to O(q) messages hops,
where q is the maximum size of a quorum. In addition,
both these algorithms need an a priori knowledge of an im-
mutable number of groups.

For some applications, the number of groups in the sys-
tem may change dynamically during the course of execu-
tion. For instance, in the CD jukebox example, new CDs
may be added at runtime. Hence it is desirable for a group
mutual exclusion algorithm to be able to handle dynamic
changes in the number of groups.

In this paper, we take an approach that is orthogonal
to existing approaches for quorum-based algorithms and
introduce the notion of surrogate-quorums. The existing
quorum-based algorithms [13] can either provide a low syn-
chronization delay of two message hops or low message
complexity of O(q) but not both together. Hence, they are
either inefficient or non-scalable. Our algorithm, on the
other hand, achieves a low message complexity of O(q)
while maintaining both synchronization delay and waiting
time at two message hops, thereby satisfying both of the
seemingly opposing qualities—efficiency and scalability.
To accomplish this, we introduce a relatively low message
overhead of O(b) per message, where b denotes the largest
number of processes in whose quorum a node can belong to.
Furthermore, unlike the existing quorum-based algorithms

[13] which require a group quorum system, our algorithm
assumes minimal properties of the underlying quorum sys-
tem. This implies that our algorithm is decoupled from the
underlying quorum system and more importantly does not
need an a priori knowledge of the number of groups. In
fact, our algorithm can adapt without performance penalties
to dynamic changes (at runtime) in the number of groups.
Finally, like the other quorum-based algorithms, the maxi-
mum concurrency is n. This implies that it is possible for all
processes to execute their critical sections concurrently, pro-
vided all of them request critical sections of the same group.
We also present an extension to our algorithm for achieving
concurrent entry without incurring any performance penal-
ties.

The rest of the paper is organized as follows. We present
our system model and formally describe the group mutual
exclusion problem in Section 2. We provide the necessary
background information in Section 3. We then present our
surrogate-quorum based algorithm for group mutual exclu-
sion in Section 4. We prove its correctness in Section 5
and analyze its performance in Section 6. An extension to
our algorithm for achieving concurrent entry is described in
Section 7. We present our simulation results in Section 8
and our conclusions in Section 9.

2. Model and Problem Definition

2.1. System Model

We assume an asynchronous distributed system compris-
ing of multiple processes which communicate with each
other by sending messages over a set of channels. We as-
sume that there is a channel between every pair of pro-
cesses. There is no global clock or shared memory. Pro-
cesses are non-faulty. Channels are reliable and first-in-
first-out (FIFO). Message delays are finite but may be un-
bounded.

2.2. The Group Mutual Exclusion Problem

The problem of group mutual exclusion (GME) was first
proposed in [11] as an extension to the traditional mutual
exclusion problem. In this problem, every request for a crit-
ical section is associated with a type or a group. Process can
make requests for arbitrary and unrestricted types of critical
sections. An algorithm for group mutual exclusion should
satisfy the following properties:

group mutual exclusion: at any time, no two processes,
who have requested critical sections belonging to dif-
ferent groups, are in their critical sections simultane-
ously.

starvation freedom: a process wishing to enter critical
section will eventually succeed.



concurrent entry: if all requests are for critical sections
belonging to the same group, then a requesting process
should not be required to wait for entry into its critical
section until some other process has left its critical sec-
tion.

To measure the performance of a group mutual exclusion
algorithm, we use the following metrics:

• message complexity: the number of messages ex-
changed per request for critical section

• synchronization delay: the time elapsed between when
all processes executing critical sections of the same
type exit (their critical sections) and when another pro-
cess can enter a critical section of a different type

• waiting time: the time elapsed between when a process
issues a request for critical section and when it actually
enters the critical section

• message overhead: the amount of data piggybacked on
a message

• concurrency: the number of processes that are in their
critical sections at the same time

Message-complexity and message-overhead determine
the overhead imposed on the system by the group mutual
exclusion algorithm at runtime. Synchronization delay is
usually measured when the system is heavily loaded and
there is a lot of contention among processes for access to
the resource. Waiting time is typically measured when the
system is lightly loaded.

3. Background

3.1. Quorum System

A quorum is a subset of nodes or processes. Although
nodes and processes are identical, following the convention
in [13], we use the term node specifically when referring
to the role of a process as a quorum member. A quorum
system C, also referred to as a coterie, for (traditional) mu-
tual exclusion is a set of quorums satisfying the following
properties:

• intersection: ∀P,Q ∈ C :: P ∩Q 6= ∅

• minimality: ∀P,Q ∈ C : P 6= Q : P * Q

If a process enters its critical section only after it has suc-
cessfully locked all nodes in some quorum, then the inter-
section property ensures that no two processes can execute
their critical sections concurrently. The minimality property
ensures that no process is required to lock more nodes than

necessary to achieve mutual exclusion. For a node x, let Bx
denote the set of processes that can send requests to x. If a
process randomly chooses its quorum, then the size of Bx
can be as large as n, where n is the number of processes.
However in our algorithm, we assume that each process is
assigned a fixed quorum and so Bx = {Q ∈ C|x ∈ Q}.
For a grid quorum system, |Bx| =

√
n. Henceforth, we

refer to Bx as the membership set of x. In addition to the
intersection and minimality properties, it is desirable that
the coterie C also satisfy the following properties:

• ∀P,Q ∈ C :: |P | = |Q|

• ∀x, y :: |Bx| = |By|

Existing quorum-based algorithms [13] for group mu-
tual exclusion use a special type of quorum system called
a group quorum system. In a group quorum system, any
two quorums belonging to the same group need not intersect
while quorums belonging to different groups must intersect.
We do not use a group quorum system in this paper; in-
stead we employ a traditional quorum system. Henceforth,
the term “quorum system” is used to refer to the traditional
quorum system.

3.2. Maekawa’s Algorithm

Maekawa’s algorithm implements mutual exclusion by
using a coterie that satisfies the aforementioned proper-
ties. Lamport’s logical clock [15] is used to assign a times-
tamp to every request for critical section. A request with
a smaller timestamp has a higher priority than a request
with a larger timestamp (ties are broken using process iden-
tifiers). Maekawa’s algorithm works as follows:

1. When a process wishes to enter critical section, it se-
lects a quorum and sends a REQUEST message to all
the quorum members. It enters the critical section once
it has successfully locked all its quorum members. On
exiting the critical section, the process unlocks all its
quorum members by sending a RELEASED message.

2. A node, on receiving a REQUEST message, checks to
see whether it has already been locked by some other
process. If not, it grants the lock to the requesting pro-
cess by sending a LOCKED message to it. Otherwise,
the node uses timestamps to determine whether the
process currently holding a lock on it—hereafter re-
ferred to as the locking process—should be preempted.
In case the node decides not to preempt the locking
process, it sends a FAILED message to the requesting
process. Otherwise, it sends an INQUIRE message to
the locking process.

3. A process, on receiving an INQUIRE message from
a quorum node, unlocks the quorum node by sending



a RELINQUISH message as and when it realizes that
it will not be able to successfully lock all its quorum
members. This is ascertained when a FAILED message
is received from one of the quorum members.

4. A node, on receiving a RELINQUISH or RELEASED
message, grants the lock to the process whose request
has the highest priority among all the pending requests,
if any.

Maekawa [16] prove that the message complexity of the
above algorithm is O(q), where q is the maximum size of a
quorum. Further, its (best-case) synchronization delay and
waiting time are both two message hops. (When analyzing
the synchronization delay of a quorum-based algorithm de-
rived from the Maekawa’s algorithm, we ignore the delay
incurred due to deadlock resolution and only analyze the
best-case synchronization delay. This is consistent with the
practice used by other researchers [16, 13].)

4. Surrogate-Quorum based Algorithm

We now describe our approach for solving the group mu-
tual exclusion problem. For convenience, we say that the
first process to enter a critical section of some type initiates
a forum of that type. Further, the last process to exit the crit-
ical section of that type terminates the forum. Intuitively, a
forum contains one of more critical sections of the same
type. We call two requests as compatible if they are for the
same forum type; otherwise they are said to be conflicting.

4.1. The Main Idea

The main focus of our algorithm is to provide the fol-
lowing advantages. Our algorithm should be scalable and
hence achieve low message complexity and low message
overhead. To that end, we choose a quorum-based ap-
proach. Our algorithm should be efficient, which means
that it should have low waiting time, low synchronization
delay and high maximum concurrency. In addition, we want
our algorithm to be independent of the underlying quorum
system and be able to handle dynamic changes, at runtime,
in the number of groups. Therefore, unlike the existing
quorum-based algorithms [13], we do not assume a group
quorum system. On the contrary, we assume minimal prop-
erties for the underlying quorum system. Particularly, we
only assume the properties listed in Section 3.1.

One approach to achieving concurrency is by enabling
nodes to issue multiple locks [13]. However, in this ap-
proach deadlock resolution may require multiple locks to
be preempted thereby increasing message complexity. To
ensure scalability, we take the leader-follower approach in-
troduced in [12] along with the notion of surrogate-quorum.

In our approach, processes requesting entry into their criti-
cal sections try to lock their respective quorums. A process
that successfully captures its quorum invites other processes
with compatible request to enter the forum. Therefore a
process can enter the forum by either locking all its quorum
members or by receiving an invitation from another pro-
cess. The process in the former case is called a leader and
that in the latter case is called a follower. In order to inform
a leader about other requests, a quorum member on sending
its lock also sends compatible requests that are currently
in its queue. To ensure group mutual exclusion property,
the leader does not release its quorum until all its followers
have left the forum. We therefore use the quorum of the
leader as a surrogate for its followers and hence the name
surrogate-quorum. To avoid repetition, we only describe
our extensions to Maekawa’s algorithm.

1. A node, when sending a LOCKED message to a pro-
cess, piggybacks all requests currently in its queue that
are compatible with the request by the locking process.

2. A process, on receiving a LOCKED message, stores
all the requests that were piggybacked on the message.
Once it has successfully locked all its quorum mem-
bers, it sends an INVITE message to processes who
made these requests.

3. A process, on receiving an INVITE message for its cur-
rent request, unlocks all its quorum members by send-
ing a CANCEL message. It then enters the forum.

4. A node, on receiving a CANCEL message from a pro-
cess, removes its request from the queue, if it exists.

5. Once a follower exits the forum, it sends a LEAVE
message to its leader.

6. A leader maintains the lock on its quorum members
until it has received a LEAVE message from all its fol-
lowers and has itself left the forum. It then sends a
RELEASED message to its quorum members.

7. A node, on receiving a RELEASED message from a
process, removes all those requests from its queue that
it piggybacked on the last LOCKED message it sent.

Since processes can enter a forum (as a follower) with-
out locking all its quorum members, fulfilled requests may
persist in the system for some time. We refer to these re-
quests and the messages generated due to these requests as
“stale”. A process may receive stale LOCKED, FAILED
and INVITE messages due to its stale requests. Each of
these messages can be piggybacked with the timestamp of
the request that generated them. As a result, the request-
ing process upon receiving a message can easily determine
whether the message is stale. A process needs to send a



LEAVE message to the leader that sent a stale INVITE mes-
sage to it. Stale LOCKED and FAILED messages should be
ignored.

If a leader exits its forum but has not received a LEAVE
message from all its followers, then the leader is called a
surrogate-leader. It should be noted that, a process in the
surrogate-leader mode can execute its underlying program
unimpeded. With the above modification, our algorithm
has a message complexity of O(q) and a synchronization
delay of three message hops (LEAVE, RELEASED and
LOCKED). Since a node can piggyback at most one com-
patible request per process in its membership set, the mes-
sage overhead of LOCKED messages is O(b), where b is
the size of the largest membership set.

4.2. Reducing Synchronization Delay

Since synchronization delay has a significant impact on
efficiency, especially system throughput, it is desirable to
reduce it further. It is evident that LEAVE messages can
be eliminated by allowing a follower to directly release the
quorum members of its leader. To do so and still ensure
group mutual exclusion property, we make the following
modifications:

1. A leader upon entering a forum sets its weight to one.

2. Upon sending an INVITE message a leader reduces its
current weight by half and piggybacks the other half
over the INVITE message.

3. A leader upon exiting its forum, instead of waiting
for LEAVE messages, sends a RELEASED message
along with its remaining weight to its quorum mem-
bers.

4. A follower upon exiting its forum, instead of sending
a LEAVE message to the leader, sends a RELEASED
message along with the weight it received over the IN-
VITE message to all quorum members of its leader.

5. A node accumulates all the weights it received over
RELEASED messages and maintains its lock until its
cumulative weight becomes one.

An efficient solution for weight distribution and recov-
ery was proposed in [17]. The proposed approach involved
storing rational numbers as integers in factional form thus
avoiding real numbers. Using this approach, we only incur
an overhead of two integers per INVITE and RELEASED
message.

It is clear that a fulfilled request may receive at most q
stale INVITE messages, one from each quorum member.
Before this modification, for each stale INVITE message, a
node only sent one LEAVE message and hence the message
complexity was O(q). However, according to the above

modifications, for each stale INVITE message a node sends
q RELEASED messages thereby increasing the message
complexity to O(q2). To ensure scalability, we propose an-
other modification that reduces message complexity toO(q)
while maintaining the message overhead at O(b).

4.3. Avoiding Stale INVITE Messages

To lower the message complexity to O(q), we need to
eliminate stale INVITE messages. It is clear that a quorum
member sends LOCKED message only after receiving RE-
LEASED messages from all processes in the current forum.
The next leader, due to the intersection property, has to ob-
tain LOCKED message from at least one quorum member
of the previous leader. Hence there exists a causal path from
all processes that entered some forum, to the leader of the
succeeding forum. In this modification, we basically exploit
this causal path to pass on information about stale requests
to the next leader. We propose the following modifications.

1. Each process pi maintains a vector of timestamps, one
for each process in the system. The jth entry of this
vector indicates the latest request that was made by
process pj according to pi’s knowledge.

2. A node, on receiving a RELEASED message from a
process updates its vector with the timestamp of the
request that sent the RELEASED message. If there
already exists a timestamp from the same process then
the latest timestamp is retained.

3. Upon sending a LOCKED message to a process, a
node in addition to piggybacking compatible requests,
also piggybacks those timestamps from its vector that
have not been previously sent to the process.

4. Upon successfully locking all quorum members, a
leader desists from sending INVITE message to a pro-
cess pj whose request has a timestamp that is less than
or equal to the jth entry in its vector.

With the above modifications, we have an algorithm that
has a synchronization delay of two message hops (RE-
LEASED, LOCKED) and a message complexity of O(q).
However, we appear to have increased the message over-
head of LOCKED messages. Since every process in the
system may concurrently enter a given forum, in the worst-
case the message overhead of a LOCKED message may be
O(n), where n denotes the number of processes. But as
we shall show later, this overhead in fact amortizes to O(b)
over all messages.

We refer to our algorithm as Surrogate. A more formal
description of Surrogate can be found in [2].



5. Proof of Correctness

In this section we formally prove that Surrogate in fact
satisfies the first two properties of a group mutual exclusion
algorithm, namely, group mutual exclusion and starvation
freedom. In Section 7 give a simple extension to Surrogate
and show that it achieves concurrent entry.

We now explore the behavior of the system. The pe-
riod when no process is in the forum is the period when
there is no leader in the system and hence called anarchy.
The system starts in anarchy and processes with outstand-
ing requests compete to capture their respective quorums.
A request may have to wait for one or more requests to re-
lease locks on its quorum members. These wait relation-
ships may recursively grow to form what we call wait-for-
subgraphs emanating from a process. Wait-for-subgraphs
may branch out and form more wait-for-subgraphs. How-
ever as we shall show later, these wait-for-subgraphs even-
tually unlink. When a process succeeds in capturing all its
quorum members, it enters the forum as a leader. A leader
sends out INVITE messages to processes requesting entry
into the leader’s forum as and when the leader becomes
aware of their requests and these processes enter the forum
as followers. The forum thus formed remains in session as
long as there is at least one process in it. When all processes
exit the forum, it is dissolved and the system enters anarchy
again. The cycle continues until all requests are fulfilled.
We now formally prove that the system in fact behaves as
described.

In the following proofs, we model the execution of the
system as an infinite alternating sequence of global states
and events, σ = S0e1S1 · · ·Si−1eiSi · · ·. For executions
with finite number of such global states, we assume the ex-
istence of a hypothetical nop event for no-operation that re-
mains enabled in all states following the last global state. A
nop event does nothing and so in our model for executions
with finite global states, the final state is repeated infinitely.
The system is assumed to transition from a global state Si−1

on executing an enabled event ei to state Si. A continuously
enabled event is assumed to be eventually executed. We use
the notation MSGi(x, y) to mean that at state Si, x sent y
the message MSG.

5.1. Group Mutual Exclusion

The group mutual exclusion property dictates that the
algorithm allow at most one forum to be in session at
any given instant in time. Stated another way, no two
processes can be in different forums at the same time.
To prove the safety property, we use certain invariants
of the algorithm which we state without proof as they
are evident from the algorithm. Henceforth, a request
is said to be extant at a state if the request is either
outstanding or executing in the given state. Also, a

request is said to be stale in all states following its entry
into the forum. The following notation is used in the proofs.

requesti(x) , process x has an extant request at state
Si

forumi(x) , x is in some forum at global state Si
quorumi(x) , the quorum chosen by the extant re-

quest of process x at Si (defined only
if requesti(x))

Invariant 1 For every process in some forum, there exists
at least one quorum that has not released its locks.

Invariant 2 A node does not grant a LOCKED message to
a request until all processes have left the current forum
and sent it RELEASED messages.

Theorem 1 Surrogate satisfies safety property, that is, no
two forums of different types execute concurrently.

Proof: From Invariant 1, for every forum there exists at
least one quorum, say Q, that has not released its locks.
From intersection property, every process that has requested
a different forum must acquire locks from at least one node
in Q, before entering its forum. From Invariant 2, no node
in Q will release its lock until all processes have exited the
current forum. Hence, two forums of different types cannot
execute concurrently. 2

5.2. Starvation Freedom

Starvation freedom property for group mutual exclusion
dictates that every request made in the system be eventually
fulfilled. In this section we prove that Surrogate satisfies
starvation freedom property. In addition, we use the nota-
tions described in Figure 1.

In order to prove starvation freedom, we first formalize
the concept of wait relationships and wait-for-graphs. We
say that a process x is waiting on another process y at global
state Si if process x is waiting for a lock that was sent to y
and tsi(x) < tsi(y) (ties are broken using process identi-
fiers). Formally,

waiti(x, y) ,
〈∃z : z ∈ quorumi(x) ∩ quorumi(y) :

x ∈ queuei(z) ∧ lockedi(z, y)〉 ∧
(tsi(x) < tsi(y))

Based on the above definition of wait relation, each state of
a distributed system running Surrogate can be represented
by a directed graph. In this graph for a given state, the set
of vertices is the set of processes in the system and a di-
rected edge exists from vertex u to v if process u is waiting
on process v in the given state. Such a graph for a given



P , set of all processes in the system

tsi(x) , the timestamp of the extant request of process x at Si (defined only if requesti(x))

lockedi(x, y) , x has sent its lock to y but has not recovered some part of it, at state Si. Formally,

〈∃j : j ≤ i : LOCKEDj(x, y) ∧
〈∀k : j ≤ k ≤ i : ¬CANCELk(y, x) ∧ ¬RELINQUISHk(y, x) ∧∑

z∈P
weight(RELEASEk(z, x)) < 1〉〉

queuei(x) , the set of processes that belong to request queue of process x at state Si
failcounti(x) , number of FAILED messages sent to request of process x at Si, from the state in which

it was issued till state Si (defined only if requesti(x))

Figure 1. Notation used in proofs

state Si is called the wait-for-graph at state Si denoted by,
WFGi(P ).

Since every outstanding request belongs to the wait-for-
graph, we can define wait-for-subgraph emanating from a
given process at some state Si as the subgraph of the wait-
for-graph at Si in which every vertex is reachable from the
emanating vertex. The wait-for-subgraph emanating from
process x at state Si is denoted by WFGi(x).

In addition, we use wait-seti(x) to indicate the set of all
processes that x is directly waiting on at state Si. We shall
now define certain invariants and properties of the algorithm
without proof as they directly follow from the algorithm.

Invariant 3 Every request eventually receives a FAILED
message, enters the forum or waits on another request.
Formally,

requesti(x) ⇒ 〈∃j : j ≥ i : failcountj(x) > 0 ∨
wait-setj(x) 6= φ ∨
forumj(x)〉

Property A WFGi(P ) is acyclic. Since the time stamp
along any path monotonically decreases.

Property B As a consequence, all paths in WFGi(P ) are
simple paths.

Property C The maximum length of all paths in
WFGi(P ) is bounded by |P |.

Due to space constrains, we only provide statements of
the lemmas here and refer the reader to [2] for the omitted
proofs.

Lemma 2 Surrogate does not generate stale INVITE mes-
sages.

Lemma 3 Once a leader exits the forum, eventually all its
quorum members recover their locks.

It remains to be shown that deadlock resolution through
INQUIRE, RELINQUISH and FAILED messages do in
fact avoid deadlocks. In this regard, we explore the behavior
of nodes in a wait-set.

Lemma 4 For any node y in the wait-set of some node x,
if y enters the forum or receives a FAILED message then
either x eventually receives a FAILED message or y even-
tually leaves the wait-set of x. Formally,

y ∈ wait-seti(x) ∧ (forumi(y) ∨ failcounti(y) > 0)

⇒
〈∃ j : j ≥ i : y 6∈ wait-setj(x) ∨ failcountj(x) > 0〉

Lemma 5 Every request is eventually fulfilled or its fail
count becomes non-zero. Formally,

requesti(x)⇒ 〈∃j : j ≥ i : forumj(x) ∨
failcountj(x) > 0〉

In order to prove starvation freedom, we shall now for-
mally define two attributes of a request: potence and om-
nipotence denoted by potenti(x) and omnipotenti(x) re-
spectively. A request is potenti(x) if and only if no request
of higher priority is ever generated in all states following
Si. Further, a request is omnipotenti(x) if and only if it is
potenti(x) and has the highest priority among all requests
in Si.



Lemma 6 Every omnipotent request is eventually fulfilled.
Formally,

omnipotenti(x)⇒ 〈∃ j : j ≥ i : forumj(x)〉

In the following two lemmas we show that every request
eventually becomes an omnipotent request or gets fulfilled.
Hence from Lemma 6 every request will be eventually ful-
filled.

Lemma 7 Every request eventually becomes a potent re-
quest or is fulfilled. Formally,

requesti(x)⇒ 〈∃ j : j ≥ i : potentj(x) ∨ forumj(x)〉

Lemma 8 Every potent request eventually becomes the
omnipotent request or gets fulfilled. Formally,

potenti(x)⇒ 〈∃j : j ≥ i : forumj(x) ∨
omnipotentj(x)〉

Theorem 9 Every request is eventually fulfilled. Formally,

requesti(x)⇒ 〈∃ j : j ≥ i : forumj(x)〉

Proof: The theorem directly follows from Lemma 7,
Lemma 8 and Lemma 6. 2

6. Performance Analysis

In this section we analyze the performance of our al-
gorithm with respect to the following metrics: message
complexity, message overhead amortized over all mes-
sages, synchronization delay and maximum concurrency.
As usual, q denotes the maximum size of a quorum.

Theorem 10 The worst-case message complexity of
Surrogate is O(q).

Proof: For each type of message, we count the maximum
number of messages that are exchanged of that particular
type due to a given request. Evidently, the number of RE-
QUEST, FAILED and CANCEL messages are bounded
by q each. We call a LOCKED message from a quorum
node as successful if the locking request never sends a RE-
LINQUISH message to the quorum node after receiving
that LOCKED message. Clearly, the number of successful
LOCKED messages is bounded by q. An INQUIRE mes-
sage is generated only when a new request arrives at a quo-
rum node and it is never generated for an old request. We
charge an INQUIRE message to the new request on whose
behalf the INQUIRE message was generated. Therefore

the number of INQUIRE, RELINQUISH and unsuccess-
ful LOCKED messages are each bounded by q per request.
All that remains to be bound are the number of INVITE
and RELEASED messages. Since a follower upon exiting
its forum, sends RELEASED messages to all nodes in its
leader’s quorum, the number of RELEASED messages is
equal to q times the number of INVITE messages. From
Lemma 3, a process can receive at most one INVITE mes-
sage per request because no INVITE messages are sent for
stale requests. Hence the number of RELEASED messages
is bounded by q per request. 2

We now bound the worst-case message overhead of Sur-
rogate. It is clear that all messages except LOCKED mes-
sages have an overhead of O(1). The worst-case overhead
of LOCKED messages is O(n). For most systems, it is bet-
ter to exchange fewer number of large messages than a large
number of smaller messages. Notwithstanding this fact, our
algorithm has a low amortized message overhead of O(b)
over all messages, where b denotes the size of the largest
membership set.

Theorem 11 The message overhead of Surrogate is O(b)
amortized over all messages.

Proof: All messages except LOCKED messages have an
overhead of O(1). Now, LOCKED messages carry two
separate kinds of overhead, namely overhead due to com-
patible requests and overhead due to stale requests. Since a
node can only receive requests from its membership set, the
number of compatible requests piggybacked over a single
LOCKED message is bounded by b per request. We now
bound the overhead due to stale requests. Every node only
piggybacks the timestamp of a stale request once to each
process in its membership set. Every time the timestamp
of a stale request is piggybacked, we charge it towards the
stale request. Since a node can only send LOCKED mes-
sages to at most b nodes, each request can be piggybacked
on at most O(qb) LOCKED messages as a stale request.
Amortizing the overhead over at least q messages that are
exchanged on behalf of a request, we obtain an amortized
message overhead of O(b). 2

It is evident that, in a lightly loaded system, on gener-
ating a request, a process can enter its forum in two mes-
sage hop (REQUEST and LOCKED) delays. In a heavily
loaded system, a process can enter its forum in two message
hop (RELEASED and LOCKED) delays after another pro-
cess leaves its forum.

Theorem 12 The synchronization delay and the waiting
time for Surrogate are both two message hops.

As before n denotes the number of processes in the sys-
tem. Clearly, if all processes make compatible requests,
then all of them can be in the forum at the same time.



Theorem 13 The maximum concurrency of Surrogate is
n

7. Discussion

The algorithm Surrogate does not satisfy the concurrent
entry property. However, by making the following simple
modification we can achieve concurrent entry. If a node is
locked by a process and receives a request that is compat-
ible with its locking request, then it simply forwards that
request to the locking process. A leader on receiving a for-
warded request sends INVITE to the requesting process. In
order to prevent starvation, a locking node asks a leader to
stop sending INVITE to forwarded requests, as and when it
becomes aware of a conflicting request. Clearly, with the
above modifications, our algorithm satisfies the concurrent
entry property. Note that an additional message is generated
only when a new request arrives at a quorum node and never
for an old request that is already in the queue. Therefore the
message complexity remains at O(q). Also, the synchro-
nization delay and the maximum concurrency remain at two
message hops and n, respectively. The reader is referred to
[2] for details.

The concurrency in our algorithm can be further en-
hanced by increasing the set of processes that “know” about
a request. This is because, a process is only invited by a
leader when its request is piggybacked over at least one of
the LOCKED messages sent to the leader. If the probability
of a request being piggybacked increases, then the proba-
bility of the request being invited also increases, thereby
increasing concurrency. To that end, we introduce the no-
tion of a notify set. The notify set for a process is a set of
nodes that intersects with all quorum sets other than its own
quorum set. A process upon making a request, only informs
the nodes in its notify set and does not try to lock them. In-
tuitively, it increases the number of nodes that are aware of
a particular request, which, in turn, increases the probability
of that request being invited without increasing the waiting
time.

8. Simulation Results

In this section, we experimentally compare the perfor-
mance of Surrogate (without modification for concurrent
entry) with Joung’s first algorithm Maekawa M. In the sim-
ulation, we have n processes requesting entry into m fo-
rums. Each process makes a request to enter a randomly
chosen forum, uniformly distributed over allm forums. The
inter-request arrival rate at each node is exponentially dis-
tributed with mean µidle. Once a process enters a forum,
it departs with a rate that is exponentially distributed with
mean µforum. Message transmission is modeled to follow
an exponential distribution with mean µlink.
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Figure 2. Performance of Surrogate relative to
Maekawa M.

We measure the performance of the two algorithms with
respect to three metrics, namely message complexity, sys-
tem throughput and waiting time. All simulations are con-
ducted with the following values for various parameters:
n = 25, average requests per node = 1000, µforum = 2



time units, µidle = 4 time units, µlink = 4 time units, and
bandwidth = 1000 integers per unit time. For Maekawa M,
the maximum number of simultaneous locks that a node can
grant is set to n.

To make it easier to compare the two algorithms, we
report the ratio Surrogate/Maekawa M for the three met-
rics. Figure 2 depicts the variation in the ratios for the
three metrics as the number of groups increases. The ra-
tios somewhat fluctuate for values of m < n. However, for
all values of m ≥ n, Surrogate performs consistently bet-
ter than Maekawa M. The message complexity decreases
by as much as 40%, the system throughput increases by as
much as 50% and the waiting time decreases by as much as
34%. For a more detailed experimental analysis, the reader
is referred to [2].

9. Conclusion

In this paper, we describe an efficient distributed algo-
rithm for solving the group mutual exclusion problem based
on the notion of surrogate-quorum. Unlike the existing
quorum-based algorithms for group mutual exclusion [13],
our algorithm achieves a low message complexity of O(q),
where q is the maximum size of a quorum, while at the same
time maintaining both synchronization delay and waiting
time at two message hops. In doing so, we introduce a rel-
atively low message overhead of O(b) amortized over all
messages, where b denotes the size of the largest member-
ship set. If Maekawa’s grid quorum system [16] is used,
then the message complexity and the amortized message
overhead are both given byO(

√
n). Our algorithm has high

maximum concurrency of n, where n is the number of pro-
cesses in the system. Furthermore, unlike the algorithms in
[13], which assume that the number of groups is static and
does not change during runtime, our algorithm can adapt
without performance penalties to dynamic changes in the
number of groups. We also describe an extension to our
algorithm for achieving concurrent entry.
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