
Explicit Combinatorial Structures for Cooperative Distributed Algorithms

Dariusz Kowalski ∗ Peter M. Musiał † Alexander A. Shvartsman ‡

Abstract

Cooperation in distributed settings often involves activi-
ties that must be performed at least once by the participat-
ing processors. When processor failures or delays occur,
it becomes unavoidable that some tasks are done redun-
dantly. To make efficient use of the available processors,
several distributed algorithms schedule the activities of the
processors in terms of permutations of tasks that need to
be performed at least once. This paper presents the first
explicit practical deterministic construction of sets of per-
mutations with certain combinatorial properties that im-
mediately make practical several deterministic distributed
algorithms. These algorithms solve a variety of problems,
for example, cooperation in shared-memory and message-
passing settings, and the gossip problem. Prior to this
work, the most efficient algorithms for some of these prob-
lems were primarily of theoretical interest — they relied on
permutations that are known to exist, but very expensive to
construct, with the cost of construction being at least expo-
nential in the size of the permutations. In this paper, the
explicitly constructed permutations are ultimately used di-
rectly to produce practical instances of several classes of ef-
ficient deterministic algorithms. Most importantly, for all of
these algorithms, the schedule construction cost is reduced
from exponential to polynomial, at the expense of slight de-
tuning, at most polylogarithmic, of the efficiency of these
algorithms.

∗Instytut Informatyki, Uniwersytet Warszawski, ul. Banacha 2,
Warszawa 02-097, Poland. E-mail: darek@mimuw.edu.pl. The work
of this author is supported in part by the KBN Grant 4T11C04425 and by
the NSF-NATO Award 0209588.

†Department of Computer Science & Engineering, University of Con-
necticut, 371 Fairfield Rd., Unit 2155, Storrs CT 06269, USA. Email:
piotr@cse.uconn.edu

‡Department of Computer Science & Engineering, University of
Connecticut, 371 Fairfield Rd., Unit 2155, Storrs, CT 06269, USA,
and Computer Science and Artificial Intelligence Laboratory, Massa-
chusetts Institute of Technology, Cambridge, MA 02139, USA. Email:
aas@cse.uconn.edu. The work of this author is supported in part
by the NSF Grants 9984778, 9988304, 0121277, and 0311368.

1. Introduction

Enabling a collection of processors to cooperate in a de-
centralized system is at the basis of distributed computing.
Many distributed algorithms are constructed using cooper-
ation primitives, such as information aggregation, propa-
gation of information among processors, collaboration of
processors on a common set of tasks, parallel update of
shared objects, leader election, and distributed consensus.
For efficiency reasons, the processors ought to make com-
putational progress while avoiding wasting resources (for
example, time, computation, and communication) on activ-
ities that either have already been performed, or that will
not contribute to the overall computational goal. When
a distributed computation can be structured in terms of
a collection of activities, one needs to balance computa-
tion vs. coordination. In particular, efficiency is enhanced
when processors are able to sequence their activities locally,
spending resources mostly on the required tasks, but only
when needed, on coordination. Abstracting the activities
as an unordered set of tasks, schedules need to be con-
structed that help avoid redundancy. Such schedules can be
represented as permutations of tasks. There are several co-
operation algorithms, whose efficiency depends on specific
combinatorial properties of such permutations. Construct-
ing permutations with the required properties is notoriously
difficult, and in many cases, short of the exponential search
of the space of permutations, one has to rely on showing the
existence of needed permutations, for example, using the
probabilistic method.

In this work, for the first time, we present an explicit
construction of schedules that are needed by several classes
of fault-tolerant cooperative distributed algorithms. These
algorithms are used to update shared-memory, to perform a
collection of tasks, to spread rumors in a message-passing
setting, and to solve consensus. Using our deterministic and
efficient construction, instances of such algorithms are read-
ily produced in polynomial time (instead of exponential or
worse), while preserving the efficiency of the original algo-
rithms, or incurring a modest polylogarithmic overhead.

Background and previous work. Consider the situation
where two asynchronous processors, p1 and p2, need to

perform t independent tasks with known unique identifiers
from the set [t] = {1, . . . , t}. Assume that before starting
a task, a processor can check whether the task is complete;
however if both processors work on the task concurrently,
then the task is done twice. We are interested in the num-
ber of tasks done redundantly. Let π1 = 〈a1, . . . , at〉 be
the sequence of tasks giving the order in which p1 intends
to perform the tasks. Similarly, let π2 = 〈as1 , . . . , ast

〉 be
the sequence of tasks of p2. We can view π2 as π1 permuted
according to σ = 〈s1, . . . , st〉 (π1 and π2 are permutations).
With this, it is possible to construct an asynchronous execu-
tion for p1 and p2, where p1 performs all t tasks by itself,
and any tasks that p2 finds to be unperformed are performed
redundantly by both processors. (As we will see, the maxi-
mum number of redundancies is the longest increasing sub-
sequence in σ.)

The question we ask is: how does the structure of π2 af-
fect the number of redundant tasks? Clearly p2 may have to
perform task as1 redundantly. What about as2? If s1 > s2

then by the time p2 gets to task as2 , it is already done by
p1 according to π1. Thus, in order for as2 to be done re-
dundantly, it must be the case that s2 > s1. It is easy to
see, in general, that for task asj

to be done redundantly, it
must be the case that sj > max{s1, . . . , sj−1}. Knuth [10]
refers to such sj as a left-to-right maximum of σ. The total
number of tasks done redundantly by p2 is thus the number
of left-to-right maxima of σ. Not surprisingly, this number
is minimized when σ = 〈t, . . . , 1〉, i.e, when π2 is the re-
verse order of π1, and it is maximized when σ = 〈1, . . . , t〉,
i.e., when π1 = π2. Although the expected number of left-
to-right maxima in a random permutation of [t] is close to
ln t [10], finding sets of permutations that help minimizing
redundant work of a large number of processors has proved
to be very difficult.

The seminal work of Anderson and Woll [1] made a for-
mal connection between the efficiency of cooperative algo-
rithms, where processors order their activities using per-
mutations, and the left-to-right maxima of these permuta-
tions. Here efficiency is measured in terms of work that
accounts for all steps taken by the processors in the course
of the computation. One class of such algorithms has work
O(t · pε) and uses q permutations of [q], where q is such
that 1 < q ≤ p ≤ t and ε ≈ logq log2 q3, thus q has to be
quite large for ε to be small. Another class of algorithms
has work O(t log p) and uses q permutations of [q], where
q = p = Θ(

√
t). Work of these algorithms critically de-

pends on identifying a set Ψ of q permutations of [q] with a
certain combinatorial property. Specifically, for any permu-
tation σ of [q], the sum of the number of left-to-right max-
ima of permutations in σ ◦Ψ must be O(q log q), where ◦ is
the permutation composition operator. This combinatorial
measure yields a bound on the number of primary task ex-
ecutions, that is, the executions of tasks that have not been

previously performed. (This measure is termed contention
in [1].)

When the q permutations of q tasks are chosen randomly
then the number of primary tasks is bounded by O(q log q)
with high probability [1, 10]. The challenge is to find such a
set of permutations deterministically and efficiently. If this
cannot be done expediently, then algorithms that use such
permutations is mainly of existential significance. Ander-
son and Woll [1] show how to search for these permutations,
however it takes exponential in q processing time. A differ-
ent approach is given by Naor and Roth [13]. They show
that a set of q permutations where the number of primary
tasks is O(q1+ε) can be obtained in time q · polylog(q) per
permutation. The value of q for which the bound holds is
however exponential in 1/ε3, and hence such approach is
also impractical. Chlebus et al. [3] present analytical and
experimental evidence that sets of q permutations of q tasks
where the number of primary tasks is O(q log2 q) can be
constructed efficiently. However the proof guarantees this
upper bound only for a subset of all asynchronous proces-
sor behaviors.

Performance of other distributed algorithms has been
shown to depend on permutations with the properties stated
in terms of specialized left-to-right maxima definitions.
Such algorithms include solutions for the gossip prob-
lem [8], and the problem of performing tasks in message-
passing settings [11]. All such algorithms, e.g., [1, 8, 11,
12], that are known to exist can be instantiated in expo-
nential time by exhaustively searching all possible sets of
schedules. Up to now no satisfactory deterministic con-
structions of sufficient quality have been given for asyn-
chronous settings.

Contributions. The main contribution of this work is the
explicit (which means polynomial in p) construction and
combinatorial analysis of deterministic schedules that en-
able us to create practical instances of fault-tolerant distrib-
uted cooperative algorithms that previously were mainly of
a theoretical significance. At the core of several such algo-
rithms is a simple scheduling scheme, that we call OBLIDO,
where the processors cooperate in an oblivious way by fol-
lowing a fixed set of schedules enumerating the activities
that need to be performed to achieve a particular goal. We
prove that our constructed schedules have certain combina-
torial properties (Theorem 3.1) that are required by these
algorithms in order to guarantee efficiency.

We formalize the notion of the worst-case primary task
executions that is a “tighter” measure of quality of sched-
ules than the previously used contention [1, 11] and sur-
feit [8], and we prove that our constructions produces good
quality schedules according to this measure (Section 4).

Our construction uses series of expander graphs (Sec-
tion 3). The effectiveness of this method depends on the

Previous Results Our Results

Algorithms Complexity (T: time, Cost of Complexity (T: time, Cost of
W: work, M: messages) Construction W: work, M: messages) Construction

BlockWriteI [1], t ≥ p2 W = O(t log p) (p!)p W = O(t polylog p) poly p

BlockWriteII [1], t ≥ p3/2 W = O(t3/2 log2 p) ((
√

p)!)
√

p W = O(t3/2 polylog p) poly p

BlockWriteIII [1], t = p W = O(p1+ε), ε > 0
�q!

q

�
q!q2 log q W = O(p1+ε), ε > 0 poly q

Gossip [8] T = O(log2 p) (p!)p T = O(polylog p) poly p

for p processors M = O(p1+ε) M = O(p1+ε)

PADET [11] W = O((t + pd) log p) (p!)p W = O((t + pd) polylog p) poly p

t tasks, t ≥ p M = O((tp + p2d) log p) M = O((tp + p2d) polylog p)

Table 1. Application of the results: Comparison of algorithm efficiency and construction costs for
selected algorithms: BlockWriteI, II, and III are asynchronous Write-All algorithms, PADET is asyn-
chronous Do-All algorithm.

cost of the deterministic construction of such graphs (poly-
nomial in p, see [16]) and the additional cost of schedule
construction that is polynomial in the total size of sched-
ules (linear for each schedule). We generalize this construc-
tion so that the length of the schedules is independent of the
number of processors (Section 5).

We put our construction to good use by instantiating
efficient deterministic versions of several important fault-
tolerant cooperative algorithms (Section 6). Table 1 com-
pares the original analysis of selected algorithms and the
cost of the schedule construction, to the new analysis that
uses our deterministic construction. The new analysis is
given in Section 6. Most importantly, for all of these prob-
lems we reduce the schedule construction cost from expo-
nential to polynomial at the expense of slight (polylogarith-
mic) detuning of the efficiency. Our method is general, and
the degree of the polylogarithm depends on the quality of
the explicit expanders used in the construction.)

Finally, of independent interest, our construction im-
proves the result of Anderson and Woll [1] and Naor and
Roth [13] by producing a set of n permutations from Sn

with contention O(n polylog n) as compared to O(n1+ε),
for any ε > 0. Moreover, the processing cost of our con-
struction is polynomial in n vs. the cost exponential in 1/ε3

(and consequently the cost nlog2 log n to obtain contention
O(n polylog n)) in [13]. (This follows with the help of The-
orem 3.1.)

Document structure. Section 2 gives definitions and
combinatorial landscape; this section also includes addi-
tional background and prior results. We show our construc-
tion in Section 3, and we prove its combinatorial properties
in Section 4. We generalize the construction in Section 5.
The utility of our construction is demonstrated in Section 6.
Conclusions are in Section 7.

2. Models and definitions

In this section we define the objects considered in this
paper: tasks, jobs, processors, mathematical operations,
schedules. We present the computational properties of
schedules, and relevant background.

We use braces 〈. . .〉 to denote an ordered list. For a list
L and an element a, we use the expression a ∈ L to de-
note the element’s membership in the list, and the expres-
sion L − R to stand for L with all elements in the set (or
list) R removed. Sn is the symmetric group, the group of
all permutations of [n] = {1, . . . , n} the symbol ◦ denotes
the composition operator, and un denotes the identity per-
mutation.

We use the parameter p that alludes to the number of
processors — in some parts of the presentation p is simply
an abstract parameter. When p is connected to the number
of processors, we assume that the processors have unique
identifiers from the set P = {0, 1, . . . , p − 1}.

Processor model. We assume asynchronous processors
whose processing is governed by local clocks. In each
clock-tick a processor is able to perform some constant
amount of work. For the purpose of the analysis we in-
troduce the notion of a step defined in terms of O(1) con-
tiguous local clock-ticks. The computation performed by
the processors does not depend on the knowledge of what a
step is.

Tasks and jobs. A task is a computation that can be done
by any processor in O(1) time (for simplicity we can cali-
brate the notion of local time so that the longest task takes
no more than one time unit, unknown to the processor). The
tasks are independent and idempotent, that is, an execution
of a task does not depend on any other task, and a task may
be performed more than once with the same results. A job
is a collection of one or more tasks. We make the distinc-

tion between tasks and jobs for convenience to simplify the
analysis. Tasks (and jobs) have unique identifiers — we as-
sume that there are t tasks with identifiers from the set [t]
(a job will consist of a contiguous segment of tasks from
which the job identifier is readily derived.)

Oblivious scheduling and primary steps. We now in-
terpret the list Ψ = 〈π0, π1, . . . , πp−1〉 of permutations
from St as schedules for p asynchronous processors and
t jobs. Processor i performs the t jobs in the order given
by πi in Ψ. We call this oblivious algorithm OBLIDO and
give the code1 in Figure 1. This simple algorithm abstracts
an important component of several fault-tolerant and asyn-
chronous distributed cooperation algorithms; the analysis of
these algorithms also depends on the analysis of an oblivi-
ous algorithm, such as OBLIDO (cf. [1, 4, 8, 11]). In Sec-
tion 6 we put this observation to use and produce practical
instances of several cooperative algorithms. (In general a
“processor” may be modelling a group of processors fol-
lowing the same sequence of actions.)

const Ψ = {πr | 0 ≤ r < p ∧ πr ∈ St}
% Fixed set of p permutations of [t]

forall processors pid = 0 to p − 1 do
for r = 1 to t do % Work according to permutations

perform Job(πpid(r))

Figure 1. Algorithm OBLIDO.

Since OBLIDO does not involve any coordination among
the processors the total of pt jobs are performed (counting
multiplicities). However, it was shown [1] that if we count
only the job executions such that each job has not been pre-
viously finished by any processor, then there exists a set of
schedules Ψ such that the total number of such job execu-
tions is bounded by O(t log p), again counting multiplici-
ties, which is substantially less than Θ(pt). We call such
job executions primary; we also call all other job execu-
tions secondary. Note that the number of primary execu-
tions cannot be smaller than t, since each job is performed
at least once for the first time. In general this number is go-
ing to be between t and pt, since several processors may be
executing the same job concurrently for the first time.

We now extend the notion of primary steps. A local step
of a processor is d-primary, if the job it completes in this
step has not been completed, or it has been completed at
most d local steps ago. More precisely, consider ith step
of processor p, we call this step d-primary if the job which
processor p completes in this step has not been completed,
or it has been completed in the execution after the event
corresponding to the (i−d)th step of processor p. We define
(d, q)-Prim(Ψ), for integers 1 ≤ d ≤ t and 1 ≤ q ≤ p,

1We borrow the parallel parbegin/parend notation, but this does not
imply that processors have access to shared memory.

and the set of schedules Ψ, as the maximum number of d-
primary steps over all executions of algorithm OBLIDO, in
which the adversary chooses a subset Q of q processors,
and crashes all processors in P − Q at the beginning of
the computation. To reiterate, we are interested in counting
steps taken by a processor on a job that has either not been
performed, or that was performed at most d local steps in
the past (that is, a processor can take up to d steps until it
learns that the job was already performed).

The main challenge is to explicitly (and efficiently, in
time polynomial in p) construct an instantiation Ψ of al-
gorithm OBLIDO such that (d, q)-Prim(Ψ) = O((t +
p + dq) polylog p). Note that the trivial lower bound for
(d, q)-Prim(Ψ) is Ω(t+dq), hence the construction we seek
has the upper bound that differs from the lower bound by
only a polylogarithmic factor, while all previous explicit
constructions of schedules Υ have additional polynomial
factor overhead in (d, q)-Prim(Υ).

3. Construction of schedules

In this section we give the construction of schedules for
p = t, which we denote by n (this is extended in Section 5
to the general case where p �= t). For simplicity we assume
that n is a power of 2 (we comment on this later).

We use a-expanding graphs (see Pippenger [15]), for
a = 20, 21, . . . , 2log n. An undirected regular graph G =
(V,E) of n-nodes is called a-expanding, where a ≤ n is
a positive integer, if every subset A ⊆ V of size at least a
has more than n − a neighbors in G. We call such graphs
a-expanders (there are alternative definitions of expanders,
see [16]). The idea of “good” a-expanders is to have the
smallest possible degree. For graph G = (V,E) and a sub-
set A ⊆ V of nodes, we denote by NG(A) the set of all
neighbors of A, that is, v ∈ NG(A) iff there is an edge
between v and some w ∈ A.

The probabilistic argument shows that for every n and
a there is an a-expander of degree ∆ = O(n

a log n
a)

(see [16]). Recently Ta-Shma, Umans, and Zuckerman [16]
gave an explicit construction of a-expander with degree
∆ = O(n

a polylog n) in time polynomial in n; the poly-
nomial is fixed for given n and a (note also that every node
can list its own neighbors in polynomial time).

We take n to be a power of 2 because a-expanders are
usually constructed for n nodes where n is a power of 2; in
our case this is not a problem, since if n is not a power of
2 we do a construction and analysis for n′ = 2�log n� and
after the construction we drop the additional rows and skip
task identifiers bigger than the original number of tasks —
this does not impact the asymptotic results.

Let Xk denote a 2k-expander graph and let {Xk}log n
k=0

represent a family of 2k-expanders. This family is defined
on the set of nodes {0, . . . , n − 1}, were each node has de-

gree ∆k ≤ n
2k · δn and δn = supj

∆j ·2j

n , such that 2j ≤ n.
Using standard probabilistic arguments, e.g., Pinsker [14],
one can show that there exists a family of expander graphs
{Xk} such that δn = O(log n). For the (polynomial in n)
construction in [16] of expander graphs {Xk} it is shown
that δn = O(polylog n).

To provide more intuition we view the expanding graph
as a bipartite graph — we take two copies of set V , denote
them as P and T , and denote the copy of node v ∈ V in set
P as vP and in set T as vT ; then we map each edge (v, w)
from E to two edges in the bipartite graph: (vP , wT) and
(wP , vT). (Here P corresponds to the set of processors, and
T corresponds to the set of tasks, or jobs. This approach is
abstract, and the correspondence is mentioned to provide an
intuitive link between the expanding graphs and the sched-
ules. The first coordinate in the edge corresponds always to
a processor from set P , while the second one corresponds
to a task from set T .)

We define schedule πi, for i = 0, . . . , n − 1, as follows:

1. For each graph Xk, where 0 ≤ k ≤ log n, we order
all neighbors of node i ∈ P in a sequence, denoted by
σi,log n−k (hence there are log n + 1 such sequences);
note that the sequence σi,0 . . . σi,log n enumerates the
neighbors of node i in the expander graphs considered
in the following order Xlog n, . . . , X0.

2. Then we concatenate sequences i σi,0 σi,1 . . . σi,log n.
For each identifier appearing in this sequence we re-
move repeated references to that identifier. Specifi-
cally, if l is the first occurrence of (location of) some
identifier x in the concatenated sequence, then we re-
move all references to x in locations following l. Let
the newly obtained sequence i σ̂i,0 σ̂i,1 . . . σ̂i,log n be
the schedule πi for processor i (where each σ̂i,j is the
sequence derived from σi,j by removing duplicate ref-
erences found in i, σi,0, . . . , σi,j−1).

We denote the set of schedules constructed in this way
as Ψ. Note that each constructed sequence contains neigh-
bors of nodes in P , and hence the elements from T , i.e., the
elements in sequences correspond to tasks (or jobs). We
claim that these sequences are permutations. In any se-
quence, an element appears in the sequence at most once
by the second point of the construction. Note that X0 must
be a complete graph, hence all values except i appear in the
sequence σi,log n, and consequently in πi. Thus every value
from T appears once and only once.

Observe that if {Xk}log n
k=0 are constructed in polynomial

time in n (see [16]) then so is πi, for every i, is constructed
in polynomial time in n, since given the family of expanding
graphs we need only to enumerate neighbors and remove
multiplicities, which can be done in time O(n).

We use this construction to obtain the main result of this
work: an upper bound on the primary task executions of

algorithm OBLIDO. We state the result below, then prove it
in Section 4.

Theorem 3.1 For any positive integers q, d ≤ n,
(d, q)-Prim(Ψ) = O((dq + n)δn log2 n).

We now provide additional intuition regarding the num-
ber of d-primary steps in Theorem 3.1. First note that the
factor dq+n is asymptotically obvious—each of the n tasks
must be performed at least once, and since the knowledge
about performed tasks can be delayed by d local steps, each
of the non-faulty q processors can perform up to d steps in-
geminating the same work done in parallel by other proces-
sors. The factor δn follows directly from the construction
of schedules—to guarantee progress when a tasks remain
undone we use the property of a-expansion in the analysis,
but then we incur the additional length factor δn from the
overhead in the a-expander degree. The factor log2 n fol-
lows from the impact of asynchronous environment on the
analysis (see the definition of stages in Section 4).

Using Theorem 3.1 together with the construction of the
desired expander graphs from [16] we get the following.

Theorem 3.2 For every n, d, q we can construct, in time
polynomial in n, the family Ψ of n schedules from Sn such
that (d, q)-Prim(Ψ) = O((dq + n) polylog(n)).

Proof: Directly from the proof of Theorem 3.1 and [16].
δn = O(polylog n) follows from the degree-overhead of a-
expanding graphs constructed in [16]. The polylogarithmic
factor subsumes the additional O(log2 n) factor that comes
from Theorem 3.1.

Note that construction of π ∈ Ψ takes time O(n) if we
have access to the lists of neighbors in the expander graphs
Xk, for k = 0, 1, . . . , log n. So the total cost of construction
of π ∈ Ψ depends directly on the construction of the list of
neighbors in expander graphs Xk, for k = 0, 1, . . . , log n.
If we use the construction of expanders from [16], we get
the polynomial in n construction of such lists. �

4. Upper bound on primary executions

We now prove Theorem 3.1. We consider the executions
as in the definition of (d, q)-Prim(Ψ); let Q be the set of
q ≤ n processors that do not fail during the computation (Q
is selected by the adversary).

The execution of the algorithm is divided into stages,
each of length 4mδn log n, where m = d(q + 1) + n. For a
given stage �, let U� stands for the set of unperformed tasks
by the end of stage �. Recall that by the definition of pri-
mary tasks, any processor i performing any task not from
U� after the first d local steps in stage � + 1 will not con-
tribute to the number of d-primary steps. (Note that it is this
fact that implies the additional summant d in the definition

of m above.) The proof proceeds by induction of the stages
of the algorithm.

Stage 1. Consider the first 4mδn log n steps in the execution
taken by all active processors — we refer to this execution
segment as Stage 1. In the following claim we estimate the
minimum number of tasks preformed by any active proces-
sor participating in the first stage.

Claim 4.1 There exists set Q1 ⊆ Q, such that |Q1| is a
power of 2, and every processor i ∈ Q1 performs at least
2(m/|Q1|)δn local steps during Stage 1.

Proof: Let Ak, where 0 ≤ k ≤ log n, stand for the
set of processors such that each of them performs at least
2(m/2k)δn tasks in Stage 1, and let A∗ contain each proces-
sor which performs less than 2(m/n)δn tasks in Stage 1.
Note that {A∗, A0, A1, . . . , Alog n} is a partition of the set
of all processors. We show that there is k such that Q1 de-
fined as some 2k processors from Ak satisfies the claim.
Hence it is sufficient to show that there exists k such that
|Ak| ≥ 2k. Suppose, to the contrary, that for every 0 ≤ k ≤
log n, |Ak| < 2k. Hence the total number of steps (or a to-
tal number of primary tasks performed) in Stage 1 is upper-
bounded by |A∗| · 2(m/n)δn +

∑log n
k=0 |Ak| · 2(m/2k)δn <

2mδn +
∑log n

k=0 2k · 2(m/2k)δn = 2mδn(log n + 2) ≤
4mδn log n, which contradicts the assumption about the
length of the first stage. This completes the proof. �

Let Q1 be as stated in Claim 4.1. It follows that every
processor i ∈ Q1 performs at least 2(m/|Q1|)δn tasks in its
schedule πi. Therefore, each i ∈ Q1 performs all tasks from
σi,log(n/|Q1|) (this follows from the fact that there is at most
∑log(n/|Q1|)

k=0 |σ̂i,k| ≤ 1 +
∑log(n/|Q1|)

k=0 (n/2log n−k)δn ≤
2(n/|Q1|)δn ≤ 2(m/|Q1|)δn positions in permutation πi

by the end of its part σi,log(n/|Q1|)). By the property of
2log |Q1|-expander Xlog |Q1| (the sequence σi,log(n/|Q1|)),
and hence also the sequence i σ̂i,0 σ̂i,1 . . . σ̂i,log(n/|Q1|),
contains all neighbors of node i in 2log |Q1|-expander
Xlog |Q1|), we get that |NXlog |Q1|(Q1)| > n − |Q1|, which
means that less than |Q1| tasks remain unperformed after
Stage 1 in any execution. Thus the set of undone tasks after
Stage 1, denoted as U1, has cardinality |U1| < |Q1|.

There are two cases to consider. First, Q1 contains all
processors. Each of these processors performs, by defini-
tion, at least 2(m/n)δn ≥ 2δn local steps in Stage 1, in
particular each processor performs its first task, which is
the task with identifier i. Therefore, |U1| = 0. Second, if
|Q1| < n then by Claim 4.1 we have |Q1| ≤ n/2, and the
number of undone tasks is |U1| < |Q1| ≤ n/2. In both
cases, by the definition of the length of Stage 1, the number
of d-primary steps is O(mδn log n).

Remaining Stages. We define the remaining stages by in-
duction, then prove the following: if U� is the set of unper-
formed tasks at the end of Stage �, then |U�+1| ≤ |U�|/2.

Notice first that for Stage 1 (� = 1) we already proved that
|U1| ≤ |U0|/2, where |U0| is the initial set of tasks. Now
we proceed to the inductive step. Assume that we defined
and analyzed all stages up to Stage �. We define Stage �+1.
Consider the first 4mδn log n steps in the execution after
the end of Stage �. Using the same argument as in the proof
of Claim 4.1 for Stage 1, we prove the claim that follows
below.

First notice that, by assumption on the adversary, every
processor i ∈ Q after its first d steps has only a subset of
U� tasks to perform. Thus, by the end of the analysis for
Stage � + 1, for every processor i ∈ Q we consider only
the remaining steps in Stage � + 1 (when i is aware that all
tasks not in U� have already been done). There are at least
4nδn log n of such steps in total.

Claim 4.2 There exists set Q�+1 ⊆ Q, such that |Q�+1| is a
power of 2, |Q�+1| ≤ |U�|/2, and every processor i ∈ Q�+1

completed its σ̂i,log(n/|Q�+1|) sequence during Stage � + 1.

Proof: Recall that we analyze only the steps of processor
i ∈ Q in Stage � + 1 when i is aware of the fact that all
tasks not in U� are done. Let Ak, where log(2n/|U�|) ≤
k ≤ log n, stand for the set of processors such that i ∈ Ak

iff i completed its σ̂i,k sequence, but not σ̂i,k+1, during
Stage � + 1, and let A∗ stand for the set of processors i
such that i did not complete its σ̂i,log(2n/|U�|). Note that
{A∗, Alog(2n/|U�|), . . . , Alog n} is a partition of the set of
all processors. We show that there is k such that Q�+1, de-
fined as some n/2k processors from Ak, satisfies the claim.
Hence it is sufficient to show that there exists k such that
|Ak| ≥ n/2k. Suppose, to the contrary, that for every
log(2n/|U�|) ≤ k ≤ log n, |Ak| < n/2k. Hence the to-
tal number of considered steps which are taken by some
processor from Ak is upper-bounded by

log n∑

k=log(2n/|U�|)
|Ak|·2k+2δn <

log n∑

k=log(2n/|U�|)
n/2k·2k+2δn =

4nδn(log(|U�|/2) + 1) = 4nδn log |U�|.
It follows that at least 4nδn log(n/|U�|) steps are per-

formed by the processors in A∗. Consequently, by the
counting argument, there is a task z in U� that has at
least 4nδn log(n/|U�|)

|U�| ≥ 4(n/|U�|)δn neighbors in A∗, since
|U�| < n/2 for � ≥ 1. However, this contradicts the de-
finition of the set A∗ — we consider only the neighbors
in A∗ of task z, which, in terms of the expander graphs
Xlog n,Xlog n−1, . . . , Xlog n−log(2n/|U�|) corresponding to
sequences σ̂·,0, σ̂·,1, . . . , σ̂·,log(2n/|U�|), means that the to-
tal number of neighbors of z must not exceed the sum of
degrees

δn + 2δn + . . . + (2n/|U�|)δn < 4(n/|U�|)δn .

This completes the proof of the claim. �

It follows from Claim 4.2 that each processor i ∈ Q�+1

completes all tasks that are its neighbors in the expander
graph Xlog n−log(n/|Q�+1) = Xlog |Q�+1| by the end of
Stage � + 1. By definition of expansion, the total number
of tasks that are neighbors of some processor in Q�+1 is
greater than n− |Q�+1| ≥ n− |U�|/2, so |U�+1| ≤ |U�|/2.
This completes the analysis of Stage � + 1.

We conclude the proof of the Theorem 3.1 as follows.
Observe that we need only log n stages to have |Ulog n| = 0,
since |Ulog n| ≤ |U1|/2log n−1 < n/2log n = 1. Each stage
lasts 4mδn log n steps in the execution, so by the end of
Stage log n we perform O(log n·mδn log n) steps. For each
processor i ∈ Q that has not completed its tasks by the
end of stage log n, we consider its d next local steps. By
definition of the adversary, processor i must learn by this
time that Ulog n = ∅ (i learns that all tasks are completed).
Hence

(d, q)-Prim(Ψ) = O(log n · mδn log n + qd)
= O((dq + n)δn log2 n) .

This completes the proof of Theorem 3.1.

5. Generalization for schedules with p �= t

As advertised, we now relax the assumption that n =
p = t. If p �= t then we choose n such that n = p+t. Effec-
tively we add t virtual processors and p virtual tasks. Now
we use our construction and analysis for such n. An opera-
tion involving a virtual object (be it a task or a processor) is
disregarded. For the sake of the analysis we assume that all
virtual processors are processors that are delayed infinitely
at the beginning of the execution. A processor scheduled to
perform a virtual task simply proceeds to the next task in
its schedule (performing a virtual task has no effects on the
execution).

Note that if t is large compared to p, we can use a dif-
ferent approach than the one suggested above. We simply
partition t tasks into p chunks, each of size �t/p or �t/p�.
Now we use our construction for n = p processors and
n chunks. Note that the current information delay mea-
sured in terms of chunks is d′ ≤ 1 + dp/t (not in terms
of tasks, for which the delay is d). The analysis for given
t, p, q and d′ gives the following results: (d, q)-Prim(Ψ) =
O((t/p) · (d′q + n)δn log2 n) = O((t + dq)δp log2 p), by
Theorem 3.1 (note that now logs are of p not t). Summariz-
ing, we get the following result.

Corollary 5.1 For every p, t, d, q such that q ≤ p and d ≤
t/q, we have (d, q)-Prim(Ψ) = O((t + p + dq)δp log2 p),
where Ψ is our constructed set of p schedules from Sp.

Again, using the results about a-expanders from [16], we
get that (d, q)-Prim(Ψ) = O((t + p + dq) polylog p), and

Ψ is constructed in time polynomial in p (precisely, in time
O(p2) plus the cost, polynomial in p, of construction of
neighborhoods in a-expanders, for a = 20, 21, . . . , 2log n).

6. Constructing practical algorithms

We now demonstrate the utility of our constructions by
creating practical instances of algorithms for several dis-
tributed problems: asynchronous writing to shared memory
([1]), performing tasks in

asynchronous message-passing system ([11]), fault-
tolerant gossip in message-passing environment with ap-
plications to performing tasks and consensus ([4, 8]). All
those algorithms are the most efficient ones, however in the
original setting they use procedure OBLIDO with schedules
which are only proved to exist.

To analyze complexity of considered problems, the au-
thors in [1, 4, 8, 11], in essence, measure the number of
d-primary steps performed when an algorithm is executing
code equivalent to the procedure OBLIDO. They provide
upper-bounds for the number of d-primary steps using re-
sults for algebraic measures of set of permutation, such as
contention [1] or surfeit [8], and proving that the number of
d-primary steps is upper bounded by those measures. Un-
like the earlier cited works, we directly use the upper-bound
for d-primary job executions (a tighter measure).

Table 1 (in the introduction) compares the original analy-
sis of several algorithms and the cost of the respective
schedule construction, to the new analysis that uses our de-
terministic construction. The new analysis is given in the
remainder of the section. Most importantly, for all of these
problems we reduce the schedule construction cost from ex-
ponential to polynomial (by Theorem 3.2) at the expense of
slight (polylogarithmic) detuning of the efficiency.

In the later part, Ψdt denotes the set of new deterministic
schedules obtained in this paper, while Ψpr denote the set
of schedules from [1, 4, 8, 11] whose existence is shown
using the probabilistic method and that can be constructed
by exhaustive search (which is exponential).

6.1. Applications to the Write-All problem

Among the standard problems in distributed computing
is the Write-All problem ([1, 2, 3, 9]), defined in terms of p
processors cooperatively updating all locations of a shared-
memory array of size t. Here we consider the general asyn-
chronous version of this problem. The efficiency is mea-
sured in terms of work, that is the total number of processor
steps taken until each memory location is written. The al-
gorithms of Anderson and Woll in [1] (also see [12]) are the
most efficient asynchronous solutions using the full range
of processors (1 ≤ p ≤ t). Those algorithms internally use
the approach abstracted by algorithm OBLIDO (Figure 1).

The first algorithm BlockWriteI uses p processors to
write to t ≥ p2 memory locations. The memory is divided
into p blocks (i.e., jobs) each containing at least t/p ≥ p
tasks. The blocks are associated with completion bits (one
per block, initially set to 0), that indicates whether all tasks
in a block are complete. Once a processor starts a block,
having found the completion bit to be 0, it sets the bit to
1 after successfully writing the block (i.e., this job is pri-
mary).

The precise analysis of BlockWriteI gives the bound
on work of O(p2 + t

p (1, p)-Prim(Ψ)) for the set Ψ of
q = p schedules from Sp. Since (1, p)-Prim(Ψpr)
is O(p log p) and the cost of performing one job by
one processor is O(t/p), the work of the algorithm is
O(t/p) · (1, p)-Prim(Ψpr) = O(t log p). Applying our
set of schedules Ψdt we obtain that the work of the algo-
rithm BlockWriteI is at most O(t/p) · (1, p)-Prim(Ψdt) =
O(t polylog p). Observe that the new analysis yields work
that is increased by the factor of polylog p. However, the
construction of Ψpr requires time exponential in p, whereas
the cost of constructing Ψdt is polynomial in p (by Theo-
rem 3.2). Summarizing, we obtain the following.

Theorem 6.1 Algorithm BlockWriteI with schedules Ψdt

solves Write-All with work O(t polylog p) for p processors
and t ≥ p2 memory cells. The cost of constructing Ψdt is
polynomial in p.

The second algorithm, BlockWriteII, arranges its blocks
in two levels. (For simplicity we are going to assume that
p is a square of some integer — there is at least one square
in the interval [p, 2p + 1] and a standard padding approach
can be used without affecting the asymptotic results.) The
first level has

√
p big blocks, the second level has

√
p

small blocks, each containing
√

p tasks. The completion
bits are used similarly to BlockWriteI. Hence, t ≥ p

√
p .

The analysis of BlockWriteII gives the bound on work of
O(

√
p (1, p)-Prim(Ψ)2 + p (1, p)-Prim(Ψ)). Using Ψpr

consisting of q =
√

p schedules from S√
p, the work is

O(t log2 p). Using our schedules Ψdt, the work is upper
bound by O(t polylog p). Our solution incurs a polyloga-
rithmic penalty, however the cost constructing the schedules
is significantly reduced (cf. Table 1). The result follows.

Theorem 6.2 Algorithm BlockWriteII with schedules Ψdt

solves Write-All with work O(t polylog p) for p processors
and t ≥ p

√
p memory cells. The cost of constructing Ψdt is

polynomial in p.

Now we consider algorithm BlockWriteIII that solves
the Write-All problem for p processors and p tasks. Here
processors independently traverse a q-ary tree, where each
processor visits the children of the internal nodes accord-
ing to the set Ψ of q permutations from Sq. For a chosen
ε > 0, one can fix q to be a sufficiently large constant, such

that if (1, p)-Prim(Ψ) = O(q log q), then work becomes
O(p1+ε) [1].

Theorem 6.3 For every constant ε > 0 there is integer
q > 1 such that algorithm BlockWriteIII with set Ψdt of q
schedules from Sq completes Write-All with work O(p1+ε)
for p processors and t = p memory cells. The cost of con-
structing Ψdt is polynomial in q ≤ p.

6.2. Application to performing tasks in asynchro-
nous message-passing systems

Kowalski and Shvartsman in [11] considered the asyn-
chronous Do-All problem ([6, 5, 7]): p message-passing
asynchronous processors must perform t tasks, subject to
the d-adversary that delays messages by up to d time units
(d is unknown to the processors). They present delay-
sensitive upper and lower bounds on work and message
complexity for the Do-All problem.

The most important result of this work is the efficient
deterministic algorithm PADET. The algorithm assumes a
set of permutations Ψ used by processors to perform the
tasks. PADET proceeds in rounds: a processor receives no-
tifications from other processors (if any) about tasks being
completed, updates the list of undone tasks, then choses the
next task according to a schedule, lastly notification mes-
sages are sent. Using our set of schedules Ψdt we obtain
the following.

Theorem 6.4 Using a set Ψdt of p schedules from Sp, con-
structed in time polynomial in p, algorithm PADET per-
forms work O((t + pd) polylog p) and has message com-
plexity O((tp + p2d) polylog p), for d < t.

Note that this result, besides it is constructive, is also
close to the lower bound proved in [11] within polyloga-
rithmic factor.

6.3. Application to the gossip problem

Georgiou et al. [8] considered a gossip problem for syn-
chronous, crash-prone, message-passing processors. More
precisely, the Gossip(p, f) problem for p processors is to
share the rumors among the correct processors in the pres-
ence of f crashes, and the additional condition that correct
processor knows either rumor or failures of failed proces-
sor. (Given that synchrony with crashes is a special case of
asynchrony, our results can be used here as well.)

Georgiou et al. [8] give an efficient deterministic gossip
algorithm in synchronous, crash-prone, message-passing
model. This algorithm uses expanders to provide reliable
communication inside large components, while schedules
are used to ensure that processors in a large component
collect other rumors outside their component. The ex-
panders used for communication are constructed in polyno-
mial time, however the required schedules are only shown to

exist using the probabilistic method. Hence, using our new
schedules we obtain fully polynomially-constructed algo-
rithms for gossip, with only additional polylogarithm over-
head for time and message complexity.

The gossip algorithm in [8] works in � = 1, . . . , 1/ε − 2
iterations, where for each iteration � the number of mes-
sages sent is upper-bounded by (d, q)-Prim(Ψ), for q =
p(�+1)ε (ε > 0 is any constant), and d = (31 log p +
1)p(�+1)ε, representing message delay. The time bound is
O((d, q)-Prim(Ψpr)/(qd/ log p)). Using probabilistic ar-
guments, the existence of set Ψpr of p schedules from Sp

with (d, q)-Prim(Ψpr) = O(dq log p) is shown in [8]. This
yields time complexity O(log2 p) and message complexity
(the total number of point-to-point messages) is O(p1+ε),
for any constant ε > 0.

The above analysis uses a combinatorial measure called
surfeit. Recall that for the given set of schedules Ψ,
contention is a combinatorial measure that yields an up-
per bound on the number of primary task executions (i.e.
(1, p)-Prim(Ψ)). Surfeit is a slight generalization of d-
contention. Let Ψ be the list of permutations from St, and
let Υ ⊆ Ψ be a set of q permutations from St. For a
given Υ and σ ∈ St, let (d, |Υ|)-Surf(Υ, σ) be equal to∑

π∈Υ(d)-LRM(σ−1 ◦ π). Let q ≤ p and d ≤ t be posi-
tive integer parameters. The (d, q)-surfeit of a set Ψ is then
defined as:

(d, q)-Surf(Ψ) =

= max{(d, |Υ|)-Surf(Υ, σ) : Υ ⊆ Ψ, |Υ| = q, σ ∈ St}.
It immediately follows that Cont(Ψ) = (1, p)-Surf(Ψ) and
(d)-Cont(Ψ) = (d, p)-Surf(Ψ).

Using our schedules Ψdt, we obtain a bound on time
of O(polylog p), since O((d, q)-Prim(Ψdt)/(qd/ log p)) =
O(polylog p). Observe that the time complexity is in-
creased by a small factor of polylog p. The message com-
plexity does not change since the factor of polylog p is
subsumed in the asymptotic result (since it is polynomial,
O(p1+ε), for every constant ε > 0; the additional factor
polylog p is elided by using a slightly smaller ε > 0 and

performing the analysis for the new ε.) Hence we get the
following result.

Theorem 6.5 For every constant ε > 0, for p processors
and f failures, where f < p, deterministic gossip algorithm
based on schedules Ψdt is constructed in polynomial time in
p, and solves the Gossip(p, f) problem with time complexity
O(polylog p) and message complexity O(p1+ε).

Efficient deterministic gossip algorithm can be effec-
tively used to solve other problems. For example, it is
used in [8] to produce a deterministic algorithm for the Do-
All problem of [6], defined as p processors cooperatively
performing t tasks. Using our construction for the gossip
also yields an efficient and practical solution for Do-All.

Another example is the consensus problem. Chlebus and
Kowalski in [4] show how to reach consensus using gossip-
ing where processors may fail before consensus is reached.
Their algorithm is efficient both in time and number of mes-
sages sent. Here the schedules are also employed and again
a probabilistic construction method is used. Again our new
deterministic construction can be used, instead of relying
on the probabilistic method. We do not go into details here,
but both the time and message complexity remain efficient
when using our deterministic construction.

6.4. Constructing low-contention permutations

We define contention of set of schedules Ψ, which has
been used to provide upper bound for (1, p)-Prim(Ψ) in
context of Write-All problem, see Subsection 6.1 and [1,
12].

For a n-schedule π = 〈π(1), . . . , π(n)〉 a left-to-right
maximum (see Knuth vol. 3, p. 13 [10]) is an element π(j)
of π that is larger than all of its predecessors, i.e., π(j) >
maxi<j{π(i)}.

Given a n-schedule π, we define LRM(π), to be the num-
ber of left-to-right maxima in the n-schedule π (see [1]).
For a list Ψ = 〈π0, . . . , πn−1〉 of permutations from Sn

and a permutation τ in Sn, the contention of Ψ with respect
to τ is defined as Cont(Ψ, τ) =

∑n−1
u=0 LRM(τ−1 ◦ πu).

The contention of the list of schedules Ψ is defined as
Cont(Ψ) = maxτ∈Sn

{Cont(Ψ, τ)}. Note that for any Ψ,
we have n ≤ Cont(Ψ) ≤ n2.

A family of permutations with low contention was intro-
duced in [1], where the following is shown (here Hn is the
nth harmonic number, Hn =

∑n
j=1

1
j = Θ(log n)).

Lemma 6.6 [1] For any n > 0 there exists a list of permu-
tations Ψ = 〈π0, . . . , πn−1〉 with Cont(Ψ) ≤ 3nHn.

A list Ψ with Cont(Ψ) = Θ(n log n) can be found by ex-
haustive search (at the cost of order (n!)n). A lower bound
for contention, following directly from [10], is Ω(n log n).

Anderson and Woll [1] posted a question how to con-
struct a set of n permutations from Sn with contention close
to the best possible Θ(n log n) (which was only proved to
exist). They present solution, constructed in polynomial
time, with contention O(n1+ε), for any constant ε > 0.
Recently Malewicz [12] proved that their construction is
substantially higher than Ω(n polylog n). Another alter-
native, although similar, approach was presented by Naor
and Roth [13], still being far from optimal, more precisely
they could achieve only contention O(n1+ε) in polynomial
time. Our construction solves this open problem: using ex-
panders from [16] we obtain, in polynomial time, set Ψdt

of n schedules from Sn having (1, n)-Prim(Ψdt) at most
O(n polylog n). Additionally, the following fact shows
when Cont(Ψ) is equal to (1, n)-Prim(Ψ).

Theorem 6.7 For every set Ψ of n schedules from Sn such
that the first column is a permutation in Sn, Cont(Ψ) =
(1, n)-Prim(Ψ).

In view of Theorem 6.7 we obtain the sought result, since
our construction satisfies the assumption of the Theorem.

7 Discussion

In this paper we presented the first deterministic and
explicit construction of permutation schedules that can be
used by processors solving distributed cooperation prob-
lems in the presence of failures and delays. Our construc-
tion has the cost polynomial in the size of the schedules,
which substantially reduces the exponential cost of exhaus-
tive search that was previously required. The construction
can be used directly in solving several important coopera-
tion problems by producing practical instances of efficient
algorithms that previously were only known to exist. The
price we pay for these deterministic constructions is a very
slight detuning—at most polylogarithmic—of the efficiency
of these algorithms. Our future work includes reducing
the remaining inefficiency associated with our construction
and applying our technique to producing efficient practi-
cal fault-tolerant algorithms for a broad variety of distrib-
uted cooperation problems. Finally, we note that any im-
provements in the time complexity of construction and the
expansion properties of expanders, automatically improves
our construction and its applications—the construction of a-
expanders in [16] has a O((n/a) polylog n) degree (which
in fact is at most O((n/a) log24 n)); when compared to the
lower bound of Ω((n/a) log n), this leaves polylogarithmic
room for improvement.

Another interesting issue is studying relations between
our (d, q)-Prim(Ψ) measure, which is motivated by com-
putational model, and other previously used measures (de-
fined by algebraic operations on Ψ), as generalized con-
tention or surfeit. We conjecture that if each task z appears
at least once as a left-to-right maximum in some permuta-
tion in the given schedule St, then (d, q)-Prim(Ψ) is equal
to (d, q)-Surf(Ψ).

Acknowledgement. We thank the anonymous referees for
many insightful comments that substantially contributed to
the quality of this paper.

References

[1] R. Anderson and H. Woll. Algorithms for the certified write-
all problem. SIAM J. on Computing, 26(5):1277–1283,
1997.

[2] J. Buss, P. Kanellakis, P. Ragde, and A. Shvartsman. Paral-
lel algorithms with processor failures and delays. J. of Algo-
rithms, 20:45–86, 1996.

[3] B. Chlebus, S. Dobrev, D. Kowalski, G. Malewicz,
A. Shvartsman, and I. Vrto. Towards practical deterministic
Write-All algorithms. In Proc. of 13th ACM Symp. on Par.
Alg. and Arch. (SPAA), pages 271–280, 2001.

[4] B. Chlebus and D. Kowalski. Gossiping to reach consensus.
In Proc. of 14th Symp. on Parallel Algorithms and Architec-
tures (SPAA), pages 220–229, 2002.

[5] R. De Prisco, A. Mayer, and M. Yung. Time-optimal
message-efficient work performance in the presence of
faults. In Proc. of 13th ACM Symp. on Principles of Dis-
tributed Comp. (PODC), pages 161–172, 1994.

[6] C. Dwork, J. Halpern, and O. Waarts. Performing work ef-
ficiently in the presence of faults. SIAM J. on Computing,
27:457–1491, 1998.

[7] Z. Galil, A. Mayer, and M. Yung. Resolving message com-
plexity of byzantine agreement and beyond. In Proc. of 36th
IEEE Symp. on Foundations of Computer Science (FOCS),
pages 724–733, 1995.

[8] C. Georgiou, D. Kowalski, and A. Shvartsman. Efficient
gossip and robust distributed computation. In Proc. of
17th International Symp. on Distributed Computing (DISC),
pages 224–238, 2003.

[9] Z. Kedem, K. Palem, and P. Spirakis. Efficient robust paral-
lel computations. In Proc. of 22nd ACM Symp. on Theory of
Computing (STOC), pages 138–148, 1990.

[10] D. Knuth. The art of computer programming, volume 3.
Addison-Wesley Pub Co., third edition, 1998.

[11] D. Kowalski and A. Shvartsman. Performing work with
asynchronous processors: Message-delay-sensitive bounds.
In Proc. of 22nd ACM Symp. on Principles of Distributed
Computing (PODC), pages 265–274, 2003.

[12] G. Malewicz. A method for creating near-optimal instances
of a certified write-all algorithm. In Proc. of 11th Annual Eu-
ropean Symp. on Algorithms (ESA), pages 422–433, 2003.

[13] J. Naor and R. Roth. Constructions of permutation arrays
for certain scheduling cost measures. Random Structures
and Algorithms, (1):39–50, 1995.

[14] M. Pinsker. On the complexity of a concentrator. In Proc.
of 7th Annual Teletraffic Conference, pages 318/1–318/4,
1973.

[15] N. Pippenger. Sorting and selecting in rounds. SIAM J. on
Computing, 16:1032–1038, 1987.

[16] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less con-
densers, unbalanced expanders, and extractors. In Proc. of
33rd Annual ACM Symp. on Theory of Computing (STOC),
pages 143–152, 2001.

