
Long-term Performance Bottleneck Analysis and Prediction

Fei Gao and Suleyman Sair
Department of Electrical and Computer Engineering

North Carolina State University
Raleigh, NC 27695

Email: �fgao, ssair�@ncsu.edu

Abstract— Identifying performance bottlenecks is important
for microarchitects and application developers to produce high
performance microprocessor designs and application software.
Many techniques are used for this purpose, including simulation,
software profiling and hardware event counters. Recently long-
term program behavior has been getting more attention from
researchers because of its potential applications in system-level,
as well as program-level optimizations.

In this paper, we study performance bottlenecks from a
long-term program behavior viewpoint by classifying dynamic
program execution into bottleneck phases - the portions of
execution that have similar performance bottlenecks. We propose
an event counter based performance model that can accurately
estimate the performance cost for critical system events. Based
on this model, we propose the bottleneck vector as the basis
of long-term performance bottleneck analysis and a runtime
bottleneck phase tracking scheme. In addition, three bottleneck
phase prediction schemes are studied. Finally, we present an
application of our performance bottleneck analysis model - an
adaptive value predictor, which improves average performance
by 7% when compared to the original value predictor design.

I. INTRODUCTION

The performance of a modern microprocessor benefits from
improvements in circuit technology as well as microarchi-
tecture. Over the past decade, a typical microarchitecture
has evolved from in-order and scalar to out-of-order and
superscalar with speculative execution. However, as proces-
sors enjoy high instruction level parallelism from modern
microarchitectures, system-level performance becomes harder
to understand and the question, “Where have the cycles gone
?”, becomes harder to answer, because many events overlap
and interact with each other. Effective performance analysis
becomes essential for microarchitects and application develop-
ers to diagnose the code behavior and provide optimizations.

There are many approaches developed to analyze program
performance. The most convenient way is software-based
analysis tools, such as simulation [9], [2], [12] and instru-
mentation [17]. Simulation can provide details of program
behavior, but causes several orders of magnitude slowdown.
Instrumenting original code can catch dynamic events, but
there still is code overhead and also the instrumentation code
may change the behavior of the original program [17]. On
the hardware side, modern microprocessors provide hardware
support for performance analysis, called event counters [18],
[16]. These counters give an inside view of how the program
interacts with the underlying hardware. Users can access the
counters with operating system and library support.

In addition to performance, understanding long-term pro-
gram behavior interests researchers because of the potential
long-term optimizations, such as power and thermal man-
agement. It has been shown that programs exhibit periods
of similar behavior during their execution, called program
phases [1], [6], [15]. The reason behind the phase phenomena
is the regularity of code execution. Tracking the footprint of
instructions [15] and working sets [6] are typical approaches
to capture program phases.

Even though discovering general program behavior gives
us hints with regards to areas of similar performance, it does
not actually identify the problematic regions of execution.
In this paper, we analyze performance bottlenecks from a
long-term point of view. Performance bottlenecks are both
hardware and software dependent. Hardware limitations, such
as limited cache capacity, can slowdown program execution.
The characteristics of a program impacts performance as well,
such as the amount of available inherent code parallelism.
Unlike previous long-term work that catch the regular patterns
of program behavior to predict performance changes, our
work provides a system-wide performance diagnosis to find
out what causes the current performance change and what
the next performance bottleneck will be. This inside view of
system performance can guide runtime optimization directly
without searching the optimization design space to find the
most beneficial choice as prior program phase work does.

The contributions of this paper are:

� A counter based long-term performance model to quan-
tify the performance impact of different system events,

� A vector based bottleneck phase tracking scheme to
capture program bottleneck behavior at runtime,

� Performance bottleneck phase prediction schemes to
guide system optimization.

� Runtime performance bottleneck analysis guided adaptive
value predictor.

The rest of the paper is organized as follows. We first
present related work on performance analysis and long-term
program behavior analysis in Section II. General performance
issues in a modern microprocessor are discussed in Section III.
Then the experimental methodology is described in Section
IV. In Sections V, VI and VII, we present our long-term
performance model, bottleneck phase tracking, and prediction
schemes respectively. In Section VIII we present an applica-
tion to demonstrate the effectiveness of our model. Finally
Section IX concludes our paper.

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

II. RELATED WORK

In this section, we discuss previous work on performance
analysis and long-term program behavior analysis.

Software-based analysis tools are very useful to get the basic
information about a program’s execution. Simulators [9], [2],
[12] and instrumentation tools [17] are widely used for this
purpose.

Meanwhile modern microprocessors provide hardware sup-
port for performance analysis with event counters. These
counters are built into the chip to measure corresponding
events [18], [16]. These event counter based performance
analysis tools provide accurate and valuable inside view of
dynamic program behavior. However, event counters can not
accurately attribute those events to instructions, especially for
out-of-order machines. For this reason, Dean et al. [5] pro-
posed an instruction-level profiling technique - ProfileMe that
samples instructions. As a sampled instruction moves through
the processor pipeline, a detailed record of all interesting
events and pipeline stage latencies is collected. ProfileMe also
supports paired sampling, which captures information about
the interactions between concurrent instructions. Similarly, to
reveal the interactions of different instructions, Fields et al. [8]
proposed an interaction cost model that can associate execution
cycles to one instruction, or multiple instructions processed in
parallel. In our work, we focus on long-term performance be-
havior rather than fine-grain analysis. In addition, we propose
a low-overhead performance bottleneck model based on event
counters instead of expensive instruction-level statistics.

Long-term program behavior became an active research area
because of its potential applications for performance, power
and thermal management optimization. Balasubramonian et
al. [1] use a conditional branch counter to detect program
phase changes. Dhodapkar et al. [6] define a program phase
as the instruction working set of the program (i.e. the set of
instructions touched in a fixed interval of time). Program phase
changes are detected by comparing consecutive instruction
working sets using a similarity metric called the relative
working set distance. Sherwood et al. [15], [14] propose
the use of basic block vectors (BBVs) to detect program
phase changes. BBVs keep track of execution frequencies of
basic blocks touched in a particular execution interval. Phase
changes are detected when the Manhattan distance between
consecutive BBVs exceeds a preset threshold. Duesterwald
et al. [7] observed the repeating program behavior on IBM
Power3 and Power4 processors and proposed table-based
predictors that use performance metrics in past intervals as
an index into the table to predict future behavior instead of
tracking instructions. The difference between our work and
previous long-term program behavior analysis is that we focus
on performance bottleneck analysis - the cause of performance
behavior - to provide system-wide performance diagnosis from
a long-term viewpoint. In addition, our scheme can identify the
most beneficial optimization choice directly, without searching
the optimization design space as prior phase work does.

III. PERFORMANCE BOTTLENECKS

Performance becomes hard to understand in a modern super-
scalar out-of-order microprocessor because of the increasing
number of inflight instructions and the interactions between
them. Therefore, it is necessary to review the instruction flow
of a modern microarchitecture and the potential factors that
could cause performance slowdowns, before we do further
performance bottleneck analysis.

A. Superscalar out-of-order microarchitecture

Figure 1 shows a 7-stage out-of-order microarchitecture.
The stages are IF (Instruction Fetch), ID (Instruction Dis-
patch), IS (Issue), RR (Register Read), EX (Execution), WB
(Writeback) and RE (Retire).

In the IF stage, the next instruction logic produces the next
PC the processor will fetch. The BTB (Branch Target Buffer)
identifies the type of the current instruction. For conditional
branches, the branch predictor is involved for direction predic-
tion. Unconditional branches are always predicted taken and
the next PC is obtained from the BTB. Return instructions are
a special case where a RAS (Return Address Stack) provides
the return address. Otherwise, the default next PC is current
PC plus one. After generating (predicting) the next instruction
address, the fetch engine accesses the memory hierarchy to
fetch the instructions into the pipeline.

In the ID stage, the fetched instruction is decoded first.
Next, registers are renamed. The source registers are renamed
by checking the renaming table. The output register gets a
new physical register from the free list and the corresponding
entry in the renaming table is updated. Then, this renamed
instruction is dispatched into the issue queue to wait for
issuing.

In the IS stage, ready instructions are selected to move to
EX stage, if the corresponding functional units are available
and issue logic has enough bandwidth.

In the RR stage, the issued instructions read values from the
integer or floating point register files or the forwarding paths.

In the EX stage, the ALU or the Floating-Point Unit
executes instructions. The execution latency depends on the
type of instruction. Typically, division is the most expensive
instruction. Load instructions have variable latencies that de-
pend on whether they hit or miss in the L1 or the L2 cache.

In the WB stage, the outcome of EX stage is written back to
the register file. Also, the mispredicted branches are recovered
in this stage.

In the RE stage, the instruction retires if it is safe. If the
exception bit is set for this instruction, recovery operations
take place. All instructions after the exceptional instruction
are flushed and refetched.

B. Potential performance bottlenecks

There are many factors that can lead to performance loss.
Based on whether the performance constraints are hardware
or software dependent, we classify those constraints into
two categories - capacity constraints and inherent constraints,
which are listed in Figure 2. The capacity constraints are

Next-PC logic

BTB

RAS

PC

+1

Ctl

target

MUX

I -TLB L1Icache

L2 Cache

MEM

On-chip

Off-chip

L1Dcache

Inst. Buffer

IF

Decoder Rename
Table

Arch
map

Shadow
map

ID IS

Int
Inst
queue

FP
Inst
queue

Load
Store
queue

RR EX WB RE

A
ctive List

Free List

Int
Reg
file

FP
Reg
file

fu fu fu fu

Integer Exe Unit

fu fu

FP Exe Unit

Load & Store
Unit

D -TLB

BP

Fig. 1. 7 stage out-of-order superscalar microarchitecture

 Capacity Constraints
 (hardware)

Inherent Constraints
(hardware and software)

IF • Branch predictor size
• BTB size
• RAS size
• I-cache size
• I-TLB size

• Fetch width
• Number of predictions/cycle
• Prediction latency
• I-Cache/memory latency
• I-TLB miss latency
• # cache read misses inflight

• Branch prediction accuracy
• I-cache miss rate
• I-TLB miss rate

ID • Inst buffer size
• Renaming resources

 # physical registers
 # shadow map

• Decoding width
• Dispatch width

IS • Instruction Queue size
• Load/Store Queue size
• ROB size

• Issue width

• # inst issued/cycle

RR • # read port of reg file

EX • # Int Unit
• # FP Unit
• # LD/ST Unit
• D-cache size
• D-TLB size

• Exe latency
• Branch misprediction penalty
• D-cache/memory latency
• D-TLB miss latency
• # cache read misses inflight

• D-cache miss rate
• D-TLB miss rate

WB • # write port of reg file

RT

• Commit width
• # cache write misses inflight

Fig. 2. Major performance constraints

caused by limited hardware resources, such as cache size, or
read/write ports. The inherent constraints are both hardware
and software dependent. For example, branch misprediction
rate is impacted by branch predictor configuration, as well as
the branch characteristics of the program.

IV. METHODOLOGY

The simulator used in this study was derived from the
SimpleScalar/Alpha 3.0 tool set [3], a suite of functional
and timing simulation tools for the Alpha AXP ISA. Ta-
ble I presents the configuration parameters for the baseline
microarchitecture. This work studies 12 SPEC 2000 integer
benchmarks: mcf, parser, vpr, gzip, crafty, gcc,
gap, parser, perl, eon and twolf. We run each program
for 10 Billion committed instructions from the beginning.

V. COUNTER-BASED PERFORMANCE MODELING

In this section, we present an event counter based perfor-
mance model. For modern microprocessors, event counters
are becoming a standard on-chip resource. Utilizing event

Fetch/Retire width 4 instructions
Branch predictor gshare 16K entries
BTB 1K entries
RUU size 128
Load/store queue 64
Functional units 4 intALU, 2 int mul/div
I-TLB 64 entries, 30 cycle miss latency
D-TLB 128 entries, 30 cycle miss latency
I-cache L1 32KB, 2-way set associative, 32 byte

line, 1 Cycle hit latency
D-cache L1 32KB, 2-way set associative, 32 byte

line, 1 Cycle hit latency
L2 cache 1MB, 4-way set associative, 64 byte

line, 12 Cycle hit latency, 120 Cycle
miss latency

TABLE I

ARCHITECTURAL CONFIGURATIONS

counters is a low overhead mechanism to monitor the behavior
of microprocessor execution. However, for modern complex
microarchitectures, event counters are not accurate enough
for fine-grain instruction-level performance analysis because
of the overlapping of events and the interaction between
instructions. Yet, from a long-term program performance point
of view, the overlapping effect can be approximately modeled
with the event counter statistics.

The goal of our counter-based performance model is to
provide runtime performance information to identify the per-
formance bottlenecks that a microprocessor suffers. As we
described in Section III, there are many constraints that
impact performance. With the consideration of hardware
cost/effectiveness, investing the limited event counters to those
critical events is a reasonable choice. For our generic super-
scalar microarchitecture, the critical events we choose are:
I-TLB miss, IL1 miss, IL2 miss, direct branch mispredic-
tions, issue queue being full, resource contention, expensive
instructions, D-TLB miss, DL1 miss, DL2 miss and indirect
branch mispredictions. While other events may be critical for

N * (latency - 1) / fExpensive Instructions

N * Pdl1-miss / fDL1 miss

N * Pdl2-miss / fDL2 miss

N * (Pmisbp-idir)

N * Pdtlb-miss / fD-TLB miss

N / fResource Contention

E
X

N – Cost(exe) Queue Full

IS

N * (Pmisbp-dir)Direct Branch misprediction

ID

N * Pil2-missIL2 miss

N * Pil1-missIL1 miss

N * Pitlb-missI-TLB miss

IF

Cost ModelEvents

N * Pdl1-miss / fDL1 miss

N * Pdl2-miss / fDL2 miss

N * (Pmisbp-)Indirect Branch Misprediction

N * Pdtlb-miss / fD-TLB miss

N / fResource Contention

E

N – Cost(exe) Queue Full

IS

N * (Pmisbp-dir)Direct Branch misprediction

ID

N * Pil2-missIL2 miss

N * Pil1-missIL1 miss

N * Pitlb-missI-TLB miss

IF

Cost ModelEvents

W
B

Fig. 3. Performance model

a specific architecture or execution situation, these critical
events we define are enough to reveal the general performance
behavior. In addition, our analysis algorithm is generic. It can
be extended and applied to new cases.

A. Long-term event cost model

The counters give the numbers of critical events for a
sampling interval. However, these raw numbers can not tell us
how important each of them is from the whole microprocessor
performance viewpoint. For example, we should treat L1
cache misses and L2 cache misses differently, because the
miss latency difference between them is almost 10 fold. It
is clear that different critical events have a different impact
on the overall microprocessor performance. Our model tries
to translate those raw numbers of different events into a
quantitative representation of performance.

The modeling of each event is shown in Figure 3.

� I-TLB miss: An I-TLB miss causes a fetch engine stall.
The cost of I-TLB miss events is the product of the
number of events and the I-TLB miss penalty, because
when instruction fetch is stalled, a pipeline bubble will
be created during the waiting period.

� I-L1 miss: The cost of I-L1 misses is the product of the
number of events and the I-L1 miss penalty.

� I-L2 miss: The cost of I-L2 misses is the product of the
number of events and the I-L2 miss penalty.

� Direct branch mispredictions: A direct branch mispredic-
tion causes a pipeline flush. The cost of direct branch
mispredictions is the product of the number of events and
branch misprediction penalty. The reason is the ID stage
is still in in-order and a pipeline bubble will be created
during the period of waiting for pipeline recovery.

� Resource contention: Some instruction types will be
stalled if there are not enough idle functional units.
The cost of resource contention is the event number
divided by a parallelism coefficient f, because resource
contention doesn’t cause a whole pipeline stall. Other
type ready instructions can execute without waiting. So
the performance impact of resource contention is propor-
tional to the number of contention events and inversely

proportional to the ILP. Since IPC is an approximation
of available ILP, the coefficient f we choose is IPC plus
one. The addition is to avoid amplifying the event cost
when IPC is less than 1.

� Expensive instructions: Some expensive instructions,
such as division, take a longer time to finish. The cost
of expensive instructions is the product of the number
of events and the extra execution latency divided by the
parallelism coefficient f.

� D-TLB miss: The cost of D-TLB misses is the product
of the number of events and D-TLB miss penalty divided
by parallelism coefficient f.

� D-L1 miss: The cost of D-L1 misses is the product of
the number of events and D-L1 miss penalty divided by
parallelism coefficient f.

� D-L2 miss: The cost of D-L2 misses is the product of
the number of events and D-L2 miss penalty divided by
parallelism coefficient f.

� Indirect branch mispredictions: Mispredicted indirect
branches cause a longer instruction fetch engine stall
because they are resolved later. The cost is the product
of the number of events and the misprediction penalty.

� Issue queue being full: The issue queue being full causes
a pipeline stall. But stalls in the EX stage is the major
reason for the issue queue being full. In order to avoid
accounting for the same cost twice, the cost of issue
queue being full is the number of events minus the cost
of events in EX stage.

B. Model verification

The goal of our cost model is to quantify the performance
effects of events based on the bubbles that are inserted into
the pipeline. The straightforward way to verify our cost model
is to compare the actual execution cycles to the sum of the
execution cycles in an ideal pipeline (i.e. pipeline throughput
without bubbles) and the event costs from our model. The
formulas used for model verification are as follows.

������ � ������ �
�

�

����� (1)

������ � ������ � ������������� (2)

In Formula 1, the predicted execution time (Tmodel) from
our model is computed by adding the ideal execution time
(Tideal) and the total event cost (Costi). The ideal execution
time is the number of executed instructions divided by the
issue width, assuming each pipeline stage takes one cycle.
Formula 2 represents the relative model error rate (Rerror)
calculated by dividing the absolute value of the difference
between real execution time and predicted execution time
with the real execution time. Figure 4 shows the error rate
for different execution periods - 1M, 10M, 100M and 1B
instructions. On average, our model can achieve a 5% error
rate, when l0M or more instructions are executed.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

bz
ip2

cra
fty

eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x
vp

r

av
er

ag
e

E
rr

or
 R

at
e

1M 10M 100M 1B

Fig. 4. Performance model verification

VI. PERFORMANCE BOTTLENECK PHASE TRACKING

In the previous section, we presented an approach to collect
system performance information. Now we discuss how to
analyze performance bottlenecks based on that information.

A. Bottleneck vector

Choosing an appropriate quantitative representation is very
important for data analysis. A good representation can make
analysis much easier and more accurate. For our model,
we choose a vector to represent the system performance
information. There are two reasons why we use a vector.
The first is that the data we collect are disjoint values in
event counters. These counters convey different information
about different components in the microprocessor and will be
handled separately. Therefore, keeping data in a vector will be
an appropriate way without information loss. The other reason
is that vectors are a powerful and fundamental mathematical
representation. Computations based on vectors are relatively
easy in both computation and hardware cost.

Based on the event counters we described in the last
section, the bottleneck vector has eleven dimensions which
corresponds to each counter. The vector is shown in Figure 5.

B. Bottleneck phase

Researchers proposed the program phase concept to de-
scribe the phenomena that a program exhibits repeating long-
term behavior. The principle behind program phases is ex-
ecuting instructions visiting the static program with regular
patterns. For example, in a loop, the static loop body will
be visited repeatedly during execution. It is not a surprise that
program phase phenomena has a similar effect on performance
bottlenecks because performance bottlenecks are determined
by both hardware and software. With a fixed hardware config-
uration, regular software patterns result in regular bottleneck
behavior, called bottleneck phases.

To illustrate the bottleneck phase behavior, we track the
bottleneck vectors for SPEC benchmarks bzip2 and gap
for a 10B instruction execution, which is sampled every 1M
instructions. Each element of the vector is shown in parallel
in the behavior graph. The bottleneck intensity is represented













































=
−

−

−

itlb

il

il

dtlb

dl

dl

bpdir

bpidir

instlong

queue

rsc

b

b

b

b

b

b

b

b

b

b

b

1

2

1

2B

Fig. 5. Performance bottleneck phase behavior for bzip2 and gap

event counter 1

…

H

…
sampling

Phase ID

event counter 2

event counter N

f

f

f

…

Fig. 6. Bottleneck phase tracking architecture

by darkness. The darker the points are, the more intense the
performance bottleneck is. In Figure 5, we can clearly see the
regular pattern of bottleneck changes.

C. Bottleneck phase tracking

Identifying bottlenecks is not a difficult task from a mathe-
matical perspective. We can use the vector itself as an ID.
However, hardware cost and computation complexity will
make this design very expensive. One efficient way to
keep component cost information without involving too much
hardware budget is hashing the elements of the bottleneck
vector into a phase ID. The tracking scheme is shown in Figure
6. For a given sampling interval, event counters are sampled
and cleared. Then those raw event numbers are processed by
an array of function blocks. The function blocks perform two
computations. One is average cost computation based on the
cost model. In our study, we use cost per 1K instructions as
the average cost for a sampling interval. The other is cost
quantization, which is representing the cost from the first step
in terms of the number of cost units. The cost unit value is a
fixed parameter defined by users, depending on the accuracy
requirement. Dividing by the cost unit facilitates classifying
similar cost values into the same cost group. cost value.
Finally, the elements of the processed bottleneck vector are
hashed into a bottleneck phase ID.

VII. PERFORMANCE BOTTLENECK PHASE PREDICTION

In the previous section, we described how to track and
identify a bottleneck phase at runtime. There may be a need to

0%

20%

40%

60%

80%

100%

120%

1 2 4 8 16 32 64 128 256 512 1024

Cost Unit

P
ha

se
 P

re
di

ct
io

n
A

cc
ur

ac
y

1

10

100

1000

10000

N
um

be
r

of
 P

ha
se

s

Phase Prediction Accuracy
Number of Phases

Fig. 7. Prediction accuracy vs. phase ID numbers

predict bottlenecks in advance to guide system optimization. In
this section we will present the predictability of performance
bottlenecks with several prediction schemes.

As we described in Section VI, bottleneck phase IDs depend
on both the cost unit and the hash function. A smaller
cost unit value can identify even small differences between
vector components and classify them into separate phases, thus
creating more unique phase IDs. With an increasing number
of phases, prediction becomes more difficult. A last value
predictor is the simplest prediction scheme, which predicts the
current phase as the next phase. The last value predictor relies
on phase stability. In Figure 7, we plot its prediction accuracy
and the number of phases for several cost units. We can see
that as the cost unit increases, the number of phases decreases
and the corresponding prediction accuracy increases.

In addition to a last value predictor, we studied two other
prediction schemes - history predictor and Markov predictor.
The history predictor keeps the previous phase information
and predicts the phase with the most number of appearances in
the history as the next phase prediction. The history predictor
can filter the sudden phase change noises, providing more
stable prediction than last value predictor if there are frequent
phase transitions. The third prediction scheme we studied is
a Markov predictor, which can track the phase transitions.
We use history information to identify the transition state.
The Markov table is indexed by the lower bits of the hashed
history information. Each entry consists of the higher bits of
the hashed history information as the tag and the predicted
phase ID. For every prediction, Markov prediction table is
checked first. On a hit, the phase ID stored in this entry will
be the prediction. On a miss, we use the current ID as the
prediction. In Figure 8, we compare these predictors. The
cost unit is 128 for this figure. The sampling period is 1M
instructions and 10B instructions are executed in total. The
history length for the history and Markov predictors is 3. The
Markov table has 256 entries. We can see that for most of the
benchmarks, the three predictors get similar accuracies. This is
because bottleneck phases are fairly stable. For mcf, since the
numbers of phases and transitions between phases are high, the
Last predictor gives extremely low prediction accuracy and the
Markov predictor provides much more accurate predictions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

bz
ip2

cra
fty

eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x
vp

r

av
er

ag
e

Ph
as

e
M

is
pr

ed
ic

tio
n

R
at

e

Last Hist Markov

Fig. 8. Bottleneck phase predictors

bz
ip
2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

vo
rt
ex

vp
r

hm
ea

n
0

0.5

1

1.5

2

2.5

3

IP
C

base
trad. value predictor
branch predictor
Inst prefetching
data prefetching
adaptive value predictor

Fig. 9. Performance results of adaptive value predictor

VIII. POTENTIAL APPLICATIONS

The most direct application of our technique is resource
management for adaptive microarchitectures. The advantage
of an adaptive microarchitecture is the ability to adjust system
resources at runtime to meet application needs. To our knowl-
edge, current adaptive microarchitecture designs focus on a
specific microprocessor component, such as cache ways, issue
queue size and so forth. There is no work that exploits system-
wide adaptation - to do adaptation for multiple components
simultaneously. The main reason is the lack of system-wide
information and analysis. Our model provides a way to do
system level performance analysis and prediction that could be
used as a system-wide adaptation guide. Next, we will provide
a system-wide adaptation design - an adaptive value predictor.

Value prediction is an effective technique to eliminate data
flow restrictions by predicting register values before they are
resolved [13]. Programs exhibit value locality, i.e. recurrence
of register values. Value prediction exploits value locality to
predict register values with a predictor, in order to break data
dependences among instructions and provide more available
instructions to improve ILP. Meanwhile, Gonzalez et al. [10]
proposed control-flow speculation through value prediction
for superscalar processors. In their work, they predict the
outcomes of branches by predicting the value of inputs with a
value predictor and performing an early computation of results
according to the predicted values. In addition, researchers also
use value prediction to assist prefetching, in order to tolerate
long memory access latencies [11], [4].

Since fairly large value prediction tables are needed for

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip2

cra
fty

eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x
vp

r

trad. value predictor branch predictor Inst prefetching data prefetching

Fig. 10. Execution breakdown of 4 adaptation choices

high accuracy, it is infeasible to include separate value pre-
dictors in hardware to take advantage of all these techniques.
There is an alternative adaptive design however: an adaptive
value predictor, which can work for branch prediction, value
prediction or prefetching based on which bottleneck is most
costly - control dependence, data dependence or memory
access. As we observed that the performance bottleneck varies
for different applications and even different execution po-
tions of same application, an adaptive value predictor can
maximize the effectiveness of the value predictor resource
by its adaptivity. In our experiments, we use a 16K entry
two-delta stride value predictor to perform value or address
prediction. Four functionalities are provided by the adaptive
value predictor - traditional value predictor, branch prediction
assistant, instruction prefetching and data prefetching. Which
choice depends on the corresponding bottleneck cost - issue
queue being full, branch misprediction, I-cache access, and
D-cache access. The bottleneck vector is sampled every 1M
instructions. Bottleneck phases are predicted with a last value
predictor. The adaptive value predictor tunes its functionality
to the maximum bottleneck cost after each sampling interval.

The results are shown in Figure 9. The adaptive value
predictor can improve performance by 30% compared with
the baseline and 7% compared with the best alternative,
data prefetching. Figure 10 shows the breakdown of program
execution with these 4 adaptation choices. We can clearly
see the adaptive value predictor tuning its functionality to the
characteristics of each benchmark.

IX. CONCLUSIONS

Attacking performance bottlenecks is one of the main goals
for microarchitects and application developers to achieve high
performance and efficiency. Identifying and analyzing perfor-
mance bottlenecks is the basis of system and software op-
timizations. Modern microprocessors provide dedicated hard-
ware support for performance analysis - event counters, which
can provide an inside view of program runtime behavior.
Programs themselves exhibit regular execution patterns in the
long-run. Many techniques are proposed to identify and predict
the regular behavior by tracking the footprint of instructions
or working set.

In this paper, we exploit the program performance bottle-
neck behavior from a long-term program behavior point of
view. We proposed an event counter based performance model
and a mathematical representation of runtime performance
bottlenecks - the bottleneck vector. Based on these, we can
accurately capture the runtime performance bottlenecks and
provide accurate bottleneck prediction. We also present an
adaptive value predictor to demonstrate a system optimization
application of our model. In the future, we will apply our
model to power and thermal management to provide efficient
management schemes to improve power efficiency with as
little performance loss as possible.

REFERENCES

[1] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory hierarchy reconfiguration for energy and
performance in general purpose architectures. In Proc. of the 33rd
Annual Intl. Sym. on Microarchitecture, Dec 2000.

[2] E. A. Brewer, C. Dellarocas, A. Colbrook, and W. E. Weihl. PROTEUS:
A high-performance parallel-architecture simulator. In Measurement and
Modeling of Computer Systems, pages 247–248, 1992.

[3] D. C. Burger and T. M. Austin. The simplescalar tool set, version
2.0. Technical Report CS-TR-97-1342, U. of Wisconsin, Madison, June
1997.

[4] T-F. Chen and J-L. Baer. Effective hardware-based data prefetching
for high performance processors. IEEE Transactions on Computers,
5(44):609–623, May 1995.

[5] J. D., J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Z. Chrysos.
Profileme : Hardware support for instruction-level profiling on out-of-
order processors. In International Symposium on Microarchitecture,
pages 292–302, 1997.

[6] A. S. Dhodapkar and J. E. Smith. Managing multiconfiguration hardware
via dynamic working set analysis. In Proc. of the 29th Annual Intl. Sym.
on Computer Architecture, May 2002.

[7] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and
predicting program behavior and its variability. In International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2003.

[8] B. A. Fields, R. Bodk, M. D. Hill, and C. J. Newburn. Using interaction
costs for microarchitectural bottleneck analysis. In Micro-36, 2003.

[9] A. Goldberg and J. Hennessy. Mtool: An integrated system for
performance debugging shared memory multiprocessor applications. In
IEEE Transactions on Parallel and Distributed Systems, pages 28–40,
1993.

[10] J. Gonzalez and A. Gonzalez. Control-flow speculation through value
prediction for superscalar processors. In International Conference on
Parallel Architectures and Compilation Techniques (PACT), 1999.

[11] D. Joseph and D. Grunwald. Prefetching using markov predictors. In
24th Annual International Symposium on Computer Architecture, June
1997.

[12] A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC
benchmarks: A case study. IEEE Computer, 27(10):15–26, 1994.

[13] M.H. Lipasti, C.B. Wilkerson, and J.P. Shen. Value locality and load
value prediction. In Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
138–147, October 1996.

[14] T. Sherwood and B. Calder. Time varying behavior of programs.
Technical Report UCSD-CS99-630, UC San Diego, August 1999.

[15] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In
Proc. of the 30th Annual Intl. Sym. on Computer Architecture, Jun 2003.

[16] B. Sprunt. Pentium 4 performance-monitoring features. In IEEE Micro,
Aug 2002.

[17] A. Srivastava and A. Eustace. Atom: A system for building customized
program analysis tools. In Proceedings of the Conference on Pro-
gramming Language Design and Implementation, pages 196–205. ACM,
1994.

[18] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance analysis
using the mips r10000 performance counters. In Supercomputing,
November 1996.

