
On Cooperative Content Distribution and the Price of Barter

Prasanna Ganesan
Stanford University

prasannag@cs.stanford.edu

Mukund Seshadri
U.C. Berkeley

mukunds@cs.berkeley.edu

Abstract

We study how a server may disseminate a large volume
of data to a set of clients in the shortest possible time. We
first consider a cooperative scenario where clients are will-
ing to upload data to each other and, under a simple band-
width model, derive an optimal solution involving commu-
nication on a hypercube-like overlay network. We also
study different randomized algorithms, and show that their
performance is surprisingly good. We then consider non-
cooperative scenarios based on the principle of barter, in
which one client does not upload to another unless it re-
ceives data in return. A strict barter requirement increases
the optimal completion time considerably compared to the
cooperative case. We consider relaxations of the barter
model in which an efficient solution is theoretically feasible,
and show that obtaining a high-performance practical so-
lution may require careful choices of overlay networks and
data-transfer algorithms.

1 Introduction

Consider a server S wishing to distribute a large file F
to a set of clients C. This scenario arises in a variety of
different contexts today. For example, the file F could be
a software patch desired by all end hosts C that have the
software installed. As another example, S could be a com-
pany transmitting a video file to a set of subscribers; ES-
PNMotion is a recent service transmitting sports highlights
to end users in this fashion. Server S could be a node in
a content-distribution network from which data needs to be
propagated to all the other nodes C. Finally, S could simply
be an end host, transmitting data to other end hosts like in
the popular BitTorrent protocol [5].

In many of the above cases, S might not possess enough
upload bandwidth to individually transfer the entire file F to
each of the clients within a short period of time. The process
could complete significantly faster if the clients helped by
uploading partial fragments of F to each other. In this pa-
per, we consider content-distribution algorithms that trans-

fer F to all the clients in the shortest possible time.
The design of these algorithms are strongly influenced

by assumptions about how cooperative clients are in offer-
ing their upload bandwidth to help other clients. If clients
are perfectly cooperative, there is a great deal of freedom
in devising the content-distribution algorithm. However,
if clients are likely to be selfish, the distribution algorithm
needs to build in mechanisms to force clients to upload data
in order to improve their own download performance. The
different mechanisms we study are all loosely based on the
principle of barter – a client does not upload data to another
client unless it receives data in return.

Our goal in this work is to devise optimal content-
distribution algorithms under a variety of models – ranging
from no barter requirement at all to a strict barter require-
ment – in order to understand the efficiency loss incurred
due to barter. We may regard this loss as the price to be paid
for dealing with selfish clients as opposed to cooperative
ones. We now describe the different content-distribution
models, and our contributions in each scenario.

The Cooperative Case Let us first consider a cooperative
model where all clients are always willing to upload data at
the maximum rate that they are capable of. In this case, one
might imagine a variety of different algorithms for distribut-
ing content, ranging from a simple multicast tree rooted at
the server S, to a more sophisticated multiple-tree structure
like SplitStream [6], or even an unstructured solution like
BitTorrent [5], in which nodes communicate in a random
overlay, exchanging data whenever possible. This plethora
of solutions leaves us with two questions:
• What is the optimal solution that minimizes the time

taken for all clients to receive the file?
• How well do different natural strategies for content

distribution perform compared to the optimal solution?
Section 2 addresses these two questions. Under a simple

bandwidth model, we derive the optimal solution, analyti-
cally establish its completion time, and show that it can be
implemented via communication on a hypercube-like over-
lay network. We also develop randomized algorithms im-
plemented on unstructured overlays that perform surpris-
ingly well and provide near-optimal performance.

What Price Barter? In Section 3, we consider different
distribution models based on barter and study how to gen-
eralize our cooperative algorithms for this scenario. It turns
out that the exact definition of the barter model has a big im-
pact on the efficiency of content distribution. For example,
in the strict barter model that we define, where one client
transfers data to another only if it simultaneously receives
an equal amount of data in return, the optimal solution is
much worse than the optimal cooperative solution.

A key contribution of this paper is to develop different
barter-like mechanisms and explore the three-way trade-off
between the mechanisms’ enforceability, their ability to in-
centivize uploads, and the efficiency of content distribution.
To this end, we consider three different mechanisms based
on barter, informally analyze their incentive structure, de-
rive lower bounds and develop actual algorithms for content
distribution under the mechanism.

From our analysis, we discover that there are indeed
mechanisms that provide robust incentives for uploads
while having theoretically feasible algorithms that are as
efficient as the optimal cooperative algorithms. However,
developing practical algorithms for content distribution in-
troduces more challenges. We discover that randomized al-
gorithms operating under the barter model are extremely
sensitive to parameters such as the degree of the overlay
network they operate on. Our simulations shed light on the
critical value of the overlay-network degree, as well as the
performance impact of different policies governing the ac-
tual data blocks that are exchanged.

We note that our focus is not on game-theoretic analy-
sis of different mechanisms to identify the optimal strategy
for selfish nodes. Rather, the question we consider is more
basic: given the natural and intuitive fairness constraints
imposed by a barter-based incentive mechanism, we study
how to devise efficient content distribution under those con-
straints, assuming that any algorithm obeying the mecha-
nism will be acceptable to nodes.

2 Cooperative Content Distribution

In this section, we study different algorithms for content
distribution, assuming all clients are willing to upload data
at their maximum upload bandwidth at all times. We first
describe our bandwidth and data-transfer model, and then
proceed to consider a variety of algorithms.

2.1 Model

As before, we have a server S and a set of clients C.
For notational convenience, we assume that there are n − 1
clients C1, C2, . . . Cn−1, for a total of n nodes including the
server.

Bandwidth Model We assume that all nodes (including the
server) have the same upload bandwidth U and the same
download bandwidth D (with D ≥ U). Furthermore, we
assume that all transmission bottlenecks are at the tail links,
i.e., the effective transfer bandwidth from node X to node
Y is equal to the minimum of X’s available upload band-
width and Y ’s available download bandwidth. While this
bandwidth model is extremely simple, it will prove useful
for us to reason about different algorithms.

Data-Transfer Model We assume that a data transfer from
a node X to a node Y has to involve a minimum quantum of
B bytes, that we call a block. The block size is assumed to
be large enough to ensure that (a) the entire available band-
width is saturated by the transmission, and (b) the propa-
gation delay and the transmission start-up time, if any, are
much smaller than the transmission time. (Of course, a node
cannot begin transmitting a block until it has received that
block in its entirety.)

Time Unit For notational convenience we will define B/U
to be equal to 1 tick, so that each node can transmit at the
rate of one block per tick.

Finally, we let the file F to be transmitted from the
server consist of exactly k blocks B1, B2, . . . Bk, of size B.
(We ignore round-off issues that may make the last block
smaller.)

Problem What is the best way to organize data transfers
to ensure that all n − 1 clients receive file F at the earli-
est possible time? In other words, if client Ci receives the
complete file at time ti, we want to minimize maxi(ti).

2.2 Simple Examples and a Lower Bound

We illustrate our model by analyzing some simple al-
gorithms for content distribution. We then compute a lower
bound for the completion time achievable by any algorithm.

2.2.1 The Pipeline. S sends the file, block by block, to
C1, which pipelines it to C2 and so on. The completion
time for this strategy is k+n−1 ticks, since it takes k ticks
to get all k blocks out of the server, and a further n−1 ticks
for the last block to trickle down to the last client.

2.2.2 A Multicast Tree. Consider arranging all n nodes
in a d-ary multicast tree (d > 1) with S at the root. Since
each node can transmit data at the rate of 1 block per tick,
it takes d ticks for a block to be transmitted from a node to
all its children. Thus, the amount of time required for S to
transmit all k blocks is kd. In addition, the last block trans-
mitted by S needs to be propagated down the tree which re-
quires time equal to d times the depth of the tree. Therefore,
the total completion time using a d−ary multicast tree is
equal to d(k+�logd(n(d − 1) + 1)�−2) � d(k+�logd n�).

S

C2

C3
C7

C5

C6

C1 C4

1

3

2
3

2

3

3

Figure 1. A binomial tree with n = 8. Edges
labeled with the tick where they are used.

2.2.3 The Binomial Tree. Consider the case when the
file F consists of exactly one block, i.e., k = 1. We can
then use the following strategy, depicted in Figure 1: Dur-
ing the first tick, S sends the block to C1. In the second
tick, S and C1 transmit to C2 and C3 respectively. In the
next tick, all four of these nodes transmit to four new nodes,
and so on, thus doubling the number of completed nodes at
each tick. The resultant pattern of data transmission forms
a binomial tree, as seen in the figure. It is easy to show that
the completion time for this strategy is �log n�, and that this
completion time is optimal for the case k = 1.

When k > 1, one simple way to extend the binomial tree
strategy is to send the file one block at a time, waiting till
a block finishes before initiating transfer of the next block.
This strategy has a completion time of k�log n�1.

2.2.4 A Lower Bound. We now present the following
theorem establishing a lower bound on the time required for
cooperative content distribution. Due to space constraints,
we omit proofs here and refer the interested reader to [11].

Theorem 1. Transmitting a file with k blocks to n−1 clients
requires at least k + �log n� − 1 ticks.

The above lower bound is, in fact, tight, as will be
demonstrated presently. Note that neither this lower bound,
nor the completion times of the simple algorithms we have
seen so far, depend on the download bandwidth of nodes.
So long as the download bandwidth is larger than the up-
load bandwidth, the system is bottlenecked by the latter.

2.3 The Binomial Pipeline

We now present the Binomial Pipeline which achieves
the optimal completion time for content distribution.

2.3.1 Two Simplifying Assumptions. We begin with
two assumptions to explain the algorithm’s intuition: (a)
n = 2l for some integer l > 0, and (b) any pair of nodes
can communicate with each other. Although a slightly sub-
optimal solution for this special case has been introduced
in prior work [19], we describe it in detail to set the stage
for the remainder of the paper. We partition the algorithm’s
operation into the following three stages.

1All logarithms are to base 2 unless otherwise noted.

The Opening The opening phase of the algorithm ensures
that each node receives a block as quickly as possible, so
that the entire upload capacity in the system can begin to be
utilized. This phase lasts for l ticks (where n = 2l), and is
characterized by two simple rules:
• During tick i, the server S transmits block Bi to a

client that possesses no data.
• Each client, if it has a block before tick i, transmits that

block to some client that possesses no data.
Observe that since there are 2l nodes in total, all clients

have exactly one block at the end of l ticks. The commu-
nication pattern is, in fact, the same as in the binomial tree
of Figure 1, with all nodes in the C1-subtree having block
B1, all nodes in the C2-subtree having B2 and C4 having
block B3. In general, we can partition the n− 1 clients into
l groups, G1, G2, . . .Gl, of sizes 2l−1, 2l−2, . . . 1 respec-
tively, with all nodes in Gi having Bi.

The Middlegame After the opening, all nodes have a
block, and the algorithm enters the middlegame. During
this phase, the objective is to ensure that every node trans-
mits data during every tick, so that the entire system upload
capacity is utilized. The Binomial Pipeline ensures that
n − 1 nodes transmit during every tick t for all t ≥ l, while
maintaining the following invariants:
• Clients are partitioned into l groups Gt−l+1, Gt−l+2,

. . . , Gt with sizes 2l−1, 2l−2, . . . , 1 respectively.
• For t− l < i ≤ t, block Bi is possessed exactly by the

clients in group Gi.
• All clients have blocks B1, B2, . . . Bt−l. No client has

blocks Bt+1, Bt+2, . . . Bk.
Observe that all three invariants hold after l ticks, since

the opening partitions nodes into l groups with each group
possessing a unique block in B1, . . . Bl.

We illustrate the middlegame with the example of Fig-
ure 1 (with n = 8 and l = 3). After three ticks, clients are in
three groups G1, G2 and G3, as shown in Figure 2(a). The
arrows in the figure show the transmissions that take place
during the fourth tick: S hands off block B4 to C1, while
nodes C3, C5 and C6 are paired up with C2, C7 and C4 re-
spectively, exchanging the only blocks that they have. The
consequence is the formation of a new set of three groups as
shown in Figure 2(b), that restores the invariants; block B1

is now held by all the nodes, four nodes have B2, two have
B3 and one node alone has B4. Observe that this situation
is almost identical to that at the end of the third tick, with
only the group names and members being different.

In general, the following transfers occur at any tick
t:
• Server S selects any node in Gt−l+1, say Cx, and

hands it Bt+1. Cx becomes the sole member of Gt+1.
• Each node in Gt−l+1 − {Cx} is paired with a unique

node in the remaining groups, and transmits Bt−l+1 to

C3

C5
C6

C2

C7

C1 C4C2

C3
C7

C5

C6

C1 C4

S
S

G1 G2 G2G3 G4 G3

(a) (b)Figure 2. (a) Binomial pipeline transfers dur-
ing the fourth tick (b) The new set of groups

it, thus ensuring every node holds Bt−l+1.
• Similarly each node in group Gi, t − l + 1 < i ≤ t,

sends block Bi to a unique node, say Cr, in G1−{Cx}.
Node Cr then migrates to group Gi.

The Endgame The middlegame proceeds as above until k
ticks elapse, i.e., S transmits block Bk to create a new group
Gk. After this tick, the middlegame algorithm runs out of
blocks for S to transmit. To work around this, we define
Bk+α = Bk for all α > 0, and let the middlegame algo-
rithm to continue running, i.e., the server keeps transmitting
the last block when it runs out of new blocks to send.

After tick k+ l−1, observe that all nodes have all blocks
from B1 to Bk−1 (by the invariants) and the only groups
left are Gk, Gk+1, . . . Gk+l−1. But since Bk+α = Bk for
all α > 0, this implies that all nodes have Bk, thus indi-
cating that the transfers are complete2. Since l = �log n�,
the completion time of the Binomial pipeline, when n is a
power of two, is k + �log n� − 1 which is optimal.

2.3.2 A Hypercube Embedding. Our algorithm descrip-
tion leaves open the question of exactly which nodes com-
municate with which others at what times; in fact, our al-
gorithm is non-deterministic, and there are many options
available at every tick. In practice, if a node has to main-
tain and manage connections with nearly all other nodes,
the system is unlikely to scale well with n. Thus, we would
ideally like our algorithm to require each node to interact
only with its “neighbors” on a low-degree overlay network.

It is easy to show that no optimal algorithm can oper-
ate on an overlay network with degree less than l = log n.
Interestingly, the Binomial Pipeline can be executed on an
overlay network with degree exactly equal to l – the hyper-
cube. To explain, let us assign a unique l-bit ID to each
of the n nodes, with the server node assigned the ID with
all bits zero. Links in the overlay network are determined
by the hypercube rules applied to node IDs, i.e., two nodes
form a link if and only if their IDs differ in exactly one bit.
Define the dimension-i link of a node to be its link to the
node whose ID differs in the (i + 1)st most significant bit.
The Binomial Pipeline is then summarized as below.

2Note that if k < l, we may once again set Bα = Bl for all α > l and
proceed as usual.

During the tth tick, for 1 ≤ t ≤ k + l − 1, each node X
uses the following rules to determine its actions:
• X transmits data on its dimension-(t mod l) link.
• If X = S, it transmits block Bt. (Bt = Bk if t > k.)
• Otherwise, X transmits the highest-index block that it

has, i.e., the block Bi with the largest value of i. (If X
has nothing, it transmits nothing.)

The first rule states that each node uses its l links in
a round-robin order; at every tick, all data transfers occur
across one dimension of the hypercube. The latter two rules
dictate what data is transferred, and compactly characterizes
the actions of the Binomial Pipeline.

2.3.3 Generalizing to Arbitrary Numbers of Nodes.
What happens when the number of nodes n is not an ex-
act power of two? We can carry over the intuition of the
Binomial Pipeline to this general case too. Let l = �log n�
and assign each client a non-zero l-bit ID. (The server re-
ceives the ID with all zeroes). We ensure IDs are assigned
such that (a) each ID is assigned to at least one client, and
(b) no ID is assigned to more than two clients. Observe that
this is always feasible since the number of clients is at most
twice the number of available IDs.

Consider the hypercube resulting from the ID assign-
ment, in which each vertex corresponds to either a single
node or to a pair of nodes. We may now run the same Hy-
percube algorithm as earlier, treating each vertex as a single
logical node. All that remains is to describe how this “logi-
cal node” actually transmits and receives data.

If the logical node is a single physical node, it simply
acts as in the Hypercube algorithm. So, consider a logical
node (X, Y) consisting of two real clients X and Y . Dur-
ing every tick, the Hypercube algorithm requires (X, Y) to
transmit some block, say Bi, and receive some block, say
Bj . We use the following rules to determine the actions of
X and Y during this tick:
• If X has Bi, it transmits Bi. Otherwise, Y is guaran-

teed to have Bi and Y transmits it.
• Whichever node is not transmitting Bi will receive Bj .
• Say X transmits Bi and Y receives Bj . If Y has a

block that X does not, Y transmits this block to X .
(And similarly if the roles of X and Y are reversed.)

It is easy to see that, at all times, X can have at most one
block that Y does not, and vice versa. Therefore, once the
Hypercube algorithm terminates after k+l−1 ticks, both X
and Y might be missing at most one block. They may use
an extra tick to exchange these missing blocks, ensuring that
the overall algorithm terminates in k + l = k + �log n�− 1
steps. Thus, this generalization of the Hypercube algorithm
is optimal for all n.

Note that this algorithm uses an overlay network with
the out-degree of each node being �log n�, although the in-
degree of some nodes may be as high as 2�log n�.

2.3.4 Other Observations. The Binomial Pipeline pos-
sesses many interesting properties and generalizations, be-
sides the fact that it may be embedded in a hypercube-like
overlay network. We list some of them here.

Individual Completion Times All nodes finish receiving
the file at exactly the same time (tick), if k > 1.

Higher Server Bandwidths If the server’s upload band-
width is λU (which is greater than each client’s upload
bandwidth U), the natural strategy of breaking up the clients
into λ equal groups and breaking up the server into λ virtual
servers, one for each group, is optimal.

Optimizing for Physical Network If the location of nodes
in the physical network were to affect completion times –
say, due to different available bandwidths between different
pairs of nodes – we could “optimize” the hypercube struc-
ture using embedding techniques, such as those discussed
in [12].

Asynchrony So far, we have assumed that the entire sys-
tem operates in lock-step. In reality, different nodes may
have slightly differing bandwidths. We may consider oper-
ating the hypercube algorithm even in these settings, with
each node simply using its links in round-robin order at its
own pace. This approach is closely related to the random-
ized algorithms that we discuss next.

2.4 Randomized Approaches

The optimal solution that we have seen required nodes
to be interconnected in a rigid hypercube-like structure, and
tightly controlled the inter-node communication pattern. In
practice, such a rigid construction may not be particularly
robust, leading us to investigate the performance of simpler,
randomized algorithms for content distribution.

Recall that, in every tick, the optimal algorithm carefully
finds a “maximal mapping” of uploading nodes to down-
loading clients to ensure that nearly all nodes upload data3.
A natural simplification is to attempt a distributed, random-
ized mapping, instead of finding a maximal one.

2.4.1 Model. We will assume that nodes are intercon-
nected in some overlay network G, and each node is aware
of the exact set of blocks present at all its neighbors. Such
knowledge is necessary for nodes to efficiently find clients
to upload to in a distributed fashion. In a practical protocol,
this knowledge could be maintained by letting every node
inform all its neighbors every time it finishes receiving a
block, like in BitTorrent. Note that we make no assump-
tions about the structure of the overlay network G.

3Note that such a maximal mapping is necessary but not sufficient for
optimality. There are many maximal mappings for a particular tick which,
if used, would rule out maximal mappings in subsequent ticks. In the spe-
cial case of n = 2l however, all maximal mappings lead to optimality.

2.4.2 Algorithm. During every tick, each node X uses
the following two-step process to find a client to upload to:
(We explain italicized segments subsequently.)
1. Let N be the set of neighbors which require a block
that X has. Select a random node Y from N with sufficient
download capacity.
2. Let R be the set of blocks available with X and desired
by Y . Upload one of the blocks in R according to the block-
selection policy.

Step 1 requires X to find a random “interested” neighbor
Y . If many nodes simultaneously pick the same Y to upload
to, there may be a downloading bottleneck at Y . To side-
step this problem, we exploit the fact that a real system is
asynchronous; therefore, a handshake protocol between X
and Y could be used to verify that Y has sufficient down-
load capacity (and to resolve collisions), and X can avoid
selecting Y otherwise. Note that if no node Y matches the
requirements of Step 1, X does not transmit any data during
that tick.

There are many possible block-selection policies that
may be used in Step 2. The simplest is Random, in which a
random block in R is uploaded to Y . (Again, a handshake
protocol may be used to prevent Y from getting the same
block from more than one sender). We may also use Rarest
First, in which the least frequent block is uploaded. There
are different ways to estimate block frequency and we omit
details here.

A Note on Costs Observe that an implementation of this
algorithm requires (a) a protocol to inform nodes of their
neighbors’ content and (b) a handshake protocol to decide
on data transmission. The cost of implementing both these
requirements grows as the degree of the overlay network G
increases. (The cost of (a) grows linearly with degree.) It is
therefore important to keep the degree of G small.

2.4.3 Results. We simulated the randomized algorithm
using a synchronous simulation identifying the completion
time T for different values of k and n, using a variety of
different overlay networks G, and with different download
bandwidths D and block-selection policies. We summarize
the key results below. Block size B is assumed to be a con-
stant across all simulations and completion time T is ex-
pressed in ticks. Since a tick is defined as B/U , T can be
meaningfully compared across simulations.

Completion Time T vs. k and n First, we estimate T
as a function of k and n to understand the quality of the
algorithm. (We set G to be the complete graph, D = U and
use Random block selection, although the results are almost
identical with other settings, as we discuss later.)

Figure 3 plots the mean value of T as a function of n
with the x-axis on a log scale. (The error bars on each
point represent the 95% confidence intervals on the mean,
obtained through multiple algorithm runs.) We observe that

 1040

 1060

 1080

 1100

 1120

 10 100 1000 10000

A
vg

. C
om

pl
. T

im
e

T

No. of Nodes n

Figure 3. Completion Time T vs. n

 10

 100

 1000

 10000

 1 10 100 1000 10000

A
vg

. C
om

pl
. T

im
e

T

No. of Blocks k

Figure 4. Completion Time T vs. k

T increases roughly linearly with log n. Replicating the ex-
periment with different values of k produces the same near-
linear behaviour. Figure 4 plots T for different values of
k on a log-log scale, keeping n fixed at 1024. We see that
T increases linearly with k. (The same behaviour was ob-
served with other values of n too.)

Given the above evidence, we hypothesized that, to a
first order of approximation, T is a linear function of k and
log n. Using least-square estimates over a matrix of 106
data points, we estimate that the expected completion time
T = 1.01k + 4.4 logn + 3.2, suggesting that the algorithm
is less than 2% worse than the optimal for large values of
k. This is somewhat surprising, since we would expect
a randomized mapping to be less efficient than a carefully
optimized mapping. A closer analysis of the algorithm’s
runs suggests that there is some “amortization” going on,
by which a “bad” tick where few data transfers take place
is compensated for by many succeeding “good” ticks where
the transfer efficiency is 100% [11].

Effects of the Overlay Network The experiments above
were performed using a complete graph as the overlay net-
work. We now consider random regular graphs instead (in
which each edge is equally likely to be chosen), and in-
vestigated the effect of graph degree on completion times.
Figure 5 shows this effect with n = 1000, and two different
settings of k: 1000 and 2000. We observe that the com-
pletion time drops steeply as the degree increases, and con-
verges quickly to the final value when the degree is around
25, irrespective of the value of k. This suggests that the

 1000

 1400

 1800

 2200

 2600

 3000

 10 20 30 40 50 60 70 80 90 100

A
vg

. C
om

pl
. T

im
e

T

Overlay Graph Degree

K=1000: Random
K=2000: Random

Figure 5. T vs. Degree with n = 1000
phenomenon may be related to the mixing properties of G,
with near-optimal performance kicking in when the graph
degree is O(log n). Interestingly, we execute the same ran-
domized algorithm using a hypercube-like overlay network
(with average degree 10 for n = 1000) and find that the
performance matches that of the randomized algorithm on
the complete graph. Thus, it is useful to replace a random
graph by a hypercube-like structure if the objective is to
minimize the graph degree.

Block-Selection Policy and Incoming Bandwidth Con-
straints Finally, we also attempt using the Rarest-First
block-selection policy instead of Random, and also vary the
incoming bandwidth of nodes from U to infinity. We find
that there are no significant differences in the overall results
or trends as a consequence of these variations; we omit fur-
ther details here.

3 Content Distribution in a Barter Economy

So far, we have assumed that clients freely offer their
upload bandwidth in order to help other clients. In real-
ity, clients are unlikely to behave in this fashion unless they
have an incentive to do so. Therefore, we need mechanisms
that ensure that it is in the clients’ interest to upload data if
they want good download performance.

A naive solution is to require the server to monitor the
upload activity of all clients at all times, and to “cut off”
non-uploading clients, by informing other nodes that they
should stop providing these clients with data. This would
incentivize clients to upload, since they’d realize that they
would be cut off if they didn’t upload. However, this mech-
anism is highly impractical. First, it is impossible for the
server to verify whether one node uploads to another, since
either of the two nodes might “lie”. Second, there may be
far too many clients for the server to monitor all of them all
the time.

The natural solution to these problems is to make the
mechanism decentralized, letting each node decide for itself
whom to upload to and when. The decision to upload data
or not is loosely guided by the principle of barter – X will
not upload data to Y unless Y uploads to X in return. In

this section, we consider different mechanisms guided by
this principle, discussing three issues for each:
• How well are nodes incentivized to upload data?
• What is the fundamental efficiency limit imposed by

the mechanism on content distribution?
• Are there simple content-distribution algorithms that

are optimal, or near-optimal, for that mechanism?
Our answers to the first question will be based on in-

tuitive arguments; we will not formally analyze the mech-
anism to identify the dominant strategy for selfish nodes.
For the latter two questions, we are concerned with the
fundamental obstacles imposed by the mechanism itself on
content-distribution, and not with the inefficiency induced
by selfish clients’ strategic behavior. (Thus, we will con-
sider any algorithm obeying the mechanism as an “accept-
able” solution rather than requiring that the algorithm oper-
ate at a Nash equilibrium under the mechanism.)

3.1 Strict Barter

We begin by considering a mechanism where all data
transfers between clients occur strictly by barter; client X
will transfer a block to Y only if Y simultaneously trans-
fers a block to X . Of course, the blocks received by X and
Y must not be possessed by them already. The one excep-
tion to barter-based transfers is for the server itself, which
uploads data without receiving anything in return.

3.1.1 Incentive Analysis. Observe that this mechanism
creates a strong incentive for clients to upload data, since
this is the only way to receive data from other clients. In
particular, a client attempting to limit the rate at which it
uploads data will experience a corresponding decay in its
download rate, thus forcing the client to upload at the max-
imum rate to obtain best download performance. However,
if nodes are capable of subverting the protocol itself, the
mechanism can be “broken” by nodes uploading garbage
data in order to increase their download rate. Thus, this
mechanism may be inappropriate in such scenarios.

3.1.2 A Lower Bound. How does the barter constraint
affect the completion time T for content distribution? We
show the following lower bound on T (proved in [11]).

Theorem 2. Any content-distribution algorithm based on
strict barter requires at least k + n/2 ticks if n is odd, and
n−1

n (k + n/2 + 1/2) ticks if n is even.

Our analysis indicates that barter is handicapped by a
high start-up cost – it takes n − 1 ticks before all nodes
receive a block and are able to barter. In this period, only
n/2 blocks are uploaded on average per tick, leading to a
high overall cost linear in both k and n.

3.1.3 Algorithm. The lower bound presented above is
fairly tight; we devise an algorithm called the Riffle
Pipeline, which has a completion time close to the lower
bound, as described by the following theorem.

Theorem 3. If the client download capacity D is at least
twice the upload capacity U , it is possible to complete con-
tent distribution under barter within k + n − 1 ticks.

We describe here the algorithm for the special case k =
n − 1, i.e., the number of clients is exactly equal to the
number of blocks. (The general case for arbitrary k, as well
as with arbitrary D, is covered in [11].) The Riffle Pipeline
is described by the data-transfer schedule below.

During each tick t, 1 ≤ t < 2n − 2,
• If t < n, server S sends block Bt to client Ct.
• For each 1 ≤ i ≤ n/2 − 1, if i ≤ (t − 1)/2 and

t− i ≤ n−1, client Ci barters with client Ct−i, giving
up block Bi and obtaining block Bt−i in return.

Observe that S talks to clients in the sequence
C1, C2, . . . Cn. Client C1 also talks to clients in the same
sequence (excluding itself), but trailing S by a tick. C2 also
uses the same sequence (excluding C1 and itself), but trail-
ing C1 by a tick, and so on. The algorithm completes in
2n − 3 = k + n − 2 ticks.

3.2 Credit-Limited Barter

Strict barter suffered from two issues. First, nodes could
cheat the mechanism by uploading junk and receiving legit-
imate data in return. Second, there is a high start-up cost
involved, which increases the completion time to k + Θ(n)
instead of k + Θ(log n).

Both these problems can be solved by modifying the
barter mechanism to allow some slack. In the credit-limited
barter model, any node X is willing to upload a block to a
node Y so long as the net data transferred from X to Y so
far is at most s. Thus, a node can get s blocks “for free”
from another, but has to upload blocks in return if it wants
any more. We refer to s as the credit limit. Observe that
the credit limit allows us to eliminate the start-up problem;
since nodes can get their first block for free, all nodes can
receive a block within a logarithmic amount of time.

3.2.1 Incentive Analysis. Credit-limited barter is a ro-
bust way to incentivize nodes to upload data. Let us assume
that each block has a cryptographic signature that nodes are
aware of. (For example, the server could provide this data to
each node.) If nodes receive credit for uploading data only
after the uploaded data has been verified by the receiver,
there is no longer an incentive to upload junk. However,
this mechanism does have one loophole: since a node has
a credit limit of s with every other node, it could obtain s
blocks from each of them without ever uploading data. If

k is less than s(n − 1), the node may be able to get away
without uploading anything at all!

This problem appears fundamental to any distributed in-
centive scheme. One work-around is to impose a total credit
limit on borrowings of each node but that may be hard to en-
force. A different solution is to let the server S “dictate” the
overlay network, i.e., a client receives credit only at a small
number of “designated neighbors” (while also ensuring s is
small, say 1.) Simple cryptographic schemes can be used to
implement this restriction, and the enforcement cost is low
since establishing the overlay is a one-time operation.

3.2.2 A Lower Bound. What is the impact of credit-
limited barter on the completion time? The best lower
bound we can show is simply the same as the lower bound
for the cooperative case, k + �log n� − 1.

When s = 2 and n = 2l, this bound is, in fact, tight.
To see this, consider Section 2’s Hypercube algorithm with
n = 2l; each client gets one free block during the first l
ticks, which is within the credit limit of s = 2. Subse-
quently, all inter-client transfers are symmetric, ensuring
that the maximum credit limit of any client at the end of
any tick is only 1. Since credit for uploads is only granted
at the end of the upload, we require s = 2 to ensure that
content distribution obeys the mechanism. Note, however,
that the Hypercube algorithm for arbitrary n does not satisfy
the credit-limited barter constraints unless s is very large.

We also note that the Riffle Pipeline satisfies the credit-
limited barter constraint with s = 1, thus showing that k +
n − 2 is an upper bound on the optimal completion time.

3.2.3 A Randomized Algorithm. We have seen that it
may be feasible to have efficient algorithms under credit-
limited barter, at least for special values of n. This raises
the question of whether we can devise practical algorithms
that operate well under this mechanism.

A natural approach is to modify the randomized coop-
erative algorithm, from Section 3.2.3, to obey the credit-
limit constraint. Once again, we consider nodes connected
in an overlay network G. At the beginning of each tick t,
each node X attempts to find a neighbor to upload to, just
as in our cooperative algorithm. The node picks a random
neighbor Y which is interested in X’s content, has sufficient
download capacity and is below the credit limit. Node Y is
then given a block chosen according to the block-selection
policy – Random or Rarest-First.

3.2.4 Results. We used synchronous simulations to in-
vestigate the performance of this randomized algorithm for
a wide range of values of k, n and s, as well as with different
overlay networks G, and block-selection policies. We sum-
marize the main observations here. (As in Section 2.4.3, B
is constant and T is expressed in ticks.)

Impact of Graph Degree Once again, we consider our
overlay networks to be random regular graphs G, of differ-

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140

A
vg

. C
om

pl
. T

im
e

T

Overlay Graph Degree d

s=1
s*d=100

Figure 6. T vs. d with s ∗ d kept constant, for
Random block selection

ent degrees, and study the effect of the graph degree d on the
completion time T , for different values of k and n. Figure 6
plots the mean completion time T (with 95% confidence in-
tervals) against d for experiments using k = n = 1000,
and using Random block selection. Consider the solid line
marked s=1 representing the case s = 1. We observe that
the graph degree d plays a dramatic role in determining
completion times. For d < 80, the algorithm performs
very poorly, with its completion time being off the charts
for d < 50. However, there is a sharp transition at d = 80,
after which its performance is nearly optimal, and identical
to the performance in the cooperative case. (The plots for
other values of s, k and n are similar.)

One might imagine that, since each node is entitled to
d∗s free blocks in total, the improved performance with in-
creasing d is due to the increased total credit per node. How-
ever, this is not the whole story, as evidenced by the dotted
line marked s ∗ d = 100. In this case, we consider various
values of d, and set the credit limit s such that s ∗ d = 100,
i.e., each node is always entitled only to a total of 100 free
blocks. We observe that there is still a dramatic difference in
the observed performance with different values of d. Thus,
the graph degree plays a fundamental role in determining
the performance of the randomized algorithm; increasing
the credit limit with lower graph degrees is nowhere near
as powerful as increasing the graph degree itself.

In practice, a degree-80 random graph may be hard to
build; worse still, using even a slightly lower degree may
have a serious impact on completion times. (We did, how-
ever, notice that the effect on the average time for nodes to
finish is less dramatic than on the completion time.)

The Impact of Rarest-First To study the impact of the
block-selection policy, we repeat the earlier experiments,
this time using Rarest-First block selection instead of Ran-
dom. The results, as shown in Figure 7, mimic the results
for the Random policy in terms of general behavior, but with
a crucial difference: the degree threshold at which the al-
gorithm approaches optimal behavior is now around 20, a
fourfold improvement over the degree 80 that was required
with the Random policy. (In comparison, using a degree-20

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80

A
vg

. C
om

pl
. T

im
e

T

Overlay Graph Degree d

s=1
s*d=100

Figure 7. T vs. d with s ∗ d kept constant, for
Rarest-first block selection

network with Random block selection results in a comple-
tion time more than 20 times worse.)

Thus, the block-selection policy plays a critical role
in determining the completion time. The results depicted
above were obtained assuming that nodes have access to
perfect statistics about block frequencies. However, the re-
sults are almost identical even using simple schemes for es-
timating frequencies based on the content of nodes’ neigh-
bors.

3.3 Triangular Barter

A different way to relax the barter requirement is to al-
low “transitive” use of credit – A will upload to B if B is
simultaneously uploading to C and C is simultaneously up-
loading to A. We call this triangular barter. Of course, we
could generalize this idea to allow “cyclic barter”, involv-
ing cycles of any length – but cheat-proof implementation
of this generalization is likely to be complex.

The combination of triangular barter with a credit limit
is rather intriguing because it enables provably optimal con-
tent distribution with a deterministic algorithm! Observe
that Section 2.3.3’s generalization of the Hypercube algo-
rithm obeys triangular barter with a credit limit s = 2. We
don’t discuss triangular barter any further, but intend to in-
vestigate its use in low-degree overlay networks in future
work.

4 Related Work

Cooperative Content Distribution SplitStream [6] per-
forms cooperative distribution of streaming data, using a
clever arrangement of parallel multicast trees. It is opti-
mized to deal with dynamic nodes and heterogeneous band-
widths. If bandwidths are homogeneous, SplitStream is
near-optimal with a completion time of roughly k + c log n,
where c is the number of multicast trees used (a similar an-
alytical result is obtained in [4]). Our results suggest that
simple, randomized solutions are good enough in the static

cooperative case, avoiding the need for more complex de-
signs. Our randomized algorithms could probably be fine-
tuned by using better peer-selection strategies, as suggested
by [10].

Prior studies have described the theoretical result of Sec-
tion 2.2.4, and cooperative content distribution algorithms
which are optimal for special values of n [19, 17]. In-
terestingly, we have recently discovered a near-optimal
hypercube-based approach [2], and a different optimal al-
gorithm [3] in the discrete-mathematics literature; these al-
gorithms were studied in the context of message broadcast
among an arbitrary number of processors.

A recent technical report [14] solves the same coopera-
tive distribution problem that we address in Section 2, us-
ing a different algorithm, that is optimal for arbitrary n.
In contrast, our approach has a simpler hypercube embed-
ding, leading to a provably low degree bound. The authors
of [14] also simulated a randomized algorithm, and found,
like us, that the finish times depend linearly on k and log n.
However they did not investigate values of k greater than
50; this precludes a more detailed comparison of their re-
sults to ours.

Incentive Structures Reference [17] analyzes the incen-
tive structure of BitTorrent as a “bandwidth game” and
shows that all nodes upload at peak capacity in a homoge-
neous system. Their model assumes that (a) nodes can only
make a one-time choice determining the upload capacity to
use, (b) nodes cannot allocate bandwidth differently to dif-
ferent peers, (c) nodes are aware of the exact bandwidth they
would receive from every other node, and (d) every pair of
nodes always has useful data to exchange. We do not use
these assumptions in our analysis of any mechanism, since
our focus is on understanding the complexities arising from
individual nodes’ content. (A price we pay is the inability
to make formal statements about Nash equilibria.) Further-
more, as discussed earlier, the mechanisms we consider are
more robust and natural than that of BitTorrent.

The barter model has been discussed in the context of
other resources like computation [7] and storage [8]. Note,
however, that these resources are not amenable to instant
exchange (unlike actual content) and therefore pose a dif-
ferent set of problems. The authors of [15] sketch an in-
centive mechanism which is similar to ours in the use of
“credit thresholds”; their goal is to enforce fair sharing of
bandwidth, whereas ours is to minimize completion time.
An alternative to the barter system is the use of a currency
system; such mechanisms (e.g. [18], [16]) typically involve
a greater degree of complexity and centralization than the
pairwise barter system discussed here.

A mechanism for “cyclic” barter (which we discussed
in Section 3.3) has been evaluated via simulations in [1]:
indivisible objects are bartered in a complete graph overlay,
and the authors’ metric of interest is the mean download

time per object. In contrast, our focus is on the total time
taken to disseminate a single (large) file, and comparing this
time in the barter and the cooperative scenarios.

BitTorrent Our randomized algorithms bear a strong re-
semblance to, and were inspired by BitTorrent [5], which is
a widely deployed peer-to-peer content distribution mech-
anism. (An idea of the scale and operating parameters of
this protocol deployment may be obtained from the mea-
surement study in [13].)

In [9, 19, 17], models of BitTorrent are developed in or-
der to analyze the evolution of the system upload bandwidth
as nodes join and leave, as well as the completion time.
These analyses use simplifying assumptions about the con-
tent at different nodes, e.g., by parameterizing the efficiency
of content distribution, or assuming it is optimal [17]. This
approach is orthogonal to ours, where we focus on a static
set of nodes, and pay attention to the complications arising
from the content at the different nodes in order to under-
stand the efficiency of content distribution.

As ongoing work, we are studying the performance of
BitTorrent in greater detail, through asynchronous simula-
tions. Our preliminary results suggest that, even with per-
fect tuning of protocol parameters, the completion time with
BitTorrent is more than 30% worse than the optimal time
(from Section 2.2.4). We note that this performance is un-
der the assumption that selfish clients will actually follow
the specified BitTorrent behavior. However, since a typical
BitTorrent client almost always uploads to a certain min-
imum number of neighbors irrespective of the reciprocal
download rate, selfish clients have little incentive to con-
form to the specification, and can exploit the system if they
are sophisticated enough.

5 Conclusions and Open Questions

We have described optimal and near-optimal algorithms
for content distribution under both cooperative and barter-
based models. Randomized algorithms work surprisingly
well in cooperative settings, providing near-optimal per-
formance, and their theoretical analysis poses interesting
open problems. We considered different barter-based mech-
anisms and found that devising efficient, practical content-
distribution algorithms on a low-degree network is non-
trivial, raising questions about the best barter mechanism
to implement, and the algorithms and parameters to use.
Finally, it would be interesting to design mechanisms that
provably ensure that rational selfish behavior of clients
leads to optimal content distribution.

References

[1] K. G. Anagnostakis and M. B. Greenwald. Exchange-based
incentive mechanisms for peer-to-peer file sharing. In Proc.

24th International Conference on Distributed Computing
Systems, 2004.

[2] A. Bar-Noy and S. Kipnis. Broadcasting multiple mes-
sages in simultaneous send/receive systems. Discrete Ap-
plied Mathematics, 55(2):95–105, 1994.

[3] A. Bar-Noy, S. Kipnis, and B. Schieber. Optimal multiple
message broadcasting in telephone-like communication sys-
tems. Discrete Applied Mathematics, 100(1-2):1–15, 2000.

[4] E. Biersack, P. Rodriguez, and P. Felber. Performance anal-
ysis of peer-to-peer networks for file distribution. In Proc.
5th International Workshop on Quality of Future Internet
Services (QOFIS), 2004.

[5] BitTorrent protocol specification.
http://wiki.theory.org/BitTorrentSpecification.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream: High-bandwidth
multicast in a cooperative environment. In Proc. SOSP,
2003.

[7] B. Chun, Y. Fu, and A. Vahdat. Bootstrapping a dis-
tributed computational economy with peer-to-peer bartering.
In Proc. First Workshop on Economics of Peer-to-Peer Sys-
tems, 2003.

[8] L. Cox and B. Noble. Samsara: Honor among thieves in
peer-to-peer storage. In Proc. 19th ACM Symposium on Op-
erating Systems Principles, 2003.

[9] G. de Veciana and X. Yang. Fairness, incentives and perfor-
mance in peer-to-peer networks. In Proc. Allerton Confer-
ence on Communication, Control and Computing, 2003.

[10] P. Felber and E. Biersack. Self-scaling networks for content
distribution. In Proc. SELF-STAR: International Workshop
on Self-* Properties in Complex Information Systems, 2004.

[11] P. Ganesan and M. Seshadri. On cooperative content dis-
tribution and the price of barter. Technical report, Stanford
University, 2005. http://dbpubs.stanford.edu/pub/2005-4.

[12] P. Ganesan, Q. Sun, and H. Garcia-Molina. Apoc-
rypha: Making p2p overlays network-aware.
Technical report, Stanford University, 2003.
http://dbpubs.stanford.edu/pub/2003-70.

[13] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. A.
Hamra, and L. Garces-Erice. Dissecting BitTorrent: Five
months in a torrent’s lifetime. In Proc. 5th Passive and Ac-
tive Measurement Workshop, 2004.

[14] J. Mundinger and R. Weber. Efficient file dissemination us-
ing peer-to-peer technology. University Of Cambridge, Sta-
tistical Laboratory Research Report 2004-01, 2004.

[15] T. Ngan, A. Nandi, A. Singh, D. S. Wallach, and P. Druschel.
Designing incentives-compatible peer-to-peer systems. In
Proc. 7th International Conference on Electronic Commerce
Research, 2004.

[16] Paypal. Website http://www.paypal.com.
[17] D. Qiu and R. Srikant. Modeling and performance analy-

sis of BitTorrent-like peer-to-peer networks. In Proc. SIG-
COMM, 2004.

[18] D. A. Turner and K. W. Ross. A lightweight currency
paradigm for the P2P resource market. In Proc. 7th Interna-
tional Conference on Electronic Commerce Research, 2004.

[19] X. Yang and G. de Veciana. Service capacity of peer to peer
networks. In Proc. IEEE INFOCOM, 2004.

