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Abstract

Large-scale competitive P2P networks are threatened by the non-
cooperation problem,1 where peers do not forward queries to potential
competitors. Non-cooperation will be a growing problem in such applica-
tions as pay-per-transaction file-sharing, P2P auctions, and P2P service
discovery networks, where peers are in competition with each other to pro-
vide services. Here, we show how non-cooperation causes unacceptable
degradation in quality of results, and present an economic protocol to ad-
dress this problem. This protocol, called the RTR protocol, is based on
the buying and selling of the right-to-respond (RTR) to each query in the
network. Through simulations we show how the RTR protocol not only
overcomes non-cooperation by providing proper incentives to peers, but
also results in a network that is even more effective and efficient through
intelligent, incentive-compatible routing of messages.

1 Introduction
In recent years, the distributed systems community has

shown great interest in resource-sharing over peer-to-peer
(P2P) systems. Existing P2P systems have been able to
reach enormous scales because of their ability to pool to-
gether and harness large amounts of resources. In addition,
because peers come from different organizations, no one or-
ganization bears the cost of supporting the infrastructure,
and peers can leverage data, services and expertise across
organizations.

The key to the usability of a data-sharing peer-to-peer
system is the ability to search for and retrieve resources such
as files, records, service descriptions, etc. Indeed, much ex-
isting research (e.g., [2, 17, 19]) has focused on efficient
and expressiveresource discoverymechanisms. However,
while the solutions put forth in these works address critical
problems, most cannot function unless one can assume that
peers cooperate with one another. Unfortunately, such an
assumption will not hold in general P2P application scenar-
ios, because peers are autonomous and come from poten-
tially competing organizations.

In particular, in terms of resource discovery, one cru-
cial problem facing future P2P applications iscompetition
among peers to provide services (e.g., sharing data). In-
creasing emphasis is being placed on newlegitimateappli-
cations of P2P, such as pay-per-transaction networks, P2P
auctions, and P2P service discovery networks. In these ap-
plications, peersgain from answering queries. For example,

1A brief position paper on this topic appears earlier in [22].

in a pay-per-transaction file-sharing network where peers
get paid for uploading files, peers will want to share files,
because this generates income. Therefore, not only are
peers eager to provide services (e.g. share files), but they
are incompetitionwith other peers to provide their services.

Competition is a serious problem in P2P resource discov-
ery frameworks that rely on peers to forward queries (e.g.,
Gnutella [6], DHTs like [17], etc.),2 because a peer acting
in its own best interests will not forward queries to poten-
tial competitors. For example, a peer providing a car rental
service might not forward a query for car rental services.
Instead, it could answer the query and then drop it, so as
to improve its chances of gaining business. As a result, the
P2P network will no longer operate correctly due to non-
cooperation, even though abundant services are available.

Furthermore, competition is much more subtle than such
malicious behavior as indiscriminately dropping queries,
since only a crucial fraction of messages are dropped com-
petitively. Existing message-forwarding incentive mech-
anisms such as [18] tend to employ strategies in which
peers reciprocate message-forwarding volume. However,
such an approach cannot differentiate between peers who
act competitively and peers who have, for example, one
fewer neighbor than the average peer, as both will simply
appear to have a slightly lower volume of forwarded mes-
sages; therefore, these existing mechanisms are insufficient
to address competition.

In this paper, we propose an economic protocol to en-
sure that peers cooperate in theoperationof P2P networks
in the face of competition. The basic idea behind the pro-
tocol, called theRTR protocol, is to have peerspurchase
queries from one another. Peers have both an incentive to
buy queries, since they provide potential business, and an
incentive to sell them, because they are assigned a price. In
addition to overcoming competition, the RTR protocol im-
proves overall system efficiency through techniques that are
compatible with individual peer incentives.

We note that the work presented in this paper is an early
attempt at addressing a new problem. While much existing
work has focused on performance of P2P systems, and oth-
ers have looked at different types of incentives issues (e.g.,
free-riding, indiscriminately dropping queries), ours is the

2The exceptions are systems that require no forwarding, such as the old
Napster (http://www.napster.com).
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first to address the dual issues of competitionand perfor-
mance in resource discovery. Therefore, much of this work
is still exploratory in nature. Our goal is to lay a foundation
for addressing this new problem by identifying the relevant
issues, providing simple models by which to reason about
the problem, and presenting one potential solution that we
believe captures the necessary components of any general
solution to the competition problem.

Our contributions in this paper are as follows:
• We identify (Section 2) a new and relevant problem

facing economic P2P applications, thenon-cooperation
problem, and quantify its effects.

• We present (Section 3) theRTR protocol, a potential so-
lution to the non-cooperation problem.

• We discuss (Section 3.4) the robustness of this protocol,
and provide means to avoid and punish cheating peers.

• We analyze (Section 5) the performance of the RTR
protocol and show how it effectively addresses the non-
cooperation problem.

In this work, we illustrate our protocol on top of
the Gnutella protocol for P2P search running a pay-per-
transaction file-sharing application. This application is cho-
sen as a starting point for our study for two reasons. First,
free file-sharing has proven itself to be a popular applica-
tion, but due to its often illegal activities, a push is being
made towards legal solutions involving payment (e.g., [9]).
We therefore assume our users are ones who are willing to
pay for file download, as are the users of [9], and to sell
files under the approval of the copyrighted owners. Second,
file-sharing has a naturally simple pricing model in which
all files have the same value.

We selected the Gnutella protocol because, in the face
of competition, unstructured networks are more appropri-
ate than structured ones, which rely heavily on coordinated,
cooperative behavior. Important future work lies in ex-
tending these ideas to systems with more complex valua-
tion of goods and over different search architectures, such
as DHTs (e.g., [17]) and GUESS [8]. The following dis-
cussion assumes the existence of an efficient micropayment
scheme for P2P systems, such as that described in [21], and
a public-key infrastructure.

2 Background and Motivation

The basic Gnutella search protocol [6] works as follows:
each user runs a client (orpeer), which is connected to a
small number of other peers (known asneighbors) in an
overlay network. When a user submits a query, her peer
will send the query message to all its neighbors, who will in
turn forward the query to their neighbors, and so on. A peer
that receives a query and finds that it can answer will send a
response directly to the querying peer.3 The querying peer
will wait a period of time for responses to arrive, and then it
will select one or more responding peers from which to buy

3In Gnutella, response messages are actually forwarded along the re-
verse path traveled by the query. We modify the protocol to be more effi-
cient and respect the privacy of the responder.

Score # Peers # messages
Responded

All 19.0 29.0 120.0
Comp. 2.1 3.9 28.2

No 1.1 1.9 4.0
RTRef 19.3 29.5 122.5

Table 1. All, competitive and no-forward behavior, com-
pared with the RTR protocol

services (e.g., paying to download a file). Clearly, if peers
do not forward queries, the search mechanism will fail.

Effects of Non-Cooperation. In the case where peers co-
operatively forward queries to each other, we say the peers
are following theall-forward mode of behavior. In the non-
cooperation case, peers can refuse to cooperate under two
models: (1)no-forward, and (2)competitive-forward. Un-
der no forward, a peer forwards no queries. Under purely
rational behavior, a peer will adopt no-forward behavior, be-
cause it would need to consume processing and bandwidth
resources to forward queries, with no gain for itself.

However, no-forward behavior is easy to detect and pun-
ish; employing existing incentive mechanisms such as [18]
may be enough to prevent peers from dropping all mes-
sages. A more subtle misbehavior is thecompetitive-
forward model, in which peers do not forward queries only
if doing so will increase competition for that peer. To il-
lustrate, consider a peerP in a file-sharing P2P application
that responds to a queryq. BecauseP will gain income if it
is chosen to upload a file forq, it can maximize its expected
income by not forwardingq to any of its neighbors, even
if P only has an approximate answer (one that has just a
small chance of being uploaded). Without a global view of
the incoming and outgoing messages of a peer, which is un-
available in almost any P2P network, existing mechanisms
are unable to detect competitive-forward behavior.

In Table 1, we compare the performance of the Gnutella
file-sharing network under the all, competitive and no-
forward cases. For now, ignore the row describing the RTR
protocol. A detailed description of the setup for this ex-
periment can be found in Section 4. We measure perfor-
mance in terms of quality of results and efficiency. Quality
of results is reflected by how many peers responded to each
query, on average, and the “score” of the response set (de-
scribed in Section 4.3).

From this table, we see that both competitive and no-
forward behaviors result in significantly degraded quality of
results, when compared to all-forward. For example, in the
no-forward case, the number of peers that process a query
is 15 times smaller than in the all-forward case. Although
competitive-forward outperforms no-forward, it still has an
average response score that is just 12% of the score under
all-forward behavior. Considering the importance of net-
work variety to users of file-sharing networks, we see a clear
need for overcoming non-cooperative behavior. We note
that, not surprisingly, messaging overhead is roughly pro-
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portional to quality of results. However, since bandwidth
and processing are renewable resources, we consider this
cost small compared to the gain in user satisfaction.

Our goal in addressing non-cooperation is the following:
to allow the network to achieve the same quality of results
and efficiency as all-forward, even in the face of competitive
peers. Indeed, we will see later that under the RTR protocol,
the network adapts to form a more efficient topology over
which we maximize the quality-to-cost ratio of the network.

3 RTR Protocol

At the core of our protocol is the concept of aright to
respond, or RTR. An RTR is simply a token signifying that
a peer has a right to respond to a query message. We choose
this name (“right to respond”) in order to emphasize that a
query is really a commodity. Peers have an incentive topay
to receive the query, because that in turn brings in potential
business. An analogous concept in real-life markets are
companies that buy lists of emails or referrals from other
companies, to obtain a new pool of potential customers.

Once a peer buys an RTR for a given query, it may (a)
respond to the query and hope that it is chosen to upload its
services, and/or (b) sell the RTR to other peers.4 Peers can
buy and sell RTRs with their neighbors only.

In this framework, selling an RTR is equivalent to for-
warding a query. There is clearly an incentive to forward
queries, since peers earn income in doing so. Of course,
some peers may still choose to not forward any queries in
order to increase the probability that they will be chosen to
provide the service. However, their actions will be offset by
those peers who hedge their risk by selling a few RTRs, and
by those peers who speculate in RTRs (buying RTRs simply
to resell them).

It is important to note that all actions taken by the peer
are automated– buying and selling RTRs, pricing, filter-
ing, making connections (described later), etc. While hu-
man users could theoretically make each decision, doing so
would be tedious, error-prone, and not worth the time in-
vestment. Instead, the most reasonable implementation fol-
lows the model used by investment companies in the real
world: users specify their high-level preferences, such as
risk level, and the peer sets decision parameters to produce
behavior accordingly. We will discuss these specific param-
eters in further detail later (Section 4.2).

3.1 Basic Implementation

An RTR has the following format:

RTR = {Q, ts, query}SKQ
(1)

whereQ is the identity of the querying peer,ts is the times-
tamp at which the query was first issued, andquery is the
actual query string. These three values are signed by the
querying peer’s secret keySKQ, so that RTRs cannot be

4If a peer sells an RTR, it may still respond to the query corresponding
to the RTR. That is, a peer does not lose the right to respond to a query
when it sells the RTR for that query.

Figure 1. RTR Protocol

forged. Hence, each query requires a single signature gen-
eration, and optionally one verification per forward.5

When a peerA forwards a query to a neighborB, it will
first send anoffer containing partial RTR information and a
price:

Offer = {rep(Q), ts, query, price} (2)

whererep(Q) is the reputation of the querying peer (de-
scribed below). Creating and sending an offer requires that
peerA make several decisions. First, using quality and rel-
evance filters discussed in further detail below, peerA must
intelligently select which RTRs neighborB will want to re-
ceive. PeerA must also determine a price at which to offer
the RTR (discussed in the next section).

An offer contains enough information forB to determine
whether to purchase the RTR, and whether the RTR is a du-
plicateB has seen before. However, because the identity
of Q is not revealed,B cannot actually answer the query
without purchasing the full RTR. IfB decides not to pur-
chase the RTR, he will simply drop the offer. Otherwise,
B will send apurchase requestto A, and peerA will for-
ward the full RTR toB. The RTR protocol is summarized
in Figure 1. After purchasing an RTR, a peer will respond
directly to the querying peer.

In terms of overhead, 3 messages are exchanged in the
RTR protocol for every successful query forward, as op-
posed to 1 in the Gnutella protocol. However, we will see
in Section 5 that the RTR protocol is just as efficient, some-
times more efficient, than Gnutella due to intelligent and
incentive-compatible decision making.

Filters. To prevent being “spammed” by useless offers,
each time a peer connects to a new neighbor, it can spec-
ify flow control parameters in the form offilters, that spec-
ify the “content” and “quality” of the desired RTRs. Filters
can be set on any of the three fields of an RTR: the query
string, the reputation of the querying peerrep(Q), or the
timestamp. Filters on the reputation of querying peerQ and
the age of the query (indicated by the timestamp) specify
thequality of the RTR, and affect the probability that a re-
sponding peer will be chosen and paid for its services.

Filters on the query string specify thecontentof the RTR,
and affect the probability that the purchaser can respond to
the query. Content filters may have varying levels of restric-
tiveness. For example, a content filter may specify that the
RTRs should only contain queries for a particular genre of
music files. Users simply select the level of specificity de-
sired, and the peer will automatically set filters according
to the files or services offered. For certain types of filters

5Verification can be done on a random sampling basis to determine
trustworthiness of a peer.
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(e.g., categories or genres), we may assume the existence of
a predefined taxonomy of services and files.

3.2 Pricing
In this section, we discuss a simple pricing model for

RTRs. Like the pricing of any commodity in the real world,
the pricing of RTRs will involve the estimation of many pa-
rameters, as well as a user’s disposition (e.g., risk-averse).
The purpose of the model is not to provide a straightfor-
ward price for the RTR, but to help us understand the factors
that influence price, and pinpoint the parameters that need
to be estimated. In Section 4.2 we describe how peers may
use the model to automatically price RTRs and estimate the
necessary parameters, based on high-level user inputs.

Model. Let RTRf denote an RTR corresponding to a query
for file f . We assume any filef has a well-known price
price(f). Let NA be the random variable denoting the in-
come generated by the RTR for peerA, if A ownsRTRf .
The income generated forA by holdingRTRf has two com-
ponents:

NA = SA + RA (3)

where SA is the random variable denoting the income
gained forselling a fileto the querying peer, andRA is the
random variable denoting the income gained fromreselling
the RTR. The value ofRTRf for peerA is simplyE(NA),
the expected value ofNA.

If A responds to the query and is selected to upload a file
f , SA = price(f). Otherwise,SA = 0. Let Q be the set
of files thatA owns that are possible responses toRTRf

(|Q| > 1 in the case of approximate matches). We assume
that if A can respond to the query, then it will. LetpA(r)
denote the probability thatA’s responser is picked for up-
load, given thatA responded to the query with responser.
The expected value ofSA is then:

E(SA) =
∑

r∈Q

pA(r) · price(r) (4)

Let IN be the indicator variable denoting whether neigh-
bor N buys the RTR fromA (IN = 1), or not (IN = 0).
Note that the price at which the peer sells the RTR may be
different from the price at which it bought the RTR, and
it may differ on a per-neighbor basis. Assuming a peerN
pays the expected valueE(RTRf , N) for RTRf , the income
RA generated by reselling the RTR is:

E(RA) =
∑

N∈nb

E(IN |E(RTRf , N)) · E(RTRf , N) (5)

wherenb denotes the set of neighbors ofA.
Combining equations 3, 4 and 5, we can get the follow-

ing formula for the cost of an RTR:

E(NA) = E(SA) + E(RA)

= IA · pA · price(f) +
∑

N∈nb

E(IN |E(RTRf , N))

· E(RTRf , N) (6)

3.3 Peer Interaction

One of the main decisions a peer makes is with whom to
interact, and in what manner. To model these decisions, we
define the notion of aprofile, and rules by which a peer uses
profiles to guide their decisions.

Definition. The profile of a peer is defined on a pair-wise
basis, and summarizes the interests of that peer. A profile of
peerB compiled by peerA consists of the following:

• Whether peerB has downloaded from peerA.
• PeerB’s past queries.
• Theprofitability of B, if B is a neighbor.

To determine the profitability of neighborB, peerA keeps
track of how much money he has made through interactions
with B over time (e.g., through sellingB RTRs, uploading
files toB, etc.), as well as how much money he has spent on
B (e.g., the cost of RTRs bought fromB). Profitability is
then the difference between the money made and spent with
B. In addition, peerA may factor in the cost of resources
consumed by that neighbor. For example, ifB constantly
spamsA with RTRs that do not matchA’s filters, then the
profitability of B decreases. Note that profiles are cheap to
maintain as they are a simple history of past interactions.
In addition, a peer need only keep a profile of each of its
neighbors, and then profiles of just a handful of other peers,
for connection purposes, described next.

Usage.Profiles are used to determine with whom connec-
tions should be made and broken. If the profile of a neighbor
shows it to be unprofitable over a period of time, the peer
shall drop that neighbor. When a connection is broken, typ-
ically, a new neighbor is chosen. Our model for choosing a
new neighbor is as follows: A peerP connects to peerQ if
Q has submitted queries for files thatP owns, with prefer-
ence given toQ if Q has bought a file fromP . The rationale
behind this rule is that peerQ is interested in the type of
content thatP shares, thereforeP can increase his chances
of receiving relevant RTRs if he connects toQ. The flip side
is thatP andQ are more likely to be in competition with
each other, and selling each other RTRs may hurt their own
chances of being chosen for an upload; however, we will
see later that the benefits outweigh the costs. Overhead of
connecting and disconnecting is low, given that peers only
evaluate the quality of their neighbors periodically.

In the remainder of this paper, we will refer to the above
connection strategies as theadaptivity model, since peers
are adapting to the profitability of their surrounding peers.
This concept is similar to existing work (e.g., [16]) where
peers adapt according to the semantic similarity of content.
However, we will see in Section 5.1 that such straightfor-
ward adaptivity without the RTR protocol results in very
bad performance, due to competition. We also note that in
some cases, a peer is unable to select with whom to inter-
act – e.g., in an ad-hoc network where interactions are only
possible with peers that are geographically close. We study
this scenario as well in Section 5.1.
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3.4 Cheating Peers

A classic problem in game-theory is to incentivize peers
to act truthfully. In this section, we present an analysis of
how peers might cheat under the current RTR protocol, and
how to provide incentives against such cheating.

3.4.1 Bogus RTRs
A bogus RTRis an RTR for which the originating peer does
not intend to buy a file. Selfish peers generate and sell bo-
gus RTRs in order to make a profit off of other peers who
believe the RTR is genuine and may lead to an upload. A
certain number of “bogus” RTRs are to be expected. For
example, a user may submit several queries before deciding
what to download, without the intent of making money off
of the RTRs. In general, however, bogus RTRs are harmful
to other peers, and is inefficient overall.

We use two techniques to combat bogus RTRs, both of
which punish peersover time(i.e., in a repeated-game set-
ting). Hence, in the following discussion, we assume that
it is not easy for peers to create new identities. Such an as-
sumption is reasonable in a system that deals with currency
– peers’ identities must be tied to a real-world entity before
they can be trusted to make a payment.
Adaptivity. In a scenario in which peers may choose their
neighbors for interaction, peers already have an incentive
to submit valid RTRs. From the adaptivity model in Sec-
tion 3.3, where unprofitable nodes are disconnected from,
we know that cheating peers will be pushed to the “edge”
of the network with few neighbors. At the edge of the net-
work, a peer receives both fewer results for its real queries
(if it has any), and fewer RTRs from other good peers that it
may respond to (assuming it is also trying to make a profit
by selling files). We will see in Section 5.3 that in the end,
such “edge” peers do not make as much profit as good peers
that remain in the core of the network.
File-Buyer Reputation. A peer’sfile-buyer reputationrep-
resents how consistent a peer is in sending out RTRs and
then actually buying a file. We may use a reputation mech-
anism such as [10] to track reputations, and protect against
malicious peers “inflating” each others’ scores. If peerQ
downloads fromP , then P knows thatQ is a good file
buyer; therefore, it will increase its opinion ofQ by some
amounts. Otherwise,P will decrease its opinion ofQ by
a small amountr, which may depend on how close or rare
the match is. Over time, those peers that buy many files will
have a good buyer reputation, and those who never buy files
will have a poor buyer reputation.

Reputation is then used to affect two things: the esti-
mated value of the peer’s RTRs, and the likelihood the peer
is chosen by other peers tosell files. Under the RTR pro-
tocol, the expected value of an RTR is multiplied by the
probability that the originator of the RTR will indeed buy
the file it is searching for, which is estimated by the origina-
tor’s file-buyer reputation. If a peer’s file-buyer reputation is
low enough, then the profit that peer can make from selling
bogus RTRs will not be worth the effort. In addition, when

a good peerP submits a query and selects a peer for down-
load, it will bias its selection towards those peers with good
file-buyer reputations. By reciprocating good faith, those
peers that contribute to the economy by buying items will
also profit in the end, which we will show in Section 5.3.

3.4.2 Reporting Filters
Specifying filters may make a peer a target for higher prices;
hence, peers have an apparent incentive to not specify their
filters. However, filters are desirable because, as we will
show in Section 5.1, they can provide the basis for intel-
ligent routing, improving the overall efficiency of the net-
work. Due to space limitations, we defer a discussion of
this issue to [20]. In summary, we find that for certain useful
classes of filters (such as categories), incentives to adhere to
a standard truthfully exist naturally, due to weak equilibria.

4 Simulation Model

To evaluate our protocol, we simulate a P2P file-sharing
application operating the RTR protocol. In this section we
describe our simulator, which we then use to experimentally
analyze the protocol in Section 5.

4.1 Query and Content Model

Each file has a unique identifier, as well as acategory.
One may think of a file’s category as being, for example,
the genre of music of the file (rock, pop, classical, etc.), or
as the artist of the file. Queries are for specific files (i.e.,
they specify the unique identifier of a file). Anexact match
for a query is a response for the file specified in the query.
An approximate matchfor a query is a response for a file
that is in the same category, but has a different identifier.
Approximate matches have some small probability of being
uploaded, so a peer will respond to a query with all exact
and approximate matches found in its library.

When a peer submits a query, it will typically receive
multiple responses, from which it must select one to down-
load. We assume that a peer’s probability of download-
ing any file is independent of what responses it receives,
with the exception of the case where no responses are re-
ceived. When a peer chooses to download, we assume each
response has a relative likelihood of being selected. All ex-
act matches have a relative likelihood, or “score,” ofse. All
approximate matches have a relative likelihood ofsa. The
peer then rolls a weighted die to determine which file will
be selected. The probabilitypchoose(r,M) that a given re-
sponser will be selected from a set of responsesM is:

pchoose(r,M) = pd · score(r)∑
r′∈M score(r′)

(7)

Wherescore(r) is the score of matchr (sa or se), M is
the set of all matches received for a query, andpd is the
probability that the peer will download any file (e.g., if the
peer submits bogus queries, thenpd < 1). Only one file is
selected per query.
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4.2 Behavior Modeling

In this section, we describe how we model the behavior
of a peer, incorporating such decisions as selecting filters,
setting prices, etc. Throughout our discussion, we will pin-
point the variables that define a peer’s behavior.

We will make some simplifying assumptions in the
model below. For a first cut, let us assume that peers
have a general idea of how “popular” each file or cate-
gory is. Future work can be done on estimating popularity
(e.g., through past experience). Popularity of a categoryc,
catpopc, is defined by the the probability that a randomly
chosen file among all file instances in the network has the
categoryc. Similarly, popularity of a filef , filepopf , is the
probability that a randomly chosen file is an instance of file
f . Let us also assume that all files have the same price, and
that each peer knows how many files his neighbor has, and
roughly how many filesNfiles exist in the entire network.

Filters. Each peer maintains a set of filters that tells other
peers what RTRs they are interested in. For simplicity, we
pre-define three types of filters: (1)No filters: No informa-
tion is revealed. (2)Category: The list of categories de-
scribing files in a peer’s library. (3)Exact Files: The list
of files in a peer’s library. The variableffilter is a per-peer
variable that denotes which filter level a peer chooses.

Buying and Selling RTRs. Three main decisions must be
made when peerA wishes to sell an RTR to neighborB.
First, peerA must decide whether to sell the RTR toB.
Second, if peerA does decide to sell the RTR, it must select
a price. Finally, when peerB receives the offer, it must
evaluate the value of the RTR to itself, and whether it wishes
to purchase the RTR at the given price.

FunctionSellRTR(shown above) takes as input an RTR
and a peer, and returns TRUE iff the calling peer should
sell the RTR to this neighbor. The algorithm is very simple:
if the RTR passes all content and quality filters, then sell
the RTR. For simplicity, we assume a universal standard for
RTR quality: all peers use the same thresholds for reputa-
tion and age. The functionmatchesFilterreturns true iff the
RTR matches the content of the neighbors at the filtering
level chosen by the neighbor.

Given an RTR offer, theBuyRTRfunction returns true if
the peer should purchase the RTR represented in the offer.
A peer should purchase an RTR if the price is below the
expected value, estimated according to the model in Sec-
tion 3.2. The termpnodup(r) represents the probability that
a neighbor has not already seen RTRr, which depends on
the age of the RTR. Variablefbargain reflects the “bargain
hunting” tendencies of a peer. A peer will only buy an RTR
at a price that is a factor offbargain lower than the expected
value. The higher the “greed level” specified by the user,
the larger the value used forfbargain by the peer.

The functionuploadIncome(PeerN , RTR r) calculates
the expected income from uploading a file for a given peer
and RTR (Equation 4). This value is simply the sum of
the expected incomes for each responsem in N ’s library
to RTRr. Note that in order to estimatepchoose(r,M), we

SellRTR(RTRr, PeerN )
1: if (not matchesFilter(r, N))then
2: return FALSE;
3: if (r.age < threshholdage) then
4: return FALSE;
5: if (r.reputation < threshholdrep) then
6: return FALSE;
7: return TRUE;

PriceRTR(RTRr, PeerN )
1: returnuploadIncome(N , r) ·fgreed

BuyRTR(RTRr)
// First calculateE(RA) (Equation 5)
1: ER = 0;
2: for eachneighborN do
3: ER += SellRTR(r, N ) · PriceRTR(r, N ) ·pnodup(r)

// self is a reference to the calling peer
4: ES = uploadIncome(self, r)
5: value =ES + ER
6: return (value> r.price · fbargain)

uploadIncome(PeerN , RTRr)
// CalculatesE(SA) (Equation 4)
1: Q = set of all matches inN ’s library
2: M = (estimated) set of all matches returned forr
3: ES = 0;
4: for eachmatchm in Q do
5: ES += pchoose(m, M) · price(m)
6: return (ES )

must estimateM – how many other files the queryer will
receive. Due to space limitations, we defer a discussion of
parameter estimation to [20].

Finally, the functionPriceRTRreturns the price for an
RTR that the calling peer should set for a given neighbor.
Again, the value of the RTR depends on the likelihood that
the neighbor will be selected for download, and on the like-
lihood that the neighbor can resell the RTR to its own neigh-
bors. The first factor can be estimated via a call toupload-
Income. The second factor we fold into an overall price-
adjusting factorfgreed. Each peer setsfgreed according to
how much they wish to “inflate” the price of an RTR – a
“risky” action that may yield higher gains, but may also
result in loss due to fewer sold RTRs. A peer may set
fgreed = 1 conservatively, to price the RTR according to
the known upload value, orfgreed < 1, to reflect the uncer-
tainty in estimation, orfgreed > 1, to reflect the additional
resell value of the RTR to its neighbor.

In summary, each peer has a vector of variables that de-
fine its behavior in the context of the model provided above.
We list these parameters in Table 2. Note that we express the
pnodup variable as an array, wherepnodup[i] is the probabil-
ity that a neighbor has not yet seen an RTR that has already
been passed throughi hops. Parameterfreturn is described
in [20]. In Table 2, we present three default configurations:
RTRnf , RTRcf andRTRef .

4.3 Metrics

We use three main metrics to measure theoverall per-
formancecharacteristics of the network, each of which are
averaged across all queries within a run.
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Name RTRnf RTRcf RTRef Description
ffilter 1 2 3 Filter level (1 = no filter, 2 = category filter, 3 = file filter)
fgreed .5 “ “ Price adjustment inPriceRTR. Accounts for resell value, and estimation uncertainty
fbargain 1 “ “ “Inflation” of RTR value for bargain-hunting peers
pnodup[] [1,.6,.4,0...] “ “ Probability that a neighbor has not yet seen this RTR
freturn .1 “ “ The fraction of all possible results in the network that will be returned for a query

Table 2. Behavior Model Variables

Average Score/Query: The “score” of a query is a
weighted sum of the scores of responses received for that
query. Recall that the score of exact and approximate
matches arese and sa, respectively. By default, we set
se = 1 and sa = .01; however, unless otherwise noted,
the relative values of this metric in our performance com-
parisons are insensitive to these values.
Average Peers Processed/Query:the average number of
peers that process a query. A peer processes a query if it
has an exact or approximate answer.
# Messages/Query:the total number of offer, purchase re-
quest and RTR messages passed per query.

Sometimes, we may refer to thequality-to-cost ratio of a
network, which we define to be the ratio of the average score
per query to the average number of messages per query.

Peers begin the simulation with a fixed number of cur-
rency units, which are then used to buy RTRs, and are
gained by selling RTRs and uploading files. Again, we as-
sume the existence of an efficient P2P micropayment sys-
tem, such as [21]. Individual peer performance is measured
mainly by a peer’s moneybalanceat the end of a run. We
note that it would be unfair to call a peer “unprofitable” if
it buys files that it desires; therefore, we assume the funds
used topurchase filescome from a separate source.

5 Results

In our experiments, we attempt to answer three important
questions regarding the RTR protocol: (1) In which scenar-
ios is the RTR protocol most needed, and how useful is it in
these scenarios? (2) Which configurations of the protocol
(e.g., parameter values) are most beneficial to the network
as a whole, or to individual peers? (3) How well can the
RTR protocol withstand the bogus RTR attack? We address
each question in the following sections.

Our experiments are run using the Query Cycle Simu-
lator [14]. To make our simulations tractable we limit the
number of peers to 1000 (arranged in a power-law topol-
ogy with average outdegree of 4), but we have experimented
with larger networks, and our results continue to hold. Peers
store an average of 100 files belonging to 2 out of 20 possi-
ble categories. See [20] for full parameter details. All fig-
ures in the following sections reflect results averaged over
multiple runs. Unless explicitly shown, variance is small.

5.1 Overall Performance

First, let us revisit our motivating example in Section 2.
As before, Table 1 shows us the performance of all, com-

petitive and no-forward behaviors, as well as results for the
RTRef configuration. Recall that due to non-cooperation
in an competitive environment, quality of results degraded
dramatically compared to the cooperative all-forward sce-
nario – by a factor of 8 under competitive-forward, and by
a factor of 17 under no-forward. Our goal for the RTR pro-
tocol was to achieve the same high quality of results and
messaging efficiency as seen when peers are not competi-
tive – i.e., all-forward. From Table 1, we see that the RTR
protocol achieves its goal remarkably well. In particular, it
has the same quality of resultsand messaging overhead as
all-forward – a surprising result given the exchange of mes-
sages required by the RTR protocol. It is clear, then, that in
a competitive environment, for the given example, the RTR
protocol is necessary to ensure quality search results.

In this section we provide a more thorough investigation
of the overall performance of the RTR protocol. Our goals
in this section are (1) to illustrate, via experiments, the mag-
nitude of the non-cooperation problem in different scenar-
ios (if the magnitude is small, competition is not a problem),
and (2) to show how RTRs can address non-cooperation.

We have identified four factors that affect the need for
a solution to non-cooperation: (1) whether peers adapt (as
described in Section 3.3) (2) theinterest overlapbetween
peers (without adaptivity), (3) the number of neighbors per
peer, and (4) as mentioned earlier, whether peers forward
competitively, or not at all. Due to space limitations, we
can only present the first factor here. We strongly encour-
age readers to see our extended report [20] for additional
results. In summary, we show how competition can become
a serious problem in many realistic scenarios, and how the
RTR protocol effectively address non-cooperation in these
cases – reducing messaging overhead while maintaining ex-
cellent quality of results.

Adaptivity. Under our adaptivity model described in Sec-
tion 3.3, not only are individual utilities maximized under
the RTR protocol, but the topology also evolves into a more
efficient one in which “clusters” are formed around com-
mon interests. Figures 2 and 3 show the performance of all,
competitive and no-forward networks, as well as a network
running the RTR protocol under our default configurations
in Table 2. For each type of network, we show performance,
measured by average score and messaging overhead, both
with and without adaptivity. As expected, in the coopera-
tive all-forward scenario, we see that adaptivity decreases
overhead by over 24% (Figure 3), while increasing average
score by over 69% (Figure 2).

However, the quality of results of competitive-forward
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drops sharply with adaptivity, to just 11% of the score un-
der all-forward, and 30% of the score under competitive-
forward in the non-adaptive scenario (Figure 2). Because
adaptivity causes peers to be surrounded by other peers with
similar interests, it onlyexacerbatesthe competition prob-
lem. Therefore, results in other adaptive topology studies
(e.g., [16]) do not hold in the non-cooperative context.

Fortunately, under both the adaptive and non-adaptive
scenarios, we can use the RTR protocol to maintain ex-
cellent quality of results at a very reasonable cost. In
Figure 2, with no adaptivity, theRTRnf configuration
achieves 100% of the score possible under all-forward, at
a 42% increase in messaging overhead. Such an overhead
is reasonable given that for every peer that actually buys
the query, three messages must be exchanged instead of
one. Furthermore, notice that theRTRef andRTRcf con-
figurations, while not achieving as good quality of results,
have a better quality-cost ratio than the all and competitive-
forward cases.RTRcf achieves almost 56% of the score
of competitive-forward, at just 25% of the messaging cost.
Under the adaptive scenario, the strengths of the RTR proto-
col become even more apparent. For example, theRTRcf

configuration actually achieves better quality of results than
all-forward, at roughly the same cost.

Breakdown of Messaging Overhead.The RTR protocol
can achieve such good quality-cost ratios, despite the need
for 3 messages per bought query, due to efficient routing of
queries to those peers who can provide answers. Figure 4
shows us the breakdown of message types for three config-
urations: all-forward,RTRnf , andRTRef . We show all
configurations with and without adaptivity. Messages are
divided into four categories: offer messages, purchase re-
quest messages from peers that have answers to the query,
purchase request messages from peers without answers, and
RTR messages (see Figure 1). Under the all-forward con-
figuration, there is only one type of message – queries. In
the figure, for all-forward, we draw a dotted line such that
the portionabovethe line denotes useful queries (i.e., sent to
a peer for the first time, and the peer can answer the query).

From Figure 4, we make three important observations.
First, looking at all-forward, a large number of query mes-
sages are not useful. For example, in the no-adaptivity case,
less than one sixth of all query messages are useful. Useful

queries are the only messages that contribute to the quality
of results returned for queries; therefore, if the RTR proto-
col can intelligently route queries only to peers that can an-
swer them, then the protocol can decrease cost while main-
taining high quality.

Second, recall that each query that is purchased results
in an additional overhead of 2 messages per query. Since
most purchased queries are useful ones (i.e., the purchaser
can answer the query), and since the relative number of use-
ful queries is low, the overhead of the RTR protocol is also
low. For example, consider theRTRnf configuration with-
out adaptivity in Figure 4. Roughly 1 out of 4 queries (or of-
fer messages) are purchased, so additional overhead is about
42% the cost of forwarding queries, rather than 200%.

Finally, and most importantly, we observe that the RTR
protocol can indeed reduce the fraction of query messages
that are useless. Consider theRTRef configuration with no
adaptivity. Roughly 1 out of 2 query messages are useful,
compared to 1 out of 6 under all-forward. The difference
betweenRTRnf andRTRef is thatRTRnf uses no fil-
ters, andRTRef uses exact filters. Hence, we see that the
presence of filters allows us to intelligently route messages.

The problem withRTRef without adaptivity is that the
absolute number of useful query messages islessthan under
all-forward orRTRnf , thus resulting in worse quality of
results. UnderRTRef query messages can be prematurely
dropped if none of a peer’s neighbors have filters that match
the query. With adaptivity, however, a peer is clustered with
many neighbors with the same interests. Thus it is unlikely
for a query to be dropped before it has reached most peers
that are able to answer it. Indeed, we see in Figure 4 that
with adaptivity,RTRef achieves the same number of useful
query messages as all-forward andRTRnf . Furthermore,
becauseRTRef is still able to intelligently route messages
within these clusters via filters, it results in much fewer use-
less messages generated under all-forward.

5.2 Parameter Selection

In a system where peers are autonomous, peers may se-
lect their own policies. In this section, we study how peers
will choose parameter values, and the effect these choices
have on overall network behavior. In particular, we focus
on ffilter, fbargain andfgreed. All remaining parameters
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are estimations of system-wide values; therefore the ratio-
nal policy is always to estimate these as well as possible.

Individual Effect. A peer’s policy is largely reflected
through fbargain and fgreed, which control the price at
which an RTR is bought and sold, respectively, relative to
the expected value. Unlikeffilter, for which incentives ex-
ist for all peers to adhere to the same value (Section 3.4.2),
fbargain andfgreed may be freely chosen by each peer, de-
pending on preferences stated by the user.

Figure 5 shows an analysis of the impact offbargain on
peer balance. Each curve represents an experiment where
each peer chooses its own value forfbargain (out of a few
choices, shown along the x-axis), which it keeps for the en-
tire simulation. Remaining parameters are assigned default
values fromRTRcf . At the end of simulation, we calculate
average ending balance of peers grouped byfbargain value.
Because the impact offbargain depends on the quality of es-
timated values of RTRs, we ran four experiments (one per
curve) where peers have uniformly high, medium, low, or
mixed estimates.

In Figure 5 we find that standard deviation (shown by
vertical bars for only theEst = mixed curve, for clar-
ity) is large because of the heterogeneous nature of peers
– e.g., peers with more files tend to have a larger balance,
while peers with fewer files tend to have a smaller balance.
This fact actually works to our advantage, as peers do not
have an incentive to lie in order to increase income. Fur-
thermore, looking only at mean values (e.g., peers with a
mean number of files) we find that expected income is max-
imized by dealing fairly, rather than bargain hunting, espe-
cially when estimates are low to medium.6 Thus, rational
peers are likely to accept the defaultfbargain=1, as choos-
ing otherwise would not benefit the peer.

Figure 6 shows a similar experiment as Figure 5, but
where peers only vary infgreed. Here we see thatfgreed

has relatively little impact on peer balance. However, in
terms of mean values, increasingfgreed presents a tradeoff
between higher income per sold RTR, but fewer RTRs sold,
resulting in a maximum atfgreed=1. Hence, rational peers
are most likely to selectfgreed = 1.

6When estimates are uniformly high, expected income is not actually
maximized by increasingfbargain, but to adjustfreturn or pnodup to
reflect a more realistic model.

Overall Impact. In experiments omitted due to lack of
space (see our extended report [20]), we find that overall
system performance (cost and quality of results) is maxi-
mized withfgreed = 1 andfbargain = 1. In addition, we
find that category filters are most effective in minimizing
message overhead.

Fortunately, we found earlier thatfgreed = 1 and
fbargain = 1 result in highest individual utility. Further-
more, natural incentives exist for truthful reporting of cat-
egory filters (Section 3.4.2). Therefore, we find that under
the RTR protocol, peers will indeed tend to choose behavior
that results in desired overall outcomes.

5.3 Handling Bogus RTRs
In Section 3.4, we discussed two techniques to combat

bogus RTR “attacks” on the RTR protocol: adaptivity and
file-buyer reputation. Figure 7 shows us the individual bal-
ances of peers that issue bogus queries at varying rates,
when adaptivity only, and file-buyer reputation only (with
no adaptivity), are used. For these experiments, peers issue
bogus RTRs at different rates: 0%, 20%, 50%, and 100%.
A x% bogus rate meansx% of a peer’s queries are bogus.
We show the average balance of all peers with a given bo-
gus rate at the end of our simulations. Again, standard de-
viation (denoted by vertical bars, shown for the adaptivity
curve only) is large b ecause peers are heterogenerous – e.g.,
some peers have many more files to sell than others.

In Figure 7, we can still see that both techniques are
effective in punishing bad behavior, with adaptivity more
prominently rewarding good peers. For example, average
balance of a good peer (with a bogus rate of 0%) is almost
five times higher than the average balance of a completely
cheating peer (with bogus rate of 100%) under adaptivity.
Combining the two techniques results in an even larger gap
between honest and cheating peers.

Adaptivity is effective because, as expected, it pushes
misbehaving peers to the edge of the network. Although all
peers start with the same number of neighbors on average, at
the end of the simulation, peers with high bogus rates have
much fewer neighbors than peers with low rates. Sim-
ilarly, file-buyer reputation is effective because reputation
scores are accurate: in our simulations, a peer’s reputation
was roughly linear with its bogus rate. However, observe in
Figure 7 that while peers with extremely high bogus rates
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are punished, those peers with moderate bogus rates (e.g.,
20%) have nearly as good performance as good peers that
never submit bogus queries. We believe such an effect is
actually good. Even good users will likely submit bogus
queries occasionally – e.g., if they do not find a satisfactory
answer to their query. Therefore, we want the punishment
for bogus RTRs to be “light” until bogus rate becomes ex-
cessive (e.g.,> 50%).

6 Related Work

Our work is partially motivated by the field ofalgorith-
mic mechanism design(AMD) (e.g., [12, 13]). AMD has
been successfully applied to issues such as optimal routing
and resource allocation [3, 11]. Recent activity in the field
of AMD has focused on P2P networks [4, 15], since the au-
tonomous nature of peers makes proper incentives crucial.
However, while we apply many ideas from AMD and clas-
sic game theory, our problem cannot be fully described by
the existing tools. For example, there is no precise way of
capturing the adaptive nature of the network topology.

Researchers in ad-hoc and anonymity-preserving net-
works have also looked at economic incentives for peers to
forward messages, such as in [1, 5, 23]. In each of these net-
works, peers are paid to forward messages. The Sprite [23]
system uses a centralized server that processes a receipt
of every singlemessage that is forwarded in the network.
Tamper-proof hardware is required in [1] at each peer to
ensure proper payment is made for each forward. Finally,
reference [5] requires that a peer sending a message knows
exactly who will forward the message to its destination, so
that payments can be appropriately embedded and signed.
While each of these solutions are appropriate for their spe-
cific contexts, we cannot use them for general economic
content-discovery systems. For example, we cannot expect
a peer trying to discover content to know a priori which
peers will be needed to route the query. The RTR protocol
differs from these approaches because it is designed specifi-
cally for use ineconomic applications. Hence, it can utilize
the key fact that queries havevalueto peers.

Finally, there exist studies on incentives for many other
aspects of P2P networks, such as sharing files (e.g, [7]), and
answering queries (e.g., [18]). As we observed in Section 2,
while many of these mechanisms can be modified to en-
courage message forwarding (e.g., to preventno-forward
behavior), they are unable to deter the subtle but harmful
competitive-forwardbehavior.

7 Conclusion

In summary, we have shown that thenon-cooperation
problempresents a significant challenge to competitive P2P
networks. We present one promising solution, theRTR pro-
tocol, that gives peers the incentive to cooperate in the oper-
ation of the network, even in the face of competition for pro-
viding services. We have shown how our protocol enjoys a
higher quality-cost ratio than even the non-competitive sce-

nario, by efficiently routing queries to peers that can pro-
vide good answers, and how the protocol is robust against
cheating peers. In the future, would like to gain a better
understanding of individual peer choices through the appli-
cation of game theory, and also to consider solutions for
non-cooperation over alternative search architectures, such
as GUESS and DHTs.
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