
Mixed Consistency Model: Meeting Data Sharing Needs of Heterogeneous Users∗

Zhiyuan Zhan
College of Computing

Georgia Institute of Technology
USA

zzhan@cc.gatech.edu

Mustaque Ahamad
College of Computing

Georgia Institute of Technology
USA

mustaq@cc.gatech.edu

Michel Raynal
IRISA

University of Rennes
France

raynal@irisa.fr

Abstract

Heterogeneous users usually have different requirements
as far as consistency of shared data is concerned. This pa-
per proposes and investigates a mixed consistency model
to meet this heterogeneity challenge in large scale dis-
tributed systems that support shared objects. This model al-
lows combining strong (Sequential) consistency and weak
(Causal) consistency. The paper defines the model, moti-
vates it and proposes a protocol implementing it.

1 Introduction

Context: heterogeneous users The rapid proliferation of
mobile devices and wireless networks has made it possible
to access and share information across different platforms
with varying degree of computing power and network re-
sources. For example, various cars can share traffic infor-
mation through on-board communication devices. This sce-
nario requires that the information be shared, disseminated
and updated at a potentially large number of heterogeneous
users. There are two sources of heterogeneity in such an en-
vironment: user needs and system resources. For instance,
some users may not care about each new update, while oth-
ers do. Also, some users can use relatively powerful sys-
tems to access the information, while others may only be
able to use wireless handheld device to do so. The lack
of computing power and/or network resources will prevent
them from employing expensive protocols to ensure high
quality of shared information at all time. Both sources sug-
gest that the information sharing system should take hetero-
geneity as a primary concern if it is to meet the needs of
varied users in a wide area network.

Introducing a mixed consistency model We assume that
shared information is encapsulated in distributed objects.

∗This work was supported in part by NSF grant ITR-0121643.

Object replication is a common technique to increase the
scalability and robustness of such systems, which also in-
troduces the consistency problem. Many consistency mod-
els have been proposed in recent years. The tradeoff be-
tween performance and the level of consistency presents
a dilemma. For example, strong consistency such as se-
quential consistency ensures an unique order of operations
across different replicas, but its implementation is costly
and does not scale very well; the ordering guarantees pro-
vided by different weak consistency models may result in
conflicting views of shared critical information but they
are relatively easy to implement with good performance.
Therefore, only supporting a single level of consistency,
which is commonly done in existing systems, either does
not scale well or is insufficient for meeting user require-
ments. In order to maintain consistency in a heterogeneous
environment, we are exploring an approach of employing
mixed consistency for objects which addresses both user
needs and system resource constraints.

• For a particular piece of information, users can choose
the consistency level they desire based on the current
resource level they have. Resourceful users can ac-
cess information with stronger consistency, while oth-
ers may be forced to access information with weaker
consistency guarantees due to lack of resources.

• Strong consistency for critical information is necessary
but has a relatively high maintenance cost. In many
applications, weaker consistency provides a relatively
cheap yet scalable way for a large number of users to
share information that has less stringent correctness re-
quirements.

With a mixed consistency model, applications can make
use of both high (strong) and low (weak) levels of consis-
tency to meet their needs based on the availability of re-
sources at various nodes. However, mixing leads to a new
problem: how to meaningfully define consistency when re-
source poor nodes want to access an object replica in a



weak mode whereas others want to maintain strong con-
sistency for their replicas of this same object. Operations
observed by strong replicas should appear to be executed on
a single copy serially, but nodes with weak replicas do not
have the resources necessary to ensure such strong ordering.
Since update operations produce new values for replicas and
strong replicas must observe new values in a consistent or-
der, we identify constraints that prohibit values of updates
done at weak replicas to be disseminated to strong replicas
in our model. At the same time, a weak replica can ob-
serve values of updates done at strong replicas as well as
at other weak replicas. Such a model can meet the needs of
many applications. In order to bound the difference between
weak and strong replicas, weak replicas can periodically up-
date themselves with values written by nodes that maintain
strong replicas. The dissemination flow constraints allow us
to precisely characterize the mixed consistency model, and
they can easily be incorporated into a protocol that imple-
ments this model in a heterogeneous environment.

Although the mixed consistency model we propose is
not limited to any particular consistency models, sequen-
tial consistency (SC) and causal consistency (CC) are the
strong and weak consistency models we consider in this pa-
per. They both have been extensively studied over the past
years and many protocols have been proposed to implement
them. We use consistency tags associated with replicas and
processes to implement the constraints needed in a mixed
consistency model.

• Each object replica has a consistency tag of either SC
or CC. SC replicas encapsulate critical information up-
dates that should be maintained under sequential con-
sistency. CC replicas encapsulate other information
which is only maintained under causal consistency.

• Each process has a consistency tag of either SC or CC.
SC processes are resourceful processes that can afford
to use more expensive protocols to access different
types of information, while CC processes are resource
limited processes that can only afford cheap protocols
for the same information.

Paper contributions A careful study of mixed consis-
tency leads to a rich set of possibilities. In this paper, we for-
mally define a mixed consistency model to generalize many
application scenarios, where each object can have both SC
and CC replicas at the same time. We also propose a pro-
tocol to ensure both SC and CC consistency requirements.
The main contributions of this paper are:

• Based on different application requirements, we pro-
pose a unified mixed consistency model allowing both
SC and CC replicas to coexist at the same time.

• We design a mixed consistency protocol to ensure both
SC and CC at the same time and show that it is correct
and can offer performance versus consistency tradeoff
in a heterogeneous environment.

The rest of the paper is organized as follows: Section
2 introduces the system model. Section 3 formally defines
the mixed consistency model. Section 4 provides a mixed
consistency protocol implementing the model and outlines
the correctness proof. Section 5 presents performance re-
lated analysis of our protocol. Section 6 discusses the re-
lated work. Section 7 finally summarizes the paper and lists
future work.

2 System Model

We consider a replicated object system composed of dis-
tributed processes, each of which having a local memory
where copies of objects are stored. We assume that one
process can only have at most one replica of a particular
object in its local memory. Replicas can be removed from
the local memory when they are no longer needed or there
is a memory shortage. New object replicas can be created
as needed. However, we will not discuss the creation and
deletion of replicas in this paper. We will focus our discus-
sion on a system where the locations of object replicas are
already determined. In such a system, a process has access
to its local copies of objects. Processes can also communi-
cate with each other through reliable pair wise inter-process
communication channels.

Let P denote the process set, where each pi∈P repre-
sents an individual process (assuming 1 ≤ i ≤ N ). We de-
fine that P consists of two disjoint subsets: PSC and PCC .
Processes in PSC (PCC) are called SC (CC) processes.

Let O denote the object replica set, where each oij∈O
stands for a replica of object oj stored in process pi’s local
memory (assuming 1 ≤ j ≤ M ). Clearly for a particular j
(1 ≤ j ≤ M ), all the oxj∈O (1 ≤ x ≤ N ) are initialized
from the same object oj . Similarly, we define that O also
consists of two disjoint subsets: OSC and OCC . Replicas
in OSC (OCC ) are called SC (CC) replicas.

3 The Mixed Consistency Model

A process pi accesses an object oj by invoking the meth-
ods on an object replica oij in its local memory. We catego-
rize the methods into “read” (r) and “write” (w) operations.
The “read” method does not change the state of the object
copy, while the “write” method does. We adopt the notation
used in paper [2] to define the consistency model of our
system, i.e., operation ri(oj)v stands for pi reading object
oj and returning its current value (or state) v, and operation
wi(oj)v stands for pi writing to object oj a new value v. We



also use r(oj)v and w(oj)v to denote the operations when
who issues the operation is clear or unimportant.

3.1 Access Constraints

Mixed consistency aims to meet both application needs
and resource limitations that are common in heterogeneous
environments. Thus, when a resource poor node chooses to
make a weak replica of an object and updates it, it cannot
be expected to have enough resources to update the strong
replicas of the object at other nodes in a manner that is re-
quired by the SC model. On the other hand, SC requires that
updates observed by strong replicas must be ordered in a
uniformmanner. These conflicting goals must be reconciled
in the mixed consistency model such that strong replicas at-
tain the desired type of ordering for operations observed by
them, while allowing weak replicas to achieve the sharing
and efficiency required by them. We achieve these goals by
developing a set of access constraints that allow weak repli-
cas to access the values of updates done at strong as well as
weak replicas. Strong replicas can only observe values of
those updates that are done at the nodes that maintain strong
replicas. This is reasonable because (1) nodes with strong
replicas have the necessary resources to enforce the strong
ordering, and (2) updates done to weak replicas at resource
poor nodes, which do not want to incur the cost of strongly
ordering the updates, are not observed by the strong repli-
cas to prevent violations of ordering requirements. This is
also consistent with the requirements of applications where
nodes with weak replicas either do not update objects that
have other strong replicas or values of their updates are only
shared with other nodes that have weak replicas. The con-
straints that define which updates can be observed by which
type of replicas can be captured by the following two rules:

• Rule 1: A SC process can read and write a SC replica
and can only write a CC replica;

• Rule 2: A CC process can read and write a CC replica
and can only read a SC replica.

Table 1 defines both rules in the mixed consistency
model. Each row in Table 1 gives the legal access rights
of the particular process group to different object groups.

OSC OCC

PSC RW W
PCC R RW

Table 1. Access Constraints Table

3.2 Well-formed Serialization and History

Well-formed Serialization: Let T be an arbitrary set of
operations. We say T is well-formed if and only if no op-
eration in T violates Table 1. We call S a serialization of

T if S is a linear sequence containing exactly the operations
of T such that each read operation from an object returns
the value written by the most recent write to that object.
From now on, when we say a serialization, it means a seri-
alization of a well-formed operation set by default. In other
words, a serialization always respects Rule 1 and Rule 2.

For example, let’s consider a system setting of two pro-
cesses (p1, p2) and three objects (o1, o2 and o3). Both p1

and p2 have a local copy of all three objects. p1, o11, o22

are marked as SC, while p2, o21, o12, o13, o23 are marked
as CC. We have three operation sets defined as:

T1 = {w1(o3)1, r1(o1)1, r1(o2)1, r1(o3)1, w2(o1)2, w2(o2)2,

w2(o3)2, r2(o2)2}
T2 = {w1(o1)1, w1(o2)1, w2(o3)2, r2(o1)1, r2(o1)2, r2(o3)2}
T3 = {w1(o1)1, r2(o1)1, w1(o2)2, r2(o3)2, w2(o3)2, r1(o1)1}
We can see that T1 is not well-formed because
r1(o2)1, r1(o3)1, w2(o2)2 violates Table 1. T2 is
well-formed but it does not have a serialization because
r2(o1)2 returns a value 2 that has never been written to
o1 (assuming each object has an initial value 0). T3 is
well-formed and

S = {w2(o3)2, w1(o1)1, w1(o2)2, r2(o1)1, r2(o3)2, r1(o1)1}
can be one serialization of T3.

Projection: Let T be an arbitrary set of operations. We
define a projection of T on an arbitrary process group S,
denoted as TS , to be a subset of T , which only contains the
operations performed by processes in S. Similarly, we also
define a projection of T on an arbitrary object replica group
J , denoted as T J , to be a subset of T , which only contains
the operations performed to replicas in J . It is easy to see
that (TS)J = (T J)S = T J

S .

Causal Order: Let A be a complete set of all operations.
We define the program order → on A to be a complete set
of < op1, op2 > such that both op1 and op2 are performed
by the same process p and op1 precedes op2 according to
p’s local clock. In this case, we write op1 → op2.

Without loss of generality, we assume that all writes to
the same object are uniquely valued. The writes-into order
�→ on A is defined as such that op1 �→ op2 holds if and only
if there are oj and v such that op1 = w(oj)v and op2 =
r(oj)v.

A causal order ⇒ induced by both → and �→ in our
model is a partial order that is the transitive closure of the
program order and the writes-into order defined on A. To
be specific: op1 ⇒ op2 holds if and only if one of the fol-
lowing cases holds:

• op1 → op2 (program order); or



p1 (SC): w(x)1 r(x)1 w(y)1 r(x)2
p2 (SC): w(x)2 r(x)2 w(y)2 r(x)2
p3 (CC): w(y)3 r(y)4 r(x)1 r(x)2 r(y)2
p4 (CC): w(y)4 r(y)3 r(x)1 r(x)2 r(y)2

Figure 1. Mixed Consistency Example
with OSC = {x1, x2, x3, x4} and OCC =
{y1, y2, y3, y4}

• op1 �→ op2 (writes-into order); or

• there is another op3 such that op1 ⇒ op3 ⇒ op2

History: We define the global history (or history) of an
operation set A, denoted as H , to be a collection of A’s
operations and the program order among those operations,
i.e. H =< A,→>.

3.3 Mixed Consistency

We say that a history H is mixed-consistent if it satisfies
all the following requirements:

1. SC requirement: there exists a serialization of ASC

such that it respects the program order;

2. CC requirement: for each CC process pi, there exists
a serialization of A{pi} ∪ W such that it respects the
causal order (W denotes the set of all writes).

In order to illustrate the mixed consistency model, let’s
consider one example. Figure 1 gives the system setting
and the execution history H (operations in the same column
denote concurrent operations), where the notion x i (or yi)
denotes the replica of object x (or y) that process p i has.

The history H in Figure 1 is mixed-consistent because
it meets all the requirements:

1. SC requirement: we know that

ASC = {w1(x)1, r1(x)1, r1(x)2, w2(x)2, r2(x)2,

r2(x)2, r3(x)1, r3(x)2, r4(x)1, r4(x)2}
Clearly ASC is well-formed. And

S = {w1(x)1, r1(x)1, r3(x)1, r4(x)1, w2(x)2,

r1(x)2, r2(x)2, r2(x)2, r3(x)2, r4(x)2}
is a serialization that respects the program order of all
pi (1 ≤ i ≤ 4).

2. CC requirement: we have

A{p3} = {w3(y)3, r3(y)4, r3(x)1, r3(x)2, r3(y)2}
A{p4} = {w4(y)4, r4(y)3, r4(x)1, r4(x)2, r4(y)2}

W = {w1(x)1, w2(x)2, w1(y)1, w2(y)2, w3(y)3,

w4(y)4}

For process p3:

S3 = {w3(y)3, w4(y)4, r3(y)4, w1(x)1, r3(x)1,

w2(x)2, r3(x)2, w1(y)1, w2(y)2, r3(y)2}

is the serialization that respects the causal order.

For process p4:

S4 = {w4(y)4, w3(y)3, r4(y)3, w1(x)1, r4(x)1,

w2(x)2, r4(x)2, w1(y)1, w2(y)2, r4(y)2}

is the serialization that respects the causal order.

4 A Mixed Consistency Protocol

To design brand new protocols to ensure either SC or
CC is not our purpose. Instead, we show in this paper that
we can combine existing SC and CC protocols together to
meet mixed consistency requirements. We choose two well-
studied protocols in the literature to achieve this goal.

SC: Home-based Protocol We choose home-based pro-
tocol [6] to ensure SC requirements. A designated home
node is associated with every object that has a SC replica to
coordinate access to such replicas. A node with SC replica
must acquire a token prior to access. The home node keeps
track of what nodes can read or write the object’s replicas
and grants READ/WRITE TOKEN to the nodes that want
to read/write this object. The READ TOKEN is shared by
multiple readers, while the WRITE TOKEN does not coex-
ist with the READ TOKEN and can only be issued to one
writer at a time. Tokens are issued based on a First-Come-
First-Serve order observed by the home node. Currently,
the location of the home node is randomly assigned in our
protocol, although results in [7, 19, 21] suggest that random
assignment may have a negative impact on the performance
of home-based protocols. We can employ a “smart” home
node assignment when an application profile is available.

CC: Causal Memory Protocol We choose vector clock
based causal memory protocol [2] to ensure CC require-
ments are met. When a write operation is performed, a
new value along with the local clock will be disseminated
to other replicas. The receiver applies the new value when
all the “causally preceding” values have arrived and been
applied, which is determined based on the receiver’s local
vector clock and the clock value that comes with the new
object value. In this protocol, the dissemination process can
be done in background. Therefore, write operations do not
block and return immediately.



INITIALIZATION
NAME FUNCTIONALITY
init() Initialize local data structures such as timestamps and queues.
APPLICATION INTERFACE (invoked by upper layer)
read(x) Return the value v of object x.
write(x,v) Write new value v to object x.
LOCAL FUNCTIONS (invoked by local application interfaces)
write miss(x,v) Request a new WRITE TOKEN from the home node and complete the local write.
read miss(x) Request a new READ TOKEN from the home node and pull new value from the latest writer if necessary.
SYNCHRONOUS COMMUNICATION PRIMITIVES (invoked by remote nodes, block before return)
value request(y) Return the latest value of y (and associated timestamps, if necessary) to the caller node.
write token request(y) Return the new WRITE TOKEN to the caller node after revoking all other tokens.
read token request(y) Return the new READ TOKEN to the caller node after revoking other’s WRITE TOKEN, if any.
write token revoke(y) Delete local WRITE TOKEN.
read token revoke(y) Delete local READ TOKEN.
ASYNCHRONOUS COMMUNICATION PRIMITIVES (keep running forever, monitoring queues)
send daemon() Keep running forever; send msgs to selected destinations from output queue oqueue.
receive daemon() Keep running forever; receive msgs from the input queue iqueue, and apply new values if necessary.

Figure 2. Categorized interfaces of mixed consistency protocol

4.1 Challenges for Mixed Consistency

We give our mixed consistency protocol in Figure 6.
The protocol interfaces are summarized in Figure 2, which
will be explained later in the paper to help understand the
protocol. Before that, we want to address several problems
of integrating the SC and CC protocols together in order to
implement the mixed consistency model.

Possible Causal Order Violation: In our model, a pro-
cess can have both SC and CC replicas. If we simply run
the two protocols to maintain replicas based on their type,
we could have a potential CC violation. For instance, sup-
pose there are two processes, namely p1 (SC) and p2 (CC).
Each has a SC copy of o1 and a CC copy of o2. p1 writes
o2 first and then writes o1. p2 reads o1 and then o2. The
home-based protocol can guarantee that p2 reads what p1

writes to o1. But when p2 reads o2, it might get the “old”
value because p1’s new value for o2 is possibly still on the
way because of the background dissemination of the causal
memory protocol. We overcome this obstacle by delay-
ing CC reads (setting the replica as NOT READABLE) if
a potential CC violation is possible. In Figure 6, function
read miss() evaluates the vector clock returned by process
pk and sets any CC object as NOT READABLE if a causal
order violation is possible as described above. New CC val-
ues will eventually arrive (please refer to Section 4.4) so
the delayed CC reads will eventually return with the correct
value. In Figure 6, function receive daemon() resets the
object as READABLE when it receives a new CC value.

Possible Vector Clock Error: When a SC process
writes a SC object, the new value will be disseminated to the
CC replicas held by other processes. The receiver needs a
correct vector clock in the message to order the update to the
CC replica (i.e. when to apply the new value). Therefore, all
SC replicas should maintain a “correct” vector clock associ-
ated with them, which in turn requires that when a CC pro-

cess writes a CC object, although the value does not prop-
agate to SC replicas (otherwise violates Rule 1), the vector
clock does. Our design enforces the dissemination of vector
clocks as required. In Figure 6, function send daemon()
sends the message to all processes (both SC and CC) when
the local writer pi is a CC process. Please note that this
does not violate our access constraints because the function
receive daemon() at the receiver’s side only applies the
value to the local copy when the receiver is a CC process. If
the receiver is a SC process, only the vector clock is used to
keep the local vector clock correct. The CC value embedded
in the message is discarded.

4.2 Protocol Interfaces

The protocol interface is shown in Figure 2, where we
categorize the functions into initialization, application inter-
face, local functions, synchronous and asynchronous com-
munication primitives. We use the term “synchronous com-
munication” to refer to blocking, RPC style communica-
tion. It is performed through Remote Method Invocation
(RMI). We use “asynchronous communication” to refer to
non-blocking, send/receive daemon style communication.
Our protocol does not place any specific requirements on
how to perform asynchronous dissemination. Various mul-
ticast or rumor-spreading based techniques can be used as
the communication layer support for our protocol. We are
exploring an adaptive communication layer under our pro-
tocol, featuring better performance and bandwidth utiliza-
tion in a heterogeneous environment.

In our protocol, read(x) and write(x, v) are the in-
terfaces exposed to the applications. These two functions
first evaluate if the constraints in Table 1 are violated.
If yes, an exception will be thrown. For a SC replica
write shown in Figure 3 and 4, write(x, v) triggers
a write miss(x, v) call if a WRITE TOKEN is missing,



which in turn asks the home node for a write token by call-
ing write token request(x). Old or conflicting tokens are
revoked by write/read token revoke(x). A SC replica
read, shown in Figure 5, can triggers a read miss(x) if a
READ TOKEN is missing. When the home node issues the
READ TOKEN, it also tells the reader where the latest copy
is (the latest writer) and the reader calls value request(x)
to fetch the copy. Vector clocks are also returned along with
the latest copy by the latest writer in order to ensure the
cross SC/CC causal relationship is correct.

For a CC replica write, a message is constructed and
inserted into the outgoing queue (oqueue). Function
send daemon() will eventually send out the message and
the destination side receive daemon() will eventually re-
ceive it. A CC replica read is returned immediately if the
replica is READABLE. As restricted by the constraints of
Table 1, writes to a CC replica will not be propagated to SC
replicas. However, we do propagate the meta data (vector
clock, to be specific) from CC replicas to SC replicas when
a write to CC replica happens. This ensures that the vec-
tor clocks on SC replicas can correctly capture the causal
relationship even though they do not share the CC values.

4.3 Correctness of the Protocol

The protocol given in Figure 6 is correct because we
can show that both SC and CC requirements are met in this
protocol (due to page limitation, we only give a sketch of
the proof in this paper).

(1) If there are only SC (CC) replicas in the system, the
protocol behaves the same as the home-based protocol [6]
(causal memory protocol [2]) does. Both SC and CC re-
quirements are met.

(2) If there are mixed SC and CC replicas in the system,
the SC requirements are not violated because the definition
of access constraints isolates the writes to CC replicas from
SC replicas. These writes, which are not sequentially or-
dered, are not visible to SC replicas. Now we are trying
to argue that CC requirements are not violated either. Let’s
suppose CC requirements are violated. There are two possi-
bilities: either the causal order among CC objects is broken,
or the causal order among SC and CC objects is broken. The
correctness of the causal memory protocol guarantees that
the first case does not happen. Our solutions proposed in
Section 4.1 prevent the second case from happening. So
we can be sure that causal order is correctly maintained in
our protocol. Therefore, both SC and CC requirements are
met.

4.4 Communication and Host Failures

In this paper, we mainly focus on introducing the mixed
consistency model and the protocol described in Figure 6

assumes a failure free environment for simplicity reasons.
However, our protocol can be extended to handle commu-
nication and node failures. In a fault-tolerant version of the
mixed consistency protocol that we are developing, we as-
sume omission failure of communication channels and fail-
stop failures of nodes where the processes execute. The
omission failure is tolerated by the re-transmission sup-
port of the communication layer which our protocol is built
upon. When a node fails, all the replicas maintained by that
node fail too. The CC protocol used in our MC implemen-
tation can be easily extended to tolerate fail-stop failures,
while the home-based SC protocol cannot. When object
x’s home node Dx fails, all read and write operations on
x block and x becomes inaccessible. However, our mixed
consistency model provides a new way to address fail-stop
failure handling through replica downgrading, which allows
computation to continue at a lower consistency level when
failures happen.

The downgrading process happens when the system de-
tects that Dx has failed. The system will then downgrade
all the SC replicas of x maintained by non-faulty nodes to
CC copies. During the downgrading process, all the write
operations on all replicas will be frozen in order to main-
tain correct causal relationship. The downgrading proce-
dure can be summarized in three steps: 1) When a pro-
cess detects that Dx has failed, it sends out a DOWN-
GRADING START message to all the nodes in the system,
initializing the start of downgrading (Duplicated DOWN-
GRADING START messages will be ignored). 2) The ac-
tual downgrading process starts when the system has ap-
plied all outstanding writes. During the downgrading pro-
cess, all new write requests will be delayed until the pro-
cess is finished. Each node that has a SC copy of x will
downgrade it to CC. 3) After a node finishes its downgrad-
ing, a LOCAL DOWNGRADING FINISH message will
be sent to all other nodes. When a node receives all the
LOCAL DOWNGRADING FINISH messages, the com-
putation will continue with only CC copies of object x in
the system. Since an application may want stronger con-
sistency, we are also exploring protocols that can upgrade
replicas after a node recovers from failures.

5 Analysis

A simple system is used to analyze the network traffic
and timeliness of the mixed consistency protocol. It consists
of n + m processes (n SC processes and m CC processes)
sharing one object x. We assume that the average one-way
message transmission time is t. The dissemination is done
by a tree-based protocol, with a fan-out factor of f . For ex-
ample, the average time for a process to disseminate a new
value to m processes is (logfm)t. We estimate the network
traffic by the number of messages generated for different



x

z

x

x

write_token_request(x)

write_token_revoke(x)

x's home node

x

y

write(x)
2

3

write_miss(x)

1

Figure 3. A sample illus-
tration of write(x, v) (x is
SC) with write token revo-
cation.

x

z

x

x

write_token_request(x)

read_token_revoke(x)

read_token_revoke(x)

x's home node

x

y

write(x)

2

3

3

write_miss(x)

1

Figure 4. A sample illus-
tration of write(x, v) (x is
SC) with read token revo-
cation.

x

z

x

x

read_token_request(x)

write_token_revoke(x)

x's home node

x

y

read(x)

2

x's latest writer
3

value_request(x)

read_miss(x)

4

1

Figure 5. A sample illus-
tration of read(x) (x is SC)
with write token revoca-
tion.

operations. The timeliness of read operation is estimated by
the time it takes to return a value, the timeliness of write
operation is estimated by the time it takes for the rest of the
system to become aware of its new value. We compare the
mixed consistency protocol against SC consistency and CC
consistency implementations in Figure 7.

SC consistency (home-based protocol implementation)
Let’s assume x’s home node is p0.

• READ: Let’s further assume process pi (�= p0) does not
have x’s READ TOKEN and pj (�= p0) is last writer
of x, so a read request at pi will generate additional
control messages for requesting/revoking tokens.

– Suppose there is no other readers between pj’s
write and pi’s read, the number of messages
for pi to return the latest value of x is 6 (1
READ TOKEN REQUEST from pi to p0, 1
WRITE TOKEN REVOKE from p0 to pj , 1
VALUE REQUEST from pi to pj , and 3 REPLY
messages for each of these messages). The total
time for pi to return a new value is 6t.

– Suppose there are other readers that read x’s
value before pi, the number of messages will be
reduced to 4 (p0 does not need to revoke pj’s
WRITE TOKEN). And the total time is 4t.

• WRITE: Let’s assume process pi (�= p0) does not have
x’s WRITE TOKEN. There are two possibilities: a
process pj (�= p0) holds x’s WRITE TOKEN, or there
are k processes holding x’s READ TOKEN. The total
number of messages for pi to complete a write opera-
tion is 2 and 2(k +1) respectively. Therefore, the total
time for pi’s write is either 2t or 2(k + 1)t.

• For both READ and WRITE, if pi already has the
proper token, no messages will be generated. Thus we

say that the communication time each operation takes
is 0.

CC consistency (vector clock based protocol)

• READ: Since there is no communication involved for
serving read requests, no messages will be generated.
And the time to complete a read request is 0.

• WRITE: A new object value (together with vector
clock) needs to be disseminated to all other processes,
when a write request is serviced. So a total number of
n + m − 1 messages will be generated. It takes an av-
erage of t(logf (n + m − 1)) for this new object value
to be disseminated to all other processes, although the
write operation itself immediately returns before com-
munication completes.

Mixed consistency

• SC READ: Same as READ in SC consistency, i.e. 4 or
6 messages and 4t or 6t time.

• SC WRITE: Similar as WRITE in SC consistency, ex-
cept that m additional dissemination messages are gen-
erated because the writer needs to disseminate the new
value to all CC replicas as well. Therefore, the total
number of messages is either 2 + m or 2(k + 1) + m.
And the total execution time of write is 2t or 2(k+1)t,
the dissemination time is logfm.

• For both SC READ and SC WRITE, if pi already has
the proper token, no control messages will be gen-
erated (m additional dissemination messages are still
generated for SC WRITE, taking t(logfm) time to be
disseminated) and both operations immediately return
with 0 communication time.



Assume there are N processes in the system,
i.e. p1,..., pN .

O: array of M objects. x: object name.
i.e. O[x] contains value v of object x.

init()
//initializing the meta data
for every CC object x do

set x as READABLE;
for every object x do

for j = 1 to N do
tx[j] = 0; //initialize the timestamp

oqueue = <>;
iqueue = <>;

write(x, v)
//write new value v to object x
if x ∈ SC and pi ∈ SC

if pi has x’s WRITE TOKEN
tx[i] = tx[i] + 1;
O[x] = v;
enqueue(oqueue, <i,x,v,t>);

else write miss(x, v);
else if x ∈ CC

tx[i] = tx[i] + 1;
O[x] = v;
enqueue(oqueue, <i,x,v,t>);

else throw WRITE EXCEPTION;

read(x)
//read object x’s value
if x ∈ CC and pi ∈ CC

if x is NOT READABLE
wait until x is READABLE;

return O[x];
else if x ∈ SC

if pi has x’s READ TOKEN
return O[x];

else return read miss(x);
else throw READ EXCEPTION;

write miss(x, v)
//wait for a WRITE TOKEN from x’s home node pj
calls pj.write token request(x);
set ‘‘pi has x’s WRITE TOKEN’’;
tx[i] = tx[i] + 1;
O[x] = v;
enqueue(oqueue, <i,x,v,t>);

read miss(x)
//wait for a READ TOKEN from x’s home node pj
call pk=pj.read token request(x);
//assume pk has the latest value of x
set ‘‘pi has x’s READ TOKEN’’;
if pk is null

return O[x];
else

call <O[x], s>=pk.value request(x);
for any CC object z do

if (∃j �= i:sz[j]>tz[j])
set z as NOT READABLE;

if (sx[i]>tx[i])
tx[i]=sx[i];

return O[x];

value request(y)
//assume it is called by process pj
return <O[y], t>; //return the entire timestamp array

write token request(y)
//assume it is called by process pj
if y has a WRITE TOKEN issued to pm

call pm.write token revoke(y);
return; //grant pj with y’s WRITE TOKEN

if y have any READ TOKENs issued
for any process pn being issued

call pn.read token revoke(y);
return; //grant pj with y’s WRITE TOKEN

return;

read token request(y)
//assume it is called by process pj
if y have any READ TOKENs issued

//assume pk is the last process that had y’s WRITE TOKEN
return pk; //grant pj with y’s READ TOKEN

if y has a WRITE TOKEN issued to pm
call pm.write token revoke(y);
return pm; //grant pj with y’s READ TOKEN

return null;

write token revoke(y)
//assume it is called by process pj
wait for outstanding writes to y are finished;
delete y’s WRITE TOKEN;
return;

read token revoke(y)
//assume it is called by process pj
wait for outstanding reads to y are finished;
delete y’s READ TOKEN;
return;

send daemon()
//sending daemon, keeps running forever
if oqueue �= <>

//let MSG = dequeue(oqueue)
if pi ∈ CC

disseminate MSG to all other processes;
else // pi ∈ SC

disseminate MSG to all CC processes;

receive daemon()
//receiving daemon, keeps running forever
if iqueue �= <>

//let <j,x,v,s> = head(iqueue) be the msg from pj
if ((∀h �= x and ∀k �= j:sh[k]≤th[k]) AND (sx[j]=tx[j]+1))

dequeue(iqueue);
tx[j] = sx[j];
if pi ∈ CC

O[x] = v;
if x is NOT READABLE

set x as READABLE;

Figure 6. The Mixed Consistency Protocol - at process pi

Network Traffic Time
READ in SC reader has token 0 0

reader does not have token 4 or 6 4t or 6t
SC READ in MC reader has token 0 0

reader does not have token 4 or 6 4t or 6t
WRITE in SC writer has token 0 0

writer does not have token 2 or 2(k+1) 2t or 2(k+1)t
SC WRITE in MC writer has token m 0 execution, logf m dissemination

writer does not have token 2+m or 2(k+1)+m 2t or 2(k+1)t execution, logf m dissemination
READ in CC - 0 0
CC READ in MC - 0 0
WRITE in CC - n+m-1 0 execution, logf (n + m − 1) dissemination
CC WRITE in MC - n+m-1 0 execution, logf (n + m − 1) dissemination

Figure 7. Analysis of mixed consistency protocol



• CC READ: Same as READ in CC consistency.

• CC WRITE: Similar as WRITE in CC consistency,
m − 1 dissemination messages are generated. In or-
der to prevent “possible vector clock error”, the writer
needs to send its vector clock to all SC processes. So
n control messages are generated. A total number of
n+m−1 messages will be generated. The time is also
the same as WRITE in CC consistency.

To summarize, the network traffic and timeliness of SC,
CC and MC models are shown in Figure 7. It is clear to
see that the performance of mixed consistency protocol is
almost the same as SC and CC, depending on what tag the
reader/writer has. The overall performance of an MC sys-
tem is determined by how many SC/CC replicas are there in
the system.

6 Related Work

Agrawal et. al. first introduced the term mixed consis-
tency in [1] to refer to a parallel programming model for
distributed shared memory systems, which combines causal
consistency and PRAM [13] consistency. Four kinds of ex-
plicit synchronization operations: read locks, write locks,
barriers and await operations are provided in their model.
In this paper, we use the same term to refer to a new consis-
tency model combining sequential consistency and causal
consistency. The access constraints we propose represent
a more general approach: PRAM consistency can be inte-
grated into our mixed consistency model with little effort.

Attiya and Friedman introduced the concept of hybrid
consistency in [4]. In this model, all read and write op-
erations on shared objects are categorized as either strong
or weak. All processes agree on a sequential order for all
strong operations, and on the program order for any two op-
erations issued by the same process in which at least one of
them is strong. It does not guarantee any particular order
of any two weak operations between two strong operations.
In our model, an operation is weak or strong depending on
whether it is executed with a strong or weak replica. Thus,
both strong and weak operations can not be executed on a
replica by the same process. We define access constraints
to develop the mixed consistency model where we do not
assume that strong operations can be used to establish order
among weak operations when necessary.

Fernandez, Jimenez, and Cholvi proposed a simple algo-
rithm to interconnect two or more causal consistency sys-
tems into one causal consistency system through gates in
[8]. They further defined a formal framework to describe
the interconnection of distributed shared memory systems
in [9] and showed that only fast memory models can be in-
terconnected, where read and write operations return im-
mediately after only local computations (i.e. no global syn-

chronization, which is required to implement SC systems).
In our mixed consistency model, we take a different ac-
cess constraints based approach to combine SC and CC to-
gether. We do not try to interconnect SC and CC through
gates, where all the communications between two systems
must flow through. Therefore, our result does not contradict
theirs.

Yu and Vahdat presented a conti-based continuous con-
sistency model for replicated services in paper [20]. In their
model, applications use three measurements of numerical
error, order error and staleness as bounds to quantify their
relaxed consistency requirements. The authors used relaxed
consistency model with bounded inconsistency to balance
the tradeoffs between performance, consistency and avail-
ability. By exploring application and system resource het-
erogeneity, we also suggest that replicated distributed ser-
vices should be able to support more than just strong con-
sistency. However, instead of relaxing strong consistency
requirements, we believe that certain applications can bene-
fit from having both strongly and weakly consistent replicas
at the same time.

Raynal and Mizuno survey many consistency models for
shared objects in [15]. They particularly emphasize lin-
earizability, SC, hybrid consistency and CC. Raynal and
Schiper [16] show that SC is strictly stronger than CC by
showing that CC + “total order on all writes on all objects”
= SC. Based on the results of these two papers, we choose
SC and CC as the example of strong and weak consistency
to implement the mixed consistency model in this paper.

Two orthogonal dimensions of consistency, timeliness
and ordering, are explored in [3]. Ordering determines
the value that should be applied/returned by the consis-
tency protocols. Sequential consistency [12], [5], [16] re-
quires all operations appear to be executed in a serial order
that respects the “read-from” ordering and “process” order-
ing. Causal consistency [2] is a weaker form of consistency
model because it does not require all replicas to agree on
a unique execution history. There are various other consis-
tency models (e.g. lazy release consistency [10] and Bayou
session guarantees [18]), which explore different aspects
(e.g. synchronization, transaction) of distributed computa-
tion and how extra facility can be used to enhance consis-
tency models. Timeliness decides how fast the proper value
should be applied/returned. Maintaining web content con-
sistency [14] and δ-time consistency [17] suggest that the
value returned should be at most δ time unit “old”. [11]
presents an efficient implementation of timed consistency
based on combined “push” and “pull” techniques. Our work
fits into the operation ordering dimension of consistency
model. The mixed consistency model tries to combine dif-
ferent order guarantees together to satisfy application needs
in wide area heterogeneous environment.



7 Conclusion

In this paper, we propose a mixed consistency model
to combine existing strong (SC) and weak (CC) consis-
tency models together to meet the heterogeneity challenge
for large scale distributed shared memory systems. Our
model defines new SC and CC requirements on subsets of
replicas shared by different processes. We propose access
constraints as the base to implement our mixed consistency
model. We make minor modifications to two existing pro-
tocols and combine them together to implement the mixed
consistency model. We show that the result protocol satis-
fies all the requirements we define.

The access constraints based approach we proposed in
this paper is not limited to combining just SC and CC. Cur-
rently we are exploring the combination of other consis-
tency schemes under similar access constraints. We’d like to
implement a fault-tolerant version of our protocol in order
to better meet the application needs under real life condi-
tions. And as an extension of our work, we are building our
protocols on top of an adaptive update dissemination frame-
work, which can provide better performance and bandwidth
utilization in a heterogeneous environment.

8 Acknowledgements

We thank anonymous reviewers and our sherperd Dr.
Neeraj Suri. Their comments have greatly improved this
paper.

References

[1] D. Agrawal, M. Choy, H. V. Leong, and A. K. Singh. Mixed
consistency: a model for parallel programming (extended
abstract). In The 13th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC), 1994.

[2] M. Ahamad, G. Neiger, J. E. Burns, P. W. Hutto, and
P. Kohli. Causal memory: Definitions, implementation and
programming. Distributed Computing, 9:37–49, 1995.

[3] M. Ahamad and M. Raynal. Ordering vs timeliness: Two
facets of consistency? Future Directions in Distributed
Computing, 2003.

[4] H. Attiya and R. Friedman. A correctness condition for high-
performance multiprocessors. In Proc. of the 24th ACM
Symposium on Theory of Computing (STOC), 1992.

[5] H. Attiya and J. L. Welch. Sequential consistency versus lin-
earizability. ACM Transactions on Computer Systems, 1994.

[6] J. Carter, J. Bennett, and W. Zwaenepoel. Implementation
and performance of munin. In Proceedings of the 13th ACM
Symposium on Operating Systems Principles (SOSP), 1991.

[7] A. Cox, E. de Lara, and W. Z. Y. C. Hu. A performance
comparison of homeless and home-based lazy release con-
sistency protocols for software shared memory. In Proc. of
the 5th IEEE Symp. on High-Performance Computer Archi-
tecture (HPCA-5), 1999.

[8] A. Fernandez, E. Jimenez, and V. Cholvi. On the intercon-
nection of causal memory systems. In Proc. of the 19th
ACM Symposium on Principles of Distributed Computing
(PODC), July 2000.

[9] E. Jimenez, A. Fernandez, and V. Cholvi. Decoupled inter-
connection of distributed memory models. In Proc. of the
7th International Conference on Principles of Distributed
Systems (OPODIS 2003), December 2003.

[10] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release
consistency for software distributed shared memory. In
Proc. of the 19th Annual Int’l Symp. on Computer Archi-
tecture (ISCA’92), pages 13–21, 1992.

[11] V. Krishnaswamy, M. Ahamad, M. Raynal, and D. Bakken.
Shared state consistency for time-sensitive distributed ap-
plications. In 21th International Conference on Distributed
Computing Systems (ICDCS), 2001.

[12] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transac-
tions on Computers, C28(9):690–691, 1979.

[13] R. Lipton and J. S. Sandberg. Pram: A scalable shared mem-
ory. Technical Report CS-TR-180-88, Princeton University,
Dept. of Computer Science, 1988.

[14] C. Liu and P. Cao. Maintaining strong cache consistency in
the world-wide web. In International Conference on Dis-
tributed Computing Systems (ICDCS), 1997.

[15] M. Raynal and M. Mizuno. How to find his way in the jungle
of consistency criteria for distributed objects memories (or
how to escape from minos’labyrinth). In Proc. of the IEEE
International Conference on Future Trends of Distributed
Computing Systems, September 1993.

[16] M. Raynal and A. Schiper. From causal consistency to se-
quential consistency in shared memory systems. In 15th
Conference on Foundations of Software Technologies and
Theoretical Computer Science, pages 180–194, Bangalore,
India, 1995. Springer-Verlag.

[17] A. Singla, U. Ramachandran, and J. K. Hodgins. Temporal
notions of synchronization and consistency in beehive. In
ACM Symposium on Parallel Algorithms and Architectures,
pages 211–220, 1997.

[18] D. B. Terry, M. M. Theimer, K. Peterson, A. J.Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
bayou, a weakly connected replicated storage system. In
Proceedings of the 15th ACM SOSP, 1995.

[19] B.-H. Yu, Z. Huang, S. Cranefield, and M. Purvis. Home-
less and home-based lazy release consistency protocols on
distributed shared memory. In 27th Australasian Computer
Science Conference (ACSC’04), 2004.

[20] H. Yu and A. Vahdat. Design and evaluation of a conit-
based continuous consistency model for replicated services.
In ACM Transactions on Computer Systems (TOCS), 2002.

[21] Y. Zhou, L. Iftode, and K. Li. Performance evaluation
of two home-based lazy release consistency protocols for
shared memory virtual memory systems. In Proc. of the
2nd Symp. on Operating Systems Design and Implementa-
tion (OSDI’96), pages 75–88, 1996.


