
Efficient Wait-Free Implementation of Multiword LL/SC Variables∗

Prasad Jayanti and Srdjan Petrovic
Department of Computer Science

Dartmouth College
Hanover, NH 03755

prasad, spetrovic@cs.dartmouth.edu

Abstract

Since the design of lock-free data structures often poses
a formidable intellectual challenge, researchers are con-
stantly in search of abstractions and primitives that simplify
this design. The multiword LL/SC object is such a primi-
tive: many existing algorithms are based on this primitive,
including the nonblocking and wait-free universal construc-
tions [1], the closed objects construction [4] and the snap-
shot algorithms [12, 13].

In this paper, we consider the problem of implementing
a W -word LL/SC object shared by N processes. The previ-
ous best algorithm, due to Anderson and Moir [1], is time
optimal (LL and SC operations run in O(W) time), but has
a space complexity of O(N 2W). We present an algorithm
that uses novel buffer management ideas to cut down the
space complexity by a factor of N to O(NW), while still
being time optimal.

1. Introduction

In shared-memory multiprocessors, multiple processes
running concurrently on different processors cooperate with
each other via shared data structures (e.g., queues, stacks,
counters, heaps, trees). Atomicity of these shared data
structures has traditionally been ensured through the use
of locks. To perform an operation, a process obtains the
lock, updates the data structure, and then releases the lock.
Lock-based implementations, however, have several short-
comings: they impose waiting, limit parallelism, suffer
from convoying, priority inversion and deadlocks, and are
not fault-tolerant. Lock-free implementations, classified
as wait-free and nonblocking, were proposed to overcome
these drawbacks [8, 15, 18]. A wait-free implementation
of a shared object O guarantees that every process p com-
pletes its operation on O in a bounded number of its steps,
regardless of whether other processes are slow, fast or have
crashed. A nonblocking implementation extends a weaker

∗This work is partially supported by the NSF Award EIA-9802068.

guarantee that some operation (not necessarily p’s) com-
pletes in a bounded number of p’s steps.

It is a well understood fact that whether lock-free data
structures can be efficiently designed depends crucially
on what synchronization instructions are supported by the
hardware. After more than two decades of experience
with different instructions (including test&set, swap, and
fetch&add), there is growing consensus among architects
and system designers on the desirability of a pair of instruc-
tions known as Load-Link (LL) and Store-Conditional (SC).
The LL and SC instructions act like read and conditional-
write, respectively. More specifically, the LL instruction
by process p returns the value of the memory word, and
the SC(v) instruction by p writes v if and only if no pro-
cess updated the memory word since p’s latest LL. (A
more precise formulation of these instructions is presented
in Figure 1.) These instructions are highly flexible: any
read-modify-write operation can be implemented by a short
three instruction sequence consisting of an LL, manipula-
tion of local processor register, and an SC. For instance, to
fetch&increment a memory word X , a process performs LL
to read the value of X into a local register, increments that
register, and then performs SC to write the register’s value
to X . In the scenario that SC fails (because of interference
from a successful SC by another process), p will simply re-
execute the instruction sequence.

Despite the desirability of LL/SC, no processor supports
these instructions in hardware because it is impractical to
maintain (in hardware) the state information needed to de-
termine the success or failure of each process’ SC operation
on each word of memory. Consequently, modern processors
support only close approximations to LL/SC, namely, ei-
ther compare&swap, also known as CAS (e.g., UltraSPARC
[10], Itanium [5]) or restricted versions of LL/SC, known
as RLL/RSC (e.g., POWER4 [7], MIPS [20], Alpha [19]
processors). Since CAS suffers from the well-known ABA
problem [3] and RLL/RSC impose severe restrictions on
their use1 [17], it is difficult to design algorithms based on

1The RLL/RSC semantics are weaker than LL/SC semantics in two re-
spects [17]: (i) SC may experience spurious failures, i.e., SC might some-
times fail even when it should have succeeded, and (ii) a process must not

• LL(p,O) returns O’s value.

• SC(p,O, v) either “succeeds” or “fails”. In the follow-
ing we explain (i) what it means for SC to succeed or
fail, and (ii) the rule for determining the SC’s success
or failure.

If SC(p,O, v) succeeds, it changes O’s value to v and
returns true to p. If it fails, O’s value remains un-
changed and SC returns false to p.

The following rule determines the success or failure:
An SC(p,O, v) succeeds if and only if no process per-
formed a successful SC on O since process p’s latest
LL operation on O.

• VL(p,O) returns true to p if and only if no process
performed a successful SC on O since p’s latest LL
operation on O.

Figure 1. Effect of process p executing LL, SC
and VL operations on an object O

these instructions.
Thus, there is a gap between what the algorithm design-

ers want (namely, LL/SC) and what the multiprocessors ac-
tually support (namely, CAS or RLL/RSC). Designing ef-
ficient algorithms to bridge this hardware-software gap has
been the goal of a lot of recent research [1, 2, 6, 11, 14,
16, 17]. Most of this research is focused on implementing
small LL/SC objects, i.e., LL/SC objects whose value fits
in a single machine word (which is 64-bits in the case of
most machines) [2, 6, 11, 14, 16, 17]. However, many ex-
isting applications [1, 4, 12, 13] need large LL/SC objects,
i.e., LL/SC objects whose value does not fit in a single ma-
chine word. To address this need, Anderson and Moir [1]
designed an algorithm that implements a multi-word LL/SC
object from word-sized LL/SC objects and atomic regis-
ters. Their algorithm is wait-free and implements a W -word
LL/SC object O, shared by N processes, with the following
time and space complexity. A process completes an LL or
SC operation on O in O(W) hardware instructions (thus,
the algorithm is clearly time optimal). The space complex-
ity of the algorithm is O(N2W) (i.e., the algorithm needs
O(N2W) hardware words to implement O).2 In this paper,
we use novel buffer management ideas to design a wait-free
algorithm that cuts down the space complexity by a factor
of N to O(NW), while still being time optimal. Our main

access any shared variable between its LL and the subsequent SC.
2More efficient algorithms were also given by Anderson and Moir [1]

and Moir [17], but these algorithms implement weaker objects, known in
the literature as WLL/SC objects. Unlike LL, the WLL operation some-
times fails to return the object’s value, rendering WLL/SC objects not use-
ful for many applications [4, 12, 13]. This paper is concerned only with
multi-word LL/SC objects, and not with WLL/SC objects.

result is summarized as follows:

Statement of the main result: Consider the problem of
implementing a linearizable3 [9] W -word LL/SC object O,
shared by N processes, from word-sized LL/SC objects and
word-sized registers supporting read and write operations.
We design a wait-free algorithm that guarantees that each
process completes an LL or SC operation on O in O(W)
machine instructions. The algorithm’s space complexity is
O(NW).

We believe that this result is important for two reasons.
First, it introduces novel buffer management ideas that sig-
nificantly reduce the number of buffer replicas while still
preventing race conditions. Second, many existing algo-
rithms employ W -word LL/SC object as the underlying
primitive (examples include the recent snapshot algorithms
[12, 13], universal constructions [1], and the construction
of closed objects [4]). By the result of this paper, the space
complexity of all of these algorithms comes down by a fac-
tor of N .

2. Implementing the W -word LL/SC Object

Figure 2 presents an algorithm for implementing a W -
word LL/SC/VL object O. In the rest of this section, we
describe informally how the algorithm works.

2.1. The variables used

We begin by describing the variables used in the algo-
rithm. BUF[0 . . 3N − 1] is an array of 3N W -word safe
buffers. Of these, 2N buffers hold the 2N most recent val-
ues of O and the remaining N buffers are “owned” by pro-
cesses, one buffer by each process. Process p’s local vari-
able, mybufp, is the index of the buffer currently owned by
p. X is the tag associated with the current value of O and
consists of two fields: the index of the buffer that holds O’s
current value and the sequence number associated with O’s
current value. The sequence number increases by 1 (mod-
ulo 2N) with each successful SC on O. The buffer holding
O’s current value is not reused until 2N more successful
SC’s are performed. Thus, at any point, the 2N most recent
values of O are available and may be accessed as follows. If
the current sequence number is k, the sequence numbers of
the 2N most recent successful SC’s (in the order of their re-
centness) are k, k−1, . . . , 0, 2N−1, 2N−2, . . . , k+1; and
Bank[j] is the index of the buffer that holds the value writ-
ten to O by the most recent successful SC with sequence
number j. Finally, it turns out that a process p might need
the help of other processes in completing its LL operation

3A shared object is linearizable if, even though operations applied on
the object are not instantaneous, they appear to be so; that is, every op-
eration appears to take effect at some instant between its invocation and
completion.

2

Types
valuetype = array [0 . . W − 1] of 64-bit word
xtype = record buf: 0 . . 3N − 1; seq: 0 . . 2N − 1 end
helptype = record helpme: {0, 1}; buf: 0 . . 3N − 1 end

Shared variables
X: xtype
Bank: array [0 . . 2N − 1] of 0 . . 3N − 1
Help: array [0 . . N − 1] of helptype
BUF: array [0 . . 3N − 1] of valuetype

Local persistent variables at each p ∈ {0, 1, . . . ,N − 1}
mybuf

p
: [0 . . 3N − 1]; xp: xtype

Initialization
X = (0, 0); BUF[0] = the desired initial value of O.
Bank[k] = k, for all k ∈ {0, 1, . . . , 2N − 1}
mybuf

p
= 2N + p, for all p ∈ {0, 1, . . . ,N − 1}

Help[p] = (0,), for all p ∈ {0, 1, . . . ,N − 1}

procedure LL(p,O, retval) procedure SC(p,O, v) returns boolean
1: Help[p] = (1, mybuf

p
) 12: if (LL(Bank[xp.seq]) 6= xp.buf) ∧ VL(X)

2: xp = LL(X) 13: SC(Bank[xp.seq], xp.buf)
3: copy BUF[xp.buf] into ∗retval 14: if (LL(Help[xp.seq mod N]) ≡ (1, d)) ∧ VL(X)
4: if LL(Help[p]) ≡ (0, b) 15: if SC(Help[xp.seq mod N], (0, mybuf

p
))

5: xp = LL(X) 16: mybuf
p

= d

6: copy BUF[xp.buf] into ∗retval 17: copy ∗v into BUF[mybuf
p
]

7: if ¬VL(X) copy BUF[b] into ∗retval 18: e = Bank[(xp.seq + 1) mod 2N]
8: if LL(Help[p]) ≡ (1, c) 19: if SC(X, (mybuf

p
, (xp.seq + 1) mod 2N))

9: SC(Help[p], (0, c)) 20: mybuf
p

= e

10: mybuf
p

= Help[p].buf 21: return true
11: copy ∗retval into BUF[mybuf

p
] 22: return false

procedure VL(p,O) returns boolean
23: return VL(X)

Figure 2. Implementation of the N -process W -word LL/SC/VL variable O from single-word LL/SC/VL

on O. The variable Help[p] facilitates coordination be-
tween p and the helpers of p.

2.2. The helping mechanism

The crux of our algorithm lies in its helping mechanism
by which SC operations help LL operations. Specifically, a
process p begins its LL operation by announcing its opera-
tion to other processes. It then attempts to read the buffer
containing O’s current value. This reading has two possible
outcomes: either p correctly obtains the value in the buffer
or p obtains an inconsistent value because the buffer is over-
written while p reads it. In the latter case, the key property
of our algorithm is that p is helped (and informed that it is
helped) before the completion of its reading of the buffer.
Thus, in either case, p has a valid value: either p reads a
valid value in the buffer (former case) or it is handed a valid
value by a helper process (latter case). The implementa-
tion of such a helping scheme is sketched in the following
paragraph.

Consider any process p that performs an LL operation on
O and obtains a value V associated with sequence number
s (i.e., the latest SC before p’s LL wrote V in O and had the

sequence number s). Following its LL, suppose that p in-
vokes an SC operation. Before attempting to make this SC
operation (of sequence number (s + 1) mod 2N) succeed,
our algorithm requires p to check if the process s mod N

has an ongoing LL operation that requires help (thus, the de-
cision of which process to help is based on sequence num-
ber). If so, p hands over the buffer it owns containing the
value V to the process s mod N . If several processes try
to help, only one will succeed. Thus, the process numbered
s mod N is helped (if necessary) every time the sequence
number changes from s to (s+1) mod 2N . Since sequence
number increases by 1 with each successful SC, it follows
that every process is examined twice for possible help in
a span of 2N successful SC operations. Recall further the
earlier stated property that the buffer holding O’s current
value is not reused until 2N more successful SC’s are per-
formed. As a consequence of the above facts, if a process
p begins reading the buffer that holds O’s current value and
the buffer happens to be reused while p still reads it (because
2N successful SC’s have since taken place), some process
is sure to have helped p by handing it a valid value of O.

3

2.3. The role of Help[p]

The variable Help[p] plays an important role in the help-
ing scheme. It has two fields, a binary value (that indicates
if p needs help) and a buffer index. When p initiates an LL
operation, it seeks the help of other processes by writing
(1, b), where b is the index of the buffer that p owns (see
Line 1). If a process q helps p, it does so handing over its
buffer—say, c—containing a valid value of O to p by writ-
ing (0, c). (This writing is performed with a SC operation
to ensure that at most one process succeeds in helping p.)
Once q writes (0, c) in Help[p], p and q exchange the own-
ership of their buffers: p becomes the owner of the buffer
indexed by c and q becomes the owner of the buffer indexed
by b.

The above ideas are implemented in our algorithm as fol-
lows. Before p returns from its LL operation, it withdraws
its request for help by executing the code at Lines 8–10.
First, p reads Help[p] (Line 8). If p was already helped
(i.e., flag is 0), p updates mybufp to reflect that p’s owner-
ship has changed to the buffer in which the helper process
had left a valid value (Line 10). If p was not yet helped, p at-
tempts to withdraw its request for help by writing 0 into the
first field of Help[p] (Line 9). If p does not succeed, some
process must have helped p while p was between Lines 8
and 9; in this case, p assumes the ownership of the buffer
handed by that helper (Line 10). If p succeeds in writing 0,
then the second field of Help[p] still contains the index of
p’s own buffer, and so p reclaims the ownership of its own
buffer (Line 10).

2.4. Two obligations of LL

In any implementation, there are two conditions that an
LL operation must satisfy to ensure correctness. Our code
will be easy to follow if these conditions are first under-
stood, so we explain them below.

Consider an execution of the LL procedure by a process
p. Suppose that V is the value of O when p invokes the
LL procedure and suppose that k successful SC’s take ef-
fect during the execution of this procedure, changing O’s
value from V to V1, V1 to V2, . . ., Vk−1 to Vk. Then, any
of V, V1, .., Vk would be a valid value for p’s LL procedure
to return. However, there is a significant difference between
returning Vk (the current value) versus returning an older
(but valid) value from V, V1, .., Vk−1: assuming that other
processes do not perform successful SC’s after p’s LL and
before p’s subsequent SC, the specification of LL/SC oper-
ations requires p’s subsequent SC to succeed in the former
case and fail in the latter case. Thus, p’s LL procedure, be-
sides returning a valid value, may have the additional obli-
gation of ensuring the success or failure of p’s subsequent
SC (or VL) based on whether or not its return value is cur-
rent.

In our algorithm, the SC procedure (Lines 12–22) in-
cludes exactly one SC operation on the variable X (Line 19)

and the former succeeds if and only if the latter succeeds.
Therefore, we can restate the two obligations on p’s LL pro-
cedure as follows: (O1) It must return a valid value u, and
(O2) If other processes do not perform successful SC’s af-
ter p’s LL, p’s subsequent SC (or VL) on X must succeed if
and only if the return value u is current.

2.5. Code for LL

A process p performs an LL operation on O by executing
the procedure LL(p,O, retval), where retval is a pointer to a
block of W -words in which to place the return value. First,
p announces its operation to inform others that it needs their
help (Line 1). It then attempts to obtain the current value of
O (Lines 2–4), by performing the following steps. First, p

reads X (Line 2) to determine the buffer holding O’s current
value, and then reads that buffer (Line 3). While p reads the
buffer on Line 3, the value of O might change because of
successful SC’s by other processes. Specifically, there are
three possibilities for what happens while p executes Line 3:
(i) no successful SC is performed by any process, (ii) fewer
than 2N − 1 successful SC’s are performed, or (iii) at least
2N successful SC’s are performed. In the first case, it is
obvious that p reads a valid value on Line 3. Interestingly,
in the second case too, the value read on Line 3 is a valid
value. This is because, as remarked earlier, our algorithm
does not reuse a buffer until 2N more successful SC’s have
taken place. In the third case, p cannot rely on the value
read on Line 3. However, by the helping mechanism de-
scribed earlier, a helper process would have made available
a valid value in a buffer and written the index of that buffer
in Help[p]. Thus, in each of the three cases, p has access
to a valid value. Further, as we now explain, p can also de-
termine which of the three cases actually holds. To do this,
p reads Help[p] to check if it has been helped (Line 4). If
it has not been helped yet, Case (i) or (ii) must hold, which
implies that retval has a valid value of O. Hence, returning
this value meets obligation O1. It meets obligation O2 as
well because the value in retval is the current value of O at
the time when p read X (Line 2); hence, p’s subsequent SC
(or VL) on X will succeed if and only if X does not change,
i.e., if and only if the value in retval is still current. So, p

returns from the LL operation after withdrawing its request
for help (Lines 8–10) and storing the return value into p’s
own buffer (Line 11) (p will use this buffer in the subse-
quent SC operation to help another process complete its LL
operation, if necessary).

If upon reading Help[p] (Line 4), p finds out that it has
been helped, p knows that Case (iii) holds and a helper pro-
cess must have already written in Help[p] the index of a
buffer containing a valid value u of O. However, p is unsure
whether this valid value u is current or old. If u is current,
it is incorrect to return u: the return of u will fail to meet
obligation O2. This is because p’s subsequent SC on X will
fail, contrary to O2 (it will fail because X has changed since
p read it at Line 2). For this reason, although p has access

4

to a valid value handed to it by the helper, it does not return
it. Instead, p attempts once more to obtain the current value
of O (Lines 5–7). To do this, p again reads X (Line 5) to de-
termine the buffer holding O’s current value, and then reads
that buffer (Line 6). Next, p validates X (Line 7). If this val-
idation succeeds, it is clear that retval has a valid value and,
by returning this value, the LL operation meets both its obli-
gations (O1 and O2). If the validation fails, O’s value must
have changed while p was between Lines 5 and 7. This im-
plies that the value handed by the helper (which had been
around even before p executed Line 5) is surely not cur-
rent. Furthermore, the failure of VL (on Line 7) implies
that p’s subsequent SC on X will fail. Thus, returning the
value handed by the helper satisfies both obligations, O1
and O2. So, p copies the value handed by the helper into
retval (Line 7), withdraws its request for help (Lines 8–10),
and stores the return value into p’s own buffer (Line 11), to
be used in p’s subsequent SC operation.

2.6. Code for SC

A process p performs an SC operation on O by execut-
ing the procedure SC(p,O, v), where v is the pointer to a
block of W -words which contain the value to write to O
if SC succeeds. On the assumption that X hasn’t changed
since p read it in its latest LL, i.e., X still contains the buffer
index bindex and the sequence number s associated with the
latest successful SC, p reads the buffer index b in Bank[s]
(Line 12). The reason for this step is the possibility that
Bank[s] has not yet been updated to hold bindex, in which
case p should update it. So, p checks whether there is a need
to update Bank[s], by comparing b with bindex (Line 12).
If there is a need to update, p first validates X (Line 12) to
confirm its earlier assumption that X still contains the buffer
index bindex and the sequence number s. If this validation
fails, it means that the values that p read from X have be-
come stale, and hence p abandons the updating. (Notice
that, in this case, p’s SC operation also fails.) If the valida-
tion succeeds, p attempts to update Bank[s] (Line 13). This
attempt will fail if and only if some process did the updat-
ing while p executed Lines 12–13. Hence, by the end of this
step, Bank[s] is sure to hold the value bindex.

Next, p tries to determine whether some process needs
help with its LL operation. Since p’s SC is attempting to
change the sequence number from s to s + 1, the process
to help is q = s mod N . So, p reads Help[q] to check
whether q needs help (Line 14). If it does, p first validates X
(Line 15) to make sure that X still contains the buffer index
bindex and the sequence number s. If this validation fails, it
means that the values that p read from X have become stale,
and hence p abandons the helping. (Notice that, in this case,
p’s SC operation also fails.) If the validation succeeds, p at-
tempts to help q by handing it p’s buffer which, by Line 11,
contains a valid value of O (Line 15). If p succeeds in help-
ing q, p gives up its buffer to q and assumes ownership of
q’s buffer (Line 16). (Notice that p’s SC on Line 15 fails

if and only if, while p executed Lines 14–15, either another
process already helped q or q withdrew its request for help.)

Next, p copies the value v to its buffer (Line 17). Then,
p reads the index e of the buffer that holds O’s old value
associated with the next sequence number, namely, (s +
1) mod 2N (Line 18). Finally, p attempts its SC operation
(Line 19) by trying to write in X the index of its buffer and
the next sequence number s′. This SC will succeed if and
only if no successful SC was performed since p’s latest LL.
Accordingly, the procedure returns true if and only if the
SC on Line 19 succeeds (Lines 21–22). In the event that SC
is successful, p gives up ownership of its buffer, which now
holds O’s current value, and becomes the owner of BUF[e],
the buffer holding O’s old value with sequence number s′,
which can now be safely reused (Line 20).

The procedure VL is self-explanatory (Line 23). Based
on the above discussion, we have:

Theorem 1 The N -process wait-free implementation in
Figure 2 of a W -word LL/SC/VL variable O is lineariz-
able. The time complexity of LL, SC and VL operations on
O are O(W), O(W) and O(1), respectively. The imple-
mentation requires O(NW) 64-bit safe registers and O(N)
64-bit LL/SC/VL/read objects.

3. Proof of the algorithm

Let E be any finite execution history of the algorithm
in Figure 2. Let OP be some LL operation, OP′ some SC
operation, and OP′′ some VL operation in E. Then, we
define the linearization points (LPs) for OP, OP′, and OP′′

as follows. If the condition at Line 4 of OP fails (i.e.,
LL(Help[p]) 6≡ (0, b)), LP(OP) is Line 2 of OP. If the
condition at Line 7 fails (i.e., VL(X) returns true), LP(OP)
is Line 5 of OP. If the condition at Line 7 succeeds, let
p be the process executing OP. Then, we show that (1)
there exists exactly one SC operation SCq on O that writes
into Help[p] during OP, and (2) the VL operation on X at
Line 14 of SCq is executed at some time t during OP; we
then set LP(OP) to time t. We set LP(OP′) to Line 19 of
OP′, and LP(OP′′) to Line 23 of OP′′.

Lemma 1 Let E be any finite execution history of the
algorithm in Figure 2. Let SCi be the i′th successful
SC operation in E, and pi the process executing SCi.
Then, at Line 19 of SCi, pi writes the value of the form
(, i mod 2N) into X.

Proof. (By induction) For the base case (i.e., i = 0), the
lemma holds trivially, since SC0 is the “initializing” SC.
The inductive hypothesis states that the lemma holds for
i = k. We now show that the lemma holds for i = k + 1
as well. Let SCX

k and SCX
k+1

be, respectively, the (suc-
cessful) SC on X at Line 19 of SCk, and the (successful)
SC on X at Line 19 of SCk+1. Let LLop be pk+1’s lat-
est LL operation to precede SCk+1, and LLX be pk+1’s

5

latest LL on X during LLop. Since SCX
k+1

succeeds, it
means that LLX takes place after SCX

k . Furthermore,
since SCk+1 is the first successful SC after SCk, it means
that X doesn’t change between SCX

k and LLX . Conse-
quently, the value of X returned by LLX is of the form
(, k mod 2N). Hence, SCX

k+1
writes into X the value of

the form (, (k + 1) mod 2N). ut

Lemma 2 Let E be any finite execution history of the al-
gorithm in Figure 2. Let p be some process, and LLp some
LL operations by p in E. Let t and t′ be the times when
p executes Line 1 and Line 10 of LLp, respectively. Let t′′

be either (1) the time when p executes Line 1 of its first LL
operation after LLp, if such operation exists, or (2) the end
of E, otherwise. Then, the following statements hold:

(S1) During the time interval (t, t′), exactly one write into
Help[p] is performed.

(S2) Any value written into Help[p] during (t, t′′) is of the
form (0,).

(S3) Let t′′′ ∈ (t, t′) be the time when the write from state-
ment (S1) takes place. Then, during the time interval
(t′′′, t′′), no process writes into Help[p].

Proof. Statement (S2) follows trivially from the fact that
the only two operations that can affect the value of Help[p]
during (t, t′′) are (1) the SC at Line 9 of LLp, and (2) the
SC at Line 15 of some other process’ SC operation, both of
which attempt to write (0,) into Help[p].

We now prove statement (S1). Suppose that (S1) does
not hold. Then, during (t, t′), either (1) two or more writes
on Help[p] are performed, or (2) no writes on Help[p]
are performed. In the first case, we know (by an earlier
argument) that each write on Help[p] during (t, t′) must
have been performed either by the SC at Line 9 of LLp,
or by the SC at Line 15 of some other process’ SC opera-
tion. Let SC1 and SC2 be the first two SC operations on
Help[p] to write into Help[p] during (t, t′). Let q1 (re-
spectively, q2) be the process executing SC1 (respectively,
SC2). Let LL1 (respectively, LL2) be the latest LL opera-
tion on Help[p] by q1 (respectively, q2) to precede SC1 (re-
spectively, SC2). Then, both LL1 and LL2 return a value of
the form (1,). Furthermore, LL2 takes place after SC1,
or else SC2 would fail. Since Help[p] doesn’t change be-
tween SC1 and SC2, it means that LL2 returns the value of
the form (0,), which is a contradiction.

In the second case (where no writes on Help[p] take
place during (t, t′)), we examine two possibilities: either
the LL operation at Line 8 of LLp returns a value of the
form (1,) or it doesn’t. In the first case, since there are
no writes into Help[p] during (t, t′), the SC at Line 9 of
LLp must succeed, which is a contradiction to the fact that
no writes into Help[p] take place during (t, t′). In the sec-
ond case, Help[p] must have changed between the time p

executed Line 1 and the time p executed Line 8, which is
a contradiction to the fact that no writes into Help[p] take
place during (t, t′). Hence, statement (S1) holds.

We now prove statement (S3). Suppose that (S3) does
not hold. Then, at least one write on Help[p] takes place
during (t′′′, t′′). By an earlier argument, any write on
Help[p] during (t′′′, t′′) must have been performed either
by the SC at Line 9 of LLp, or by the SC at Line 15 of some
other process’ SC operation. Let SC3 be the first SC op-
eration on Help[p] to write into Help[p] during (t′′′, t′′).
Let q3 be the process executing SC3. Let LL3 be the lat-
est LL operation on Help[p] by q3 to precede SC3. Then,
LL3 returns a value of the form (1,). Furthermore, LL3

must take place after time t′′′, or else SC3 would fail.
Since Help[p] doesn’t change between time t′′′ and SC3, it
means that LL3 returns the value of the form (0,), which
is a contradiction. Hence, we have statement (S3). ut

Invariants: Let E be any finite execution history of the al-
gorithm in Figure 2, and t some time during E. Let PC t(p)
be the value of process p’s program counter at time t. For
any shared variable A, let At be the value of that variable at
time t. For any local variable a, let at be the value of that
variable at time t. For any register r at process p, let rt(p)
be the value of that register at time t. Then, the following
invariants hold at time t.

(I1) Let mp(t), for all p ∈ {0, 1, . . . , N − 1}, be defined as
follows:

– if PCt(p) ∈ (2 . . 10) ∧ Helpt[p] ≡ (0, b), then
mp(t) = b,

– if PCt(p) = 16, then mp(t) = dt(p),
– if PCt(p) = 20, then mp(t) = et(p),

– otherwise, mp(t) = mybuftp.

Let (a, k) be the value of X at time t (i.e., Xt = (a, k)).
Let bi(t), for all i ∈ {0, 1, . . . , 2N − 1}, be defined as
follows: bi(t) = Bankt[i], for all i 6= k, and bk(t) =
a. Then, at time t, we have m0(t) 6= m1(t) 6= . . . 6=
mN−1(t) 6= b0(t) 6= b1(t) 6= . . . 6= b2N−1(t).

(I2) Let (bk, k) be the value of X at time t (i.e., Xt =
(bk, k)). Let tk ≤ t be the time during E when (bk, k)
was written into X. If tk 6= 0, let tk−1 < tk be
the time during E when (bk−1, (k − 1) mod 2N) was
written into X, for some value bk−1. If tk 6= 0, then
during (tk−1, tk), exactly one write into Bank[(k −
1) mod 2N] is performed, and the value written by
that write is bk−1. Furthermore, no other location in
Bank is written into during (tk−1, tk).

Proof. (By induction) For the base case for (I1), (i.e., t = 0),
the invariant holds trivially. The base case for (I2) is more
complicated, and is established and proved by the following
claim.

6

Claim 1 Let t2 be the time just before X is written to for the
second time after time 0. Then, during (0, t2], invariant (I2)
holds.

Proof. Let t1 be the first time after time 0 that X is written
to. Then, during (0, t1), invariant (I2) holds trivially. To
show that the invariant holds during [t1, t2], we assume that
the initialization phase initializes Bank[0] (to 0) at time 0
and all other locations just before time 0. Then, it is clear
from the algorithm that any process to execute Line 12 dur-
ing (0, t1) must (1) perform the LL on Bank[0], and (2)
discover that Bank[0] already has value 0. Therefore, it fol-
lows that (1) no write into Bank[0] (except the initialization
write) takes place during (0, t1), and (2) no other location in
Bank is written into during (0, t1), which proves the claim.
ut

The inductive hypothesis states that invariant (I1) holds
at time t ≥ 0, and invariant (I2) at time t ≥ t2. Let t′ be the
earliest time after t that some process, say p, makes a step.
Then, we show that the invariants hold at time t′ as well.
We first prove invariant (I2).

Notice that, if PCt(p) 6= 19, the invariant trivially
holds. If PCt(p) = 19, we have two possibilities: either
p’s SC at time t′ succeeds or it fails. In the latter case,
the invariant trivially holds. In the former case, p writes
(bk+1, (k + 1) mod 2N) into X, for some value bk+1 (by
Lemma 1). In the next five claims, we will show that during
(tk, t′) (1) exactly one write into Bank[k mod 2N] is per-
formed, (2) the value written by that write is bk, and (3) no
other location in Bank is written into.

Claim 2 If some process q writes into the Bank array dur-
ing (tk, t′), then q performed its latest LL on X during
(tk, t′).

Proof. Suppose not. Then, there exists some i ∈
{0, 1, . . . , 2N − 1} and some process q, such that q writes
into Bank[i] during (tk, t′), yet it performed its latest LL on
X prior to tk. Since q writes into the i′th location in Bank,
it means that (1) there exists a time ti+2mN < tk when
the value (bi+2mN , i) is written into X, for some bi+2mN ,
(2) there exists a time ti+2mN+1 ∈ (ti+2mN , tk) when
the value (bi+2mN+1, (i + 1) mod 2N) is written into X,
for some bi+2mN+1, (3) ti+2mN+1 is the first time after
ti+2mN that X changes, (4) q performed its latest LL on X
during (ti+2mN , ti+2mN+1), (5) q’s latest LL on X returned
the value (bi+2mN , i), and (6) q performed its latest VL on
X (Line 12) during (ti+2mN , ti+2mN+1). Consequently, q

performed its LL on Bank[i] during (ti+2mN , ti+2mN+1)
as well. By inductive hypothesis, there exists a time
tbi+2mN ∈ (ti+2mN , ti+2mN+1) when the value bi+2mN is
written into Bank[i]. Then, q must have performed its LL
on Bank[i] after time tbi+2mN (or else q’s SC at Line 15
would fail). In that case, however, q’s LL on Bank[i] re-
turns bi+2mN . Therefore, q does not perform the SC on

Bank[i] at all (due to the failure of the first condition at
Line 12), which is a contradiction. ut

Claim 3 During (tk, t′), the only value that can be written
into Bank[k mod 2N] is bk.

Proof. Suppose not, i.e., suppose that there exists some pro-
cess q that writes into Bank[k mod 2N] a value different
than bk. Then, q must have performed its latest LL on X
before time tk, which is a contradiction to Claim 2. ut

Claim 4 During (tk , t′), at most one write into
Bank[k mod 2N] is performed.

Proof. Suppose not. Then, two or more writes into
Bank[k mod 2N] take place during (tk, t′). Let SC1 and
SC2 be the first two SC operations on Bank[k mod 2N]
to write into Bank[k mod 2N] during (tk, t′). Let q1 (re-
spectively, q2) be the process executing SC1 (respectively,
SC2). Let SCq1

(respectively, SCq2
) be the SC operation

on O that issues SC1 (respectively, SC2). Let LL1 (respec-
tively, LL2) be the LL operation on Bank[k mod 2N] at
Line 12 of SCq1

(respectively, SCq2
). Then, by Claim 3,

both SC1 and SC2 write bk into Bank[k mod 2N]. Fur-
thermore, LL2 takes place after SC1 (or else SC2 would
fail). Since Bank[k mod 2N] doesn’t change between SC1

and SC2, it means that LL2 reads bk from Bank[k mod
2N]. By Claim 2, the latest LL operation on X by q2 prior
to SCq2

returns the value bk. Therefore, the first condition
at Line 12 of SCq2

must fail. Hence, SC2 is never executed,
which is a contradiction. ut

Claim 5 During (tk , t′), at least one write into
Bank[k mod 2N] is performed.

Proof. Suppose not. Then, no write into Bank[k mod 2N]
is performed during (tk, t′). Let pk be the process that
wrote (bk, k) into X at time tk. By inductive hypothesis
for (I1), we know that at the time just before tk, the value
of Bank[k mod 2N] is different than the value of mybufpk

.
Furthermore, just before tk, mybufpk

= bk. Therefore, at
time tk, the value of Bank[k mod 2N] is different than bk.

Let SCp be the SC operation on O during which p per-
forms an SC on X at time t′. Since p’s SC on X succeeds, it
means that (1) p’s latest LL on X happens during (tk , t′) and
returns (bk, k mod 2N), (2) p’s LL on Bank[k mod 2N]
at Line 12 of SCp happens during (tk, t′), and (3) p’s VL
on X at Line 12 of SCp happens during (tk, t′) and re-
turns true. Since no write into Bank[k mod 2N] is per-
formed during (tk, t′), and, by the previous argument, the
value of Bank[k mod 2N] at time tk is different than bk,
it means that p’s LL on Bank[k mod 2N] returns a value
different than bk. Therefore, p executes the SC at Line 13
of SCp. Notice that this SC operation also happens dur-
ing (tk, t′). Since no write into Bank[k mod 2N] happens

7

during (tk, t′), it means that p’s SC on Bank[k mod 2N] at
Line 13 of SCp succeeds and writes bk into Bank[k mod
2N]. That is a contradiction to the fact that no write into
Bank[k mod 2N] happens during (tk , t′). ut

Claim 6 During (tk, t′), no write into Bank[i] is per-
formed, for all i ∈ {0, 1, . . . , 2N − 1} \ {k mod 2N}.

Proof. Suppose not. Then, some process q writes into
Bank[i] during (tk, t′), for some i ∈ {0, 1, . . . , 2N − 1} \
{k mod 2N}. By Claim 2, q must have performed its lat-
est LL operation on X during (tk , t′) as well. This LL on X
must therefore return the value (bk, k), which means that q

writes into Bank[k], which is a contradiction. ut

We now prove invariant (I1). Let M(t) be the collection
of values of m0(t), m1(t), . . . mN−1(t). Let B(t) be the
collection of values of b0(t), b1(t), . . . , b2N−1(t). Notice
that if PCt(p) ∈ {1 − 8, 11, 12, 14, 17, 18, 21, 22}, then
p’s step does not impact any of the values in M(t) or B(t),
and hence the invariant holds at time t′ as well. Likewise,
if PCt(p) ∈ {13, 15, 19} and p’s SC fails, then p’s step
also does not impact any of the values in M(t) or B(t), and
hence the invariant holds at time t′ as well.

If PCt(p) = 9, we examine two possibilities: either
Helpt[p] ≡ (0,) or not. In the first case, p’s step doesn’t
impact any of the values in M(t) or B(t), and hence the in-
variant holds at time t′. In the second case, p’s SC at Line 9
succeeds, and writes (0, mybuftp) into Help[p]. Hence, we
have mp(t

′) = mp(t), which means that M(t) and B(t)
remain the same and the invariant holds at time t′.

If PCt(p) = 10, then, by Lemma 2, Helpt[p] ≡ (0, f),
for some value f . Then, we have (1) mp(t) = f , (2)
mybuft

′

p = f , and (3) mp(t
′) = mybuft

′

p . Therefore, we
have mp(t

′) = mp(t), which means that the invariant holds
at time t′.

If PCt(p) = 13 and p’s SC succeeds, p’s write into
Bank[k] at time t′ does not impact bk(t) (i.e., we have
bk(t′) = bk(t) = a), which means that the invariant holds
at time t′.

If PCt(p) = 15 and p’s SC succeeds, let SCp be the
SC operation that p is currently executing. Let q be the pro-
cess whose Help variable process p writes to at Line 15 of
SCp. Then, by Lemma 2, we know that (1) PC t(q) =

PCt
′

(q) ∈ {2, 3, . . . , 9}, (2) Helpt[q] = (1, mybuftq),
and (3) Helpt′ [q] = (0, mybuftp). Since Help[q] doesn’t
change between the LL operation on Help[q] at Line 14
of SCp and the SC operation on Help[q] at Line 15 of
SCp, it means that dt′(p) = mybuftq . Since mp(t

′) =

dt′(p) = mybuftq and mq(t
′) = mybuftp, it follows that

mp(t
′) = mq(t) and mq(t

′) = mp(t), which means that
the invariant holds at time t′.

If PCt(p) = 16, then by inductive hypothesis we have
mp(t) = dt(p). Furthermore, at time t′, we have mybuft

′

p =

dt(p) and mp(t
′) = mybuft

′

p . Therefore, we have mp(t
′) =

mp(t), which means that the invariant holds at time t′.
If PCt(p) = 19 and p’s SC succeeds, let SCp be the SC

operation that p is currently executing. Then, by invariant
(I2), we have (1) et′(p) = Bankt[(k + 1) mod 2N], and
(2) Bankt′ [k mod 2N] = a. Furthermore, by inductive
hypothesis we have (1) mp(t) = mybuftp, (2) bk(t) = a, and
(3) bk+1(t) = Bankt[(k + 1) mod 2N]. After p’s step, we
have (1) bk(t′) = Bankt′ [k mod 2N] = a, (2) bk+1(t

′) =

mybuftp, and (3) mp(t
′) = et′(p) = Bankt[(k + 1) mod

2N]. Hence, we have (1) bk(t′) = bk(t), (2) bk+1(t
′) =

mp(t), and (3) mp(t
′) = bk+1(t), which means that the

invariant holds at time t′ as well.
If PCt(p) = 20, then by inductive hypothesis we have

mp(t) = et(p). Furthermore, at time t′, we have mybuft
′

p =

et(p) and mp(t
′) = mybuft

′

p . Therefore, we have mp(t
′) =

mp(t), which means that the invariant holds at time t′. ut

Due to space constraints, the next two lemmas are pre-
sented without proofs.

Lemma 3 Let E be any finite execution history of the al-
gorithm in Figure 2. Let p be some process, and SCp some
successful SC operation by p in E. Let v be the value that
SCp writes in O. Let (b, i) be the value that p writes into X
at Line 19 of SCp. Then, BUF[b] holds the value v until X
changes at least 2N times.

Lemma 4 Let E be any finite execution history of the al-
gorithm in Figure 2. Let p be some process, and LLp

some LL operation by p in E. Let t be the time when p

executes Line 2 of LLp, and t′ the time when p executes
Line 4 of LLp. If the condition at Line 4 of LLp fails (i.e.,
LL(Help[p]) 6≡ (0, b)), then X changes at most 2N − 1
times during (t, t′).

Lemma 5 Let E be any finite execution history of the al-
gorithm in Figure 2. Let p be some process, and LLp

some LL operation by p in E. Let t be the time when p

executes Line 2 of LLp, and t′ the time when p executes
Line 4 of LLp. If the condition at Line 4 of LLp fails (i.e.,
LL(Help[p]) 6≡ (0, b)), then the value that p writes into
retval at Line 3 of LLp is the value of O at time t.

Proof. Let (b, i) be the value that p reads from X at time
t. Let SCq be the SC operation on O that wrote that value
into X, and q the process that executed SCq . Let t′′ < t be
the time during SCq when q wrote (b, i) into X, and v the
value that SCq writes in O. Then, by Lemma 3, BUF[b] will
hold the value v until X changes at least 2N times after t′′.
Since X doesn’t change during (t′′, t), it means that BUF[b]
will hold the value v until X changes at least 2N times after
t. Furthermore, by Lemma 4, X can change at most 2N − 1
times during (t, t′). Therefore, BUF[b] holds the value v at
all times during (t, t′), and hence the value that p writes into
retval at Line 3 of LLp is the value of O at time t. ut

8

Lemma 6 Let E be any finite execution history of the al-
gorithm in Figure 2. Let p be some process, and LLp some
LL operation by p in E. Let t be the time when p executes
Line 5 of LLp, and t′ the time when p executes Line 7 of
LLp. If the condition at Line 7 of LLp fails (i.e., VL(X) re-
turns true), then the value that p writes into retval at Line 6
of LLp is the value of O at time t.

Proof. Let (b, i) be the value that p reads from X at time t.
Let SCq be the SC operation on O that wrote that value into
X, and q the process that executed SCq . Let t′′ < t be the
time during SCq when q wrote (b, i) into X, and v the value
that SCq writes in O. Then, by Lemma 3, BUF[b] will hold
the value v until X changes at least 2N times after t′′. Since
X doesn’t change during (t′′, t), it means that BUF[b] will
hold the value v until X changes at least 2N times after t.
Since p’s VL operation on X at Line 7 of LLp returns true at
time t′, it means that X doesn’t change during (t, t′). There-
fore, BUF[b] holds the value v at all times during (t, t′), and
hence the value that p writes into retval at Line 6 of LLp is
the value of O at time t. ut

Lemma 7 Let E be any finite execution history of the algo-
rithm in Figure 2. Let p be some process, and LLp some
LL operation by p in E. Let t be the time when p exe-
cutes Line 1 of LLp, and t′ the time when p executes Line 4
of LLp. If the condition at Line 4 of LLp succeeds (i.e.,
LL(Help[p]) ≡ (0, b)), then (1) there exists exactly one SC
operation SCq on O that writes into Help[p] during (t, t′),
and (2) the VL operation on X at Line 14 of SCq is executed
during (t, t′).

Proof. Since the condition at Line 4 of LLp succeeds, it
means that some SC operation SCq writes the value of the
form (0,) into Help[p] during (t, t′). By Lemma 2, SCq

is the only SC operation that writes into Help[p] during
(t, t′). Let t′′ ∈ (t, t′) be the time when SCq writes into
Help[p]. Let q be the process executing SCq . Since q

writes into Help[p] at time t′′, it means that Help[p] does
not change between q’s LL at Line 14 of SCq and t′′. There-
fore, q’s LL at Line 14 of SCq occurs during the time inter-
val (t, t′′). Consequently, q’s VL at Line 14 of SCq occurs
during the time interval (t, t′′) as well.

Lemma 8 Let E be any finite execution history of the al-
gorithm in Figure 2. Let p be some process, and LLp some
LL operation by p in E. Let t be the time when p executes
Line 1 of LLp, and t′ the time when p executes Line 4 of
LLp. If the condition at Line 7 of LLp succeeds (i.e., VL(X)
returns false), let SCq be the SC operation on O that writes
into Help[p] during (t, t′), and let t′′ ∈ (t, t′) be the time
when the VL operation on X at Line 14 of SCq is performed.
Then, the value that LLp returns is the value of O at time
t′′.

Proof. Let q be the process executing SCq . Let LLq be
q’s latest LL operation on O before SCq. Since the VL
operation on X at Line 14 of SCq succeeds, it means that
either the condition at Line 7 of LLq failed, or that Line 7
of LLq was never executed. In the first case, let tq be the
time when q executes Line 5 of LLq. In the second case,
let tq be the time when q executes Line 2 of LLq. In either
case, by Lemmas 5 and 6, LLq returns the value of O at
time tq. Let v be the value returned by LLq. Since the VL
operation on X at Line 14 of SCq succeeds, it means that v
is the value of O at time t′′ as well.

Let t′q be the time just before q starts executing Line 11
of LLq. Let t′′q be the time when q executes the SC opera-
tion on Help[p] at Line 15 of SCq . Let b be the value of
mybufq at time t′q. Notice that, by the algorithm, the only
places where BUF[b] can be modified is either at Line 11
of some LL operation, or at Line 17 of some SC operation.
By invariant (I1), we know that during (t′q , t

′′

q), no process
r 6= q can be at Line 11 or 17 with mybufr = b. Therefore,
BUF[b] holds the value v at all times during (t′q , t

′′

q). Since
mybufq doesn’t change during (t′q , t

′′

q) as well, it means that
q writes (0, b) into Help[p] at time t′′q ∈ (t, t′). Since,
by Lemma 2, no other process writes into Help[p] during
(t, t′), it means that p reads b at Line 4 of LLp (at time t′).
Let t′′′ be the time when p executes Line 7 of LLp. Then,
by invariant (I1), we know that during (t′′q , t′′′) no process r

can be at Line 11 or 17 with mybufr = b. Therefore, BUF[b]
holds the value v at all times during (t′′q , t′′′). So, at Line 6
of LLp, p writes into retval the value v, which is the value
of O at time t′′. ut

Lemma 9 Let E be any finite execution history of the algo-
rithm in Figure 2. Let p be some process, and LLp some LL
operation by p in E. Let LP(LLp) be the linearization point
for LLp. Then, LLp returns the value of O at LP(LLp).

Proof. This lemma follows immediately from Lemmas 5, 6,
and 8. ut

Lemma 10 Let E be any finite execution history of the al-
gorithm in Figure 2. Let p be some process, and SCp some
SC operation by p in E. Let LLp be the latest LL opera-
tion by p to precede SCp. Then, SCp succeeds if and only
if there does not exist some other successful SC operation
SC ′ such that LP(SC ′) ∈ (LP(LLp), LP(SCp)).

Proof. If SCp succeeds, then the SC operation on X at
Line 19 of SCp succeeds. Then, LP(LLp) is either at Line 2
of LLp or at Line 5 of LLp. In either case, X doesn’t change
during (LP(LLp), LP(SCp)), and hence no other success-
ful operation is linearized during (LP(LLp), LP(SCp)).

If SCp fails, we examine three possibilities, based on
where the LP(LLp) is. If LP(LLp) is at Line 2 or
Line 5 of LLp, the fact that SCp fails means that X
changes during (LP(LLp), LP(SCp)). Hence, there ex-
ists a successful SC operation SC ′ such that LP(SC ′) ∈

9

(LP(LLp), LP(SCp)). If LP(LLp) is between Lines 2
and 4 of LLp (the third linearization case), then the VL
operation on X at Line 7 of LLp failed, and hence X
changes during (LP(LLp), LP(SCp)). Hence, there ex-
ists a successful SC operation SC ′ such that LP(SC ′) ∈
(LP(LLp), LP(SCp)). ut

The proof of the following lemma is identical to the
proof of Lemma 10, and is therefore omitted.

Lemma 11 Let E be any finite execution history of the al-
gorithm in Figure 2. Let p be some process, and V Lp some
VL operation by p in E. Let LLp the latest LL operation by
p to precede V Lp. Then, V Lp succeeds if and only if there
does not exist some successful SC operation SC ′ such that
LP(SC ′) ∈ (LP(LLp), LP(V Lp)).

Theorem 1 The N -process wait-free implementation in
Figure 2 of a W -word LL/SC/VL variable O is lineariz-
able. The time complexity of LL, SC and VL operations on
O are O(W), O(W) and O(1), respectively. The imple-
mentation requires O(NW) 64-bit safe registers and O(N)
64-bit LL/SC/VL/read objects.

Proof. This theorem follows immediately from Lemmas 9,
10, and 11. ut

Acknowledgments

We thank the anonymous ICDCS referees for their valu-
able comments on the earlier version of this paper.

References

[1] J. Anderson and M. Moir. Universal constructions for
large objects. In Proceedings of the 9th International
Workshop on Distributed Algorithms, pages 168–182,
September 1995.

[2] J. Anderson and M. Moir. Universal constructions for
multi-object operations. In Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed
Computing, pages 184–194, August 1995.

[3] IBM T.J Watson Research Center. System/370 Princi-
ples of operation, 1983. Order Number GA22-7000.

[4] T.D. Chandra, P. Jayanti, and K. Y. Tan. A polylog
time wait-free construction for closed objects. In Pro-
ceedings of the 17th Annual Symposium on Principles
of Distributed Computing, June 1998.

[5] Intel Corporation. Intel Itanium Architecture Software
Developer’s Manual Volume 1: Application Architec-
ture, 2002. Revision 2.1.

[6] S. Doherty, M. Herlihy, V. Luchangco, and M. Moir.
Bringing practical lock-free synchronization to 64-bit
applications. In Proceedings of the 23rd annual ACM
symposium on Principles of distributed computing,
pages 31–39, July 2004.

[7] IBM Server Group. IBM e server POWER4 System
Microarchitecture, 2001.

[8] M.P. Herlihy. Wait-free synchronization. ACM
TOPLAS, 13(1):124–149, 1991.

[9] M.P. Herlihy and J.M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
TOPLAS, 12(3):463–492, 1990.

[10] SPARC International. The SPARC Architecture Man-
ual. Version 9.

[11] A. Israeli and L. Rappoport. Disjoint-Access-Parallel
implementations of strong shared-memory primitives.
In Proceedings of the 13th Annual ACM Symposium
on Principles of Distributed Computing, pages 151–
160, August 1994.

[12] P. Jayanti. An optimal multi-writer snapshot algo-
rithm. Accepted for publication in the 37th ACM
Symposium on Theory of Computing (STOC 2005).

[13] P. Jayanti. f-arrays: implementation and applications.
In Proceedings of the 21st Annual Symposium on Prin-
ciples of Distributed Computing, pages 270 – 279,
2002.

[14] P. Jayanti and S. Petrovic. Efficient and practical con-
structions of LL/SC variables. In Proceedings of the
22nd ACM Symposium on Principles of Distributed
Computing, pages 285–294, July 2003.

[15] L. Lamport. Concurrent reading and writing. Commu-
nications of the ACM, 20(11):806–811, 1977.

[16] V. Luchangco, M. Moir, and N. Shavit. Nonblocking
k-compare-single-swap. In Proceedings of the 15th
annual ACM symposium on Parallel algorithms and
architectures, pages 314–323, June 2003.

[17] M. Moir. Practical implementations of non-blocking
synchronization primitives. In Proceedings of the 16th
Annual ACM Symposium on Principles of Distributed
Computing, pages 219–228, August 1997.

[18] G. L. Peterson. Concurrent reading while writing.
ACM TOPLAS, 5(1):56–65, 1983.

[19] R. Site. Alpha Architecture Reference Manual. Digital
Equipment Corporation, 1992.

[20] MIPS Computer Systems. MIPS64TMArchitecture For
Programmers Volume II: The MIPS64TMInstruction
Set, 2002. Revision 1.00.

10

