
Perceptron Based Consumer Prediction in
Shared-Memory Multiprocessors

Sean Leventhal and Manoj Franklin
School of Electrical and Computer Engineering

University of Maryland at College Park
{sleventh, manoj}@glue.umd.edu

Abstract— Recent research has shown that forwarding specula-
tive data to other processors before it is requested can improve the
performance of multiprocessor systems. The most recent work
in speculative data forwarding places all of the processors on
a single bus, allowing the data to be forwarded to all of the
processors at the same cost as any subset of the processors.
Modern multiprocessors however often employ more complex
switching networks in which broadcast is expensive. Accurately
predicting the consumers of data can be challenging, especially
in the case of programs with many shared data structures.

Past consumer predictors rely on simple prediction mecha-
nisms, a single table lookup followed by a static mapping of the
table values onto a prediction. We make two main contributions
in this paper. First, we show how to reduce the design space
of consumer predictors to a set of interesting predictors, and
how previous consumer predictors can be tuned to expand the
range of available performance. Second, we propose a perceptron
consumer predictor that dynamically adapts its reaction to the
system behavior, and uses more history information than previous
consumer predictors. This predictor outperforms the previous
predictors by 21% while using only 1KByte more storage than
previous predictors.

I. INTRODUCTION

The increase in transistor count and decrease in hardware
cost over the last several years have caused multiproces-
sor systems to become more common. Entire multiprocessor
systems are now available to consumers on a single chip.
Traditionally, shared-memory multiprocessors specify the way
in which they communicate — either over a bus, or a more
complicated network — through a coherence protocol. This
coherence protocol is responsible for assuring that the memory
system behaves in a way that guarantees correct execution by
managing all communication between processors. A variety
of techniques use speculation, modifying these coherence
protocols in order to improve performance. For instance, the
authors of [1] propose several predictors that are able to
potentially skip a level of indirection in requests for access to
a line by predicting the current sharers and sending requests
to them in parallel to a request to the directory.

Other recent work highlights the possiblity of using spec-
ulation to simplify the design of multiprocessors [2] and to
implement previously difficult-to-verify features in the coher-
ence protocol [3]. Coherence decoupling [4] allows an out-
of-order core to execute speculatively based upon potentially
incoherent data. The authors of [4] provide two seperate
coherence decoupling schemes, one which seeks to eliminate
false sharing, and another which seeks to distribute data to

its consumers preemptively. The preemptive data distribution
assumes a single bus based architecture. This simplifies dis-
tribution of data, in that all transmissions are broadcasts on
the bus, and thus reach all processors. In order to extend
this system to an arbitrary network some form of consumer
prediction [5] would be needed1.

Methods similar to this are used in software [6] to identify
likely consumers using profiling and other compiler tech-
niques, and insert special instructions to forward data to them
at appropriate times. Consumer set prediction [5], [7] attempts
to identify the processors which will consume data. This
allows forwarding of data to its destination before a request
for the data is sent.

We propose that consumer set prediction should be com-
bined with coherence decoupling in order to implement an
update mechanism on an arbitrary topology efficiently. In this
paper we show how to use a perceptron to design a consumer
predictor that represents a unique tradeoff between bandwidth
usage and coverage. We show how to tune the behavior of a
perceptron predictor to acheive a wider range of tradeoffs be-
tween extra transmissions, and correct transmissions. Finally,
we show that a perceptron predictor is able to outperform
previous predictors by 21% when the goal is to achieve an
approximately even tradeoff between these two factors.

II. BACKGROUND

A. Consumer Predictors

Kaxiras and Young [5] provide a taxonomy of consumer
predictors based on three parameters: (i) the indexing scheme
of the history table, (ii) the depth of that table, and (iii)
the function used to generate a prediction. Using these a
predictor is represented in the form function(index)depth.
The history table contains entries, referenced by a combination
of bits from the address of the block, and the PC of the
instruction that wrote to that block. This table can be located
at each processor, at the directories, or in a global location.
In the given taxonomy this is represented by including bits
corresponding to the directory or processor in the indexing
scheme.

Entries in the history table are comprised of bitmaps, each
of which corresponds to a group of sharers between two sets of
invalidates. A bitmap contains a single bit for each processor in

1Broadcasting to everyone in such a system would itself be a naive form
of consumer prediction.

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

Prevalence TP+FN
TP+TN+FP+FN

Sensitivity TP
TP+FN

Predictive Value of a Positive Test (PVP) TP
TP+FP

TABLE I

THE THREE TERMS WE USE IN THIS PAPER TO QUANTIFY THE BEHAVIOR

OF CONSUMER PREDICTORS.

the system, set to one to indicate that a processor is a sharer
and zero to indicate that it is not a sharer. The number of
bitmaps stored at each index is called the depth of the table.
When an invalidate occurs, a new bitmap of sharers is created,
and one of the old bitmaps is deleted. Thus a Consumer Set
predictor function(pid+pc4)2 indicates a predictor located at
each processor, indexed using 4 bits of the program counter,
with a depth of 2. Readers interested in the details of each
specific permutation of indices are referred to [5].

Kaxiras and Young [5] also describe three functions to use
in consumer set predictors.

(i) Union: Predict that the next sharer bitmap will be the
union of those present in the history table.
(ii) Intersection: Predict that the next sharer bitmap will
be the intersection of those present in the history table.
(iii) Two-Level PAs Prediction: Keep a set of two bit
up/down saturating counters for each potential consumer.
These are indexed and updated using the history of that
specific processor. Thus for N processors N ∗ 2depth

counters are needed.

B. Quantifying the Behavior of Consumer Set Predictors

We use the following terminology (same as that proposed
in [5]) to describe the behavior of an individual predictor.
Predictions can be sorted into (i) false positives (FP), (ii)
false negatives (FN), (iii) true positives (TP), and (iv) true
negatives (TN) depending on the prediction made (P/N), and
its correctness (T/F). It is important to note that in the case of
consumer prediction the two false cases have different results.
A false positive incurs a penalty over normal execution. It
uses up bandwidth in transmitting extra data to no effect. A
false negative results in normal execution. When that processor
needs information, it will send a request to the directory, as
it would have without any form of consumer set prediction.
Both false positives and false negatives are mispredictions, but
only one of the two will cause a performance penalty.

Similarly, true negatives do not result in any benefit, while
true positives can yield an improvement in performance. Both
of these are correct predictions, but only one of the two is of
any value. Ideally, a predictor would maximize the number of
true positives, and minimize the number of false positives. To
quantify this behavior three terms are defined in Table I.

The prevalence, or frequency of positive cases, is a property
of the values being predicted and not the predictor itself. Thus,
we can reduce comparisons of consumer set predictors to two
terms: sensitivity (the number of potential positives that were
correctly predicted), and PVP (the reliability of a positive
prediction). Notice that when the number of true positives is
maximized the sensitivity will be one, and when the number
of false positives is zero the PVP will be one.

Fig. 1. Predictions made by previous functions with a depth of two on a
simple pattern. The predictions made by a two-level predictor would depend
on its depth. Depending on initialization conditions a two-level predictor with
a depth of two would make different predictions for the above example, but
all such cases will contain mispredictions.

III. PERCEPTRON CONSUMER PREDICTORS

A. Evaluating Consumer Predictors

Previous work has chosen to focus on predictors that
perform best in terms of either PVP or sensitivity. However,
depending on the details of a multiprocessor system the poten-
tial penalties for transmitting unneeded data and the potential
benefits of correctly forwarding data will differ widely. Each
system will represent a potentially unique trade off between
sensitivity and PVP. In fact, if the goal is to maximize
sensitivity the predictor design is trivial: simply predict that
every processor will be a consumer and the sensitivity will
be one. Maximizing PVP is a more challenging problem.
The opposite of the perfectly sensitive predictor would never
predict positive. However, when TP and FP are both zero PVP
is undefined. It is possible to bring the PVP of any predictor
closer to one using some form of confidence estimation.

Rather than assuming that these penalties and benefits are
in an extreme case, we leave decisions about this trade off to
those designing specific systems, and instead investigate the
set of co-optimal predictors. These are the predictors which
are optimal for some trade off of sensitivity and PVP.

B. Why Perceptrons Work For Consumer Prediction

All of the previous techniques of consumer set prediction
have one common limitation. In determining whether some
processor will be a sharer, they look only at the history of
that processor 2. Making a prediction is simple, but potentially
useful information is thrown away.

Figure 1 shows an example of a simple sharing pattern for a
particular memory block. The vertical axis represents the dif-
ferent processors, and the horizontal axis represents different
epochs over time. The sharing pattern is shown in the portion
of each cell labeled Actual. A ”1” in a cell indicates that
the corresponding processor is a sharer of that memory block
during that epoch. In this pattern two processors have access
to a piece of data at any time. Each column corresponds to
the set of sharers for some interval of time, with invalidations
occuring between them. Each row corresponds to a single

2Some coherence predictors, such as the one proposed in [15] [18] do look
at this information. But to our knowledge no such predictor has been directed
specifically at consumer prediction.

processor. Thus processors A and B have read permission on
the data, one writes and it is passed to processors C and D. E
and F receive the data next, followed by G and H. The pattern
then repeats.

The cells labeled Union and Intersection show the predic-
tions made by each of the two functions with a history of
depth two. The first two columns are not marked, as those
predictions will depend on the initial conditions. When “1”s
appear in both the actual and predictor entries, a true positive
has occured. When a “1” appears for a predictor and a “0”
appears for the actual result a false positive has occured, and
so on through all four cases. For instance, in the case of the
third set of sharers, the union predictor sees that in the last two
sets of sharers processors A through D had posession of the
data at some time. Union predicts that processors A through D
will want the data this time. Intersection on the other hand sees
that no processor had read permission to the data two times in
a row. Thus intersection predicts that none of the processors
will read the data.

Notice that the pattern is extremely simple and repetitive,
but the previously proposed predictors cannot identify it. In
fact, neither union nor intersection has a single true positive. It
is clear that taking additional information into account could
yield a better prediction. A reasonable question is whether
such behaviors occur in practice. Does the presence of a
processor in the set of sharers ever correspond to the presence
of a different processor in a previous set of sharers? We now
address this question by analyzing the amount of correlation
present across processor boundaries.

Figure 2 shows the amount of correlation that a perceptron
could exploit. In each group of sharers each processor has a
state, either present, or not present. The top histogram shows
the percentage of lines for which the state of a processor in
one group of sharers is correlated to the state of the same
processor in the next group of sharers. The bottom histogram
shows the percentage of lines for which the state of a processor
in one group of sharer is correlated to the state of a different
processor in the next group of sharers. A correlation of one
indicates that either the presence or absence of a processor
can be linked directly to the presence or absence of another
processor in the next set of sharers. On the top histogram
this means that if processor P1 is a sharer now, it will be a
sharer after the next invalidate, and if it is not a sharer now
it will not be a sharer after the next invalidate. On the bottom
histogram this means that if processor P1 is a sharer now,
some specific processor P2 will always be a sharer after the
next invalidate. A correlation of negative one indicates that
the presence or absence of a processor can be linked to the
opposite behavior in the next set of sharers. Other correlations
indicate a relation between one event and the next that is not
absolute. A correlation of 0.9 would indicate that the vast
majority of the time (95%) the value at the next time is the
same as the value at this time. A correlation of −0.5 would
indicate that the next value was different 75% of the time. For
instance, in the top histogram this means that if processor P1

is a sharer now, it will not be a sharer after it is invalidated;
and if processor P1 is not a sharer now, it will be a sharer
after the next invalidate.

-1 -0.5 0 0.5 1
Correlation With Same Processor

0

10

20

30

40

50

Pe
rc

en
t o

f
C

as
es

-1 -0.5 0 0.5 1
Correlation With Other Processors

0

10

20

30

40

50

Pe
rc

en
t o

f
C

as
es

Fig. 2. Histogram of the correlations of a sharer’s presence in one iteration
based upon both its own, and other sharers’ presence in the previous iteration.
This data was collected from the SPLASH2 benchmark FMM on a 16
processor simulation, but is representative of the behavior seen in other
benchmarks.

As we can see, a processor’s own history is the single
biggest indicator in whether it will be a sharer in the next
group. However, in many cases there is a strong relationship
with other processors as well. In fact, in almost 30% of cases
the presence of a processor in a group of sharers can be
linked to another processor in the previous group of sharers.
Thus there is reason to believe that the history of other
processors could improve the performance of a consumer
predictor. Also, there is a measurable amount of negative
correlation. This negative correlation cannot be addressed by
previous predictors, except to a small extent the Two-Level
predictor for which no results were published [5].

We propose taking advantage of these correlations using
a perceptron. The computer science community has done a
great deal of work developing neural networks constructed
of perceptrons, each of which is trained to identify correla-
tions between its inputs, and the desired output. By tracking
correlations between the desired prediction and the inputs,
perceptrons dynamically isolate the relevant portions of the
input from irrelevant portions of the input. In addition, per-
ceptrons use information about the correlations between input
and output to generate predictions, as shown in Figure 2. Thus
a perceptron can take advantage of both negative and positive
correlations.

C. Perceptron Consumer Predictor

The perceptrons we use are identical in structure to those
proposed in [8] for branch prediction, and are located with the
history table. Each history table has a separate perceptron for
each potential consumer, with an overall topology shown in
Figure 3. Predictions are made as follows:

(i) The history table is indexed using some combination
of bits from the program counter, address, and directory.
(ii) The entry at that location is used as input to as many
perceptrons as the number of processors in the system.

Fig. 3. Predictor Architecture. Each history table has as many perceptrons
as the number of processors in the system. These perceptrons are used for
every entry in the history table. Each entry in the history table has a number
of bitmaps equal to the history depth, each of which contains a bit for each
processor.

Fig. 4. Structure of a Perceptron Predictor

(iii) The outputs at each perceptron correspond to the
predictions made for each processor.

We study a number of different history table configurations;
a single global history table, a history table at each directory,
and a history table at each processor. In all cases we find that
it is best to place a history table at each processor.

To make a prediction the history for a given index is used as
input to the perceptron, which has a corresponding weight for
each bit. The weights are either added to, or subtracted from
a sum, depending on the corresponding bit in the input. If
the sum is greater than zero the perceptron predicts positive,
otherwise the perceptron predicts negative. Figure 4 shows
how this works. The perceptron treats the presence of a
processor in a group of sharers as a 1, and its absence as
a −1.

D. Update Mechanism

There are two structures that need to be maintained for
the perceptron to work, the history table, and the perceptron
weight table. We address each of these tasks here.

The history table keeps depth bitmaps for each index. Each
bitmap contains the last set of sharers corresponding to this
index, which may include both PC and address information.
If the history tables are located at the directory it is relatively
easy to track all sharers, as the directory is responsible for

tracking that information in order to maintain coherence. If
the history tables are located at each processor it is slightly
more complicated. In this case information about sharers can
be piggybacked onto an existing response message from the
directory whenever a processor requests exclusive access.

Maintaining the perceptron weights will require an extra
message to be sent in a few rare cases. The perceptron weights
are updated only when another processor requests exclusive
access. At this time we know the set of all consumers of
the last write, and would like to pass that information to the
producer. If the consumer still has read permission, which
is likely given that this is the first write to occur since the
producer had exclusive access, we can attach this information
to the invalidate request sent to the producer. If the producer
has released access permission, the directory sends a message
to them with the consumer bitmap. We choose to update the
perceptron based on the prediction it would make when it
has recieved all the information needed to update. Doing this
prevents hysteresis effects, and reduces storage requirements.
It would also be possible to store the information needed to
update the perceptron when the original prediction was made,
but this would fail to account for more recent changes to the
perceptron, and would require additional information.

Once data arrives each perceptron is evaluated to see if it
needs to be updated based upon the prediction it would have
made. A perceptron is updated when its output disagrees with
the actual behavior of the system or if the magnitude of the
sum was less than some threshold. Each weight in the percep-
tron is incremented if the corresponding input agreed with the
output, and decremented if the input disagreed with the output.
Thus the threshold decides when the processor stops training.
A low threshold means that the resulting weights are able to
adapt more quickly if the behavior of the program changes. A
high threshold means that the perceptron itself will be slower
to change, and thus be less influenced by brief changes in
program behavior. In the taxonomy proposed in [5] we denote
this predictor as Perceptronthreshold(index)depth.

E. Implementation Issues

There are three main concerns with implementing a per-
ceptron based consumer predictor; the resources needed to do
so, the prediction latency, and the modifications needed to the
coherence protocol. One important thing to note with regard
to size is that the number of perceptrons used is relatively
low, N × H , where N is the number of processors and H is
the number of history tables. At any one history table there
will never be more than N perceptrons, each of which has
a total number of weights, N × depth. For a 16 processor
system with a depth of 4 (the largest we test) this corresponds
to 1024 different weights at each processor or directory. The
number of bits needed for each weight is 1 + log2(thresh)
[8]. We explored a range of weights consumes between five
and ten bits, for a total cost of 0.63 to 1.25 KB. A few adders
are needed to compute the predictions.

In addition to a potentially large size, perceptrons are
also slower than many predictors. In our case it takes a the
latency of six additions to fully calculate a prediction, where

Union and Intersection predictors only need to evaluate a
single bitwise logical operation. However, memory and request
latencies in multiprocessor systems are typically quite large.
Recent work in CMPs shows that the latencies of memory
requests on realistic CMPs is at least 120 cycles [9]. Given
that SMP systems will have longer communication times we
expect that the additional latency of 6 additions will have little
effect.

Implementing consumer set prediction as part of a tradi-
tional coherence protocol is potentially challenging for two
reasons. First, it is necessary to identify times at which to
distribute data. Our study focuses on identifying the consumers
of data so that the data can be forwarded to them before it is
requested. We do not describe when to do so. If data is dis-
tributed too early it may be requested by the original processor
before another processor reads the data. This will result in a
delay, as the original processor aquires write permission again,
and extra communication on the bus. These penalties are paid
even if the consumer prediction was correct. Second, data races
could be introduced into the coherence protocol. Eliminating
all of these race conditions is a challenging problem, which
has led to most coherence protocols in practice being simple,
or unverified.

Coherence decoupling proposed by Huh et. al. [4], greatly
simplifies these design issues. Coherence decoupling allows
speculative execution to occur in an out-of-order core based on
incoherent data. One proposed form of coherence decoupling
includes a speculative update. This speculative update writes
data to the bus before the coherence protocol would. Other
processors that possess an invalid copy of the line in their
cache update this invalid line with the new results. This allows
them to speculatively execute using data that they could not
have possessed yet if they had obeyed the coherence protocol.
Because this was implemented on a snoopy bus it is effectively
the same as predicting that all of the other processors are
consumers. On a bus this makes perfect sense, as transmitting
to additional consumers uses no extra resources. However,
broadcast can be expensive in other, more complex topologies.
Some form of consumer set prediction would be a natural ex-
tension to such an update mechanism in arbitrary interconnect
topologies.

IV. EXPERIMENTAL RESULTS

A. Methodology

Our study evaluates a large number of different predictors,
searching the design space across depth, index, and function.
To facilitate this we use trace-based simulation. The sharing
patterns we study would be unchanged by implementing
coherence decoupling, and so feedback of the predictor on
the logical program execution can be ignored. We assume that
the L2 cache of each processor is infinite and use 128-byte
lines.

We gathered traces from the SPLASH-2 [10] benchmark
suite using GEMS [11]. We used only the Ruby module
of GEMS, simulating a 16 processor system with in-order
execution, a 64KB L1 cache, and a 16MB L2 cache. The
default input set was used for each benchmark.

0.3 0.4 0.5 0.6 0.7 0.8
Sensitivity

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PV
P

Intersection
Union
Up/Down Counter
Perceptron

Fig. 5. The set of co-optimal predictors found for each prediction function.
The perceptron has many more points because threshold was varied. With
threshold held constant only a few predictors are co-optimal. Note the offsets
on both axes.

We explore the space of predictors which use as many as
1M entries per history table, depths as high as 4, and the
prediction functions Union, Intersection, Two-Level PAs, and
Perceptron. We varied the threshold of the perceptron from 10
to 500. All the dynamic predictors were evaluated based upon
predictions made as the results became known.

While the history tables proposed are quite large, recent
research shows that it is possible to reduce this size substan-
tially with little effect on performance [19]. We also show
that the overall trends in these large tables are also present in
much smaller tables. Rather than display the top performers
according to either sensitivity or PVP we look at predictors
that are co-optimal in terms of sensitivity and PVP.

B. Prediction Accuracy

Figure 5 shows the set of co-optimal predictors generated
by each function in a 16 processor system. As you can see, the
perceptron completely dominates the Two-Level predictor, as
well as the more sensitive intersection predictors and higher
PVP union predictors. In order to choose a predictor for a full
system design it is necessary to know about the relative worth
of PVP and sensitivity. This will vary depending on a wide
range of design decisions, including the interconnect topology,
processor speed, processing core design, and coherence pro-
tocol. In general PVP is more important relative to sensitivity
when less bandwidth is available.

If PVP and sensitivity are of equal value a predictor’s
performance can be measured as the distance from itself to the
perfect predictor (PV P = 1, Sensitivity = 1). In the case
of this particular metric, perceptron prediction is on average
21% better than the next best predictor. Perceptron is at best
a distance of 0.483 from a perfect predictor. Intersection is
the next best at a distance of 0.608, followed by Union at
a distance of 0.609. Regardless of the metric chosen, the
perceptron predictor provides performance in a region of the
consumer-set design space that was previously unavailable.

Table II displays each of the predictors in the co-optimal
set. We found that the perceptron predictor did best with
a single indexing scheme, and can be tuned across a wide

Predictor Sensitivity PVP
Intersection(pid + pc16 + addr2)2 0.434 0.789
Intersection(pid + pc16)2 0.439 0.789
Intersection(pid + pc16)3 0.381 0.880
Intersection(pid + pc16)4 0.345 0.919
Two − Level(pid + pc10 + addr2)4 0.461 0.632
Two − Level(pid + pc14)4 0.455 0.633
Perceptron10(pid + pc6 + addr12)4 0.610 0.654
...

...
...

Perceptron490(pid + pc6 + addr12)4 0.508 0.789
Union(pid + pc18)4 0.755 0.404
Union(pid + pc16 + addr2)4 0.743 0.423
Union(pid + pc18)3 0.719 0.438
Union(pid + pc16 + addr2)3 0.709 0.454
Union(pid + pc10 + dir + addr4)3 0.685 0.456
Union(pid + pc12 + dir + addr2)3 0.685 0.458
Union(pid + pc14 + dir)3 0.685 0.458
Union(pid + pc16 + addr2)2 0.656 0.503
Union(pid + pc10 + dir + addr4)2 0.638 0.505
Union(pid + pc12 + dir + addr2)2 0.638 0.506
Union(pid + pc14 + addr4)2 0.638 0.507
Union(pid + pc10 + addr8)2 0.581 0.508
Union(pid + pc8 + addr10)2 0.563 0.527
Union(pid + pc8 + dir + addr10)2 0.549 0.528
Union(pid + pc6 + addr12)2 0.545 0.532
Union(pid + pc6 + dir + addr12)2 0.536 0.533

TABLE II

CO-OPTIMAL CONSUMER SET PREDICTORS FOR EACH OF THE PREDICTOR

FUNCTIONS. WHERE PERFORMANCE MATCHED WITHIN THREE

SIGNIFICANT FIGURES ONLY THE SMALLEST PREDICTOR IS SHOWN.

range by varying only the threshold. The perceptron achieves
performance between Intersection and Union in both PVP
and sensitivity at the same time. It is possible to adjust the
sensitivity of the intersection predictors by decreasing their
depth, but they never achieve the sensitivity of any of the
other predictors. None of the other predictors can offer as
high a PVP as the intersection predictor. Similarly, the Union
predictors dominated in terms of sensitivity, but had relatively
low PVPs.

While intersection based predictors can be tuned across a
range of PVP and sensitivity, they offer a very discrete range
of performance based upon the depth of the history table.
The perceptron predictor’s behavior is relatively predictable.
It performs best when located at the processors, and when the
history table is indexed with twice as many address bits as
program counter bits.

The behavior of the perceptron predictor can be adjusted
using its threshold. Intuitively, the higher the threshold the
slower the perceptron will be to adapt, and thus it will
miss opportunities where a more flexible predictor could have
reacted. At the same time a higher threshold should result in a
perceptron that is less affected by a few occurences that do not
exactly match more common patterns. As you can see from
Figure 6 the results match the intuition. Here, the sensitivity
and PVP of the four best perceptron predictors are shown as
the threshold is varied. Raising the threshold means a higher
PVP, but a lower sensitivity.

Notice that in all cases the best predictors are located at the
processors, and not at the directory. There are several good
intuitive reasons why this is so. Different threads may interact
with some parts of memory differently than other threads. This
information can be captured when the history table is located

0 100 200 300 400 500

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Se
ns

iti
vi

ty

0 100 200 300 400 500
Threshold

0.66

0.68

0.7

0.72

0.74

0.76

0.78

PV
P

Fig. 6. Behavior of several perceptrons across variations in threshold.

0

0.2

0.4

0.6

0.8

1

Se
ns

iti
vi

ty

Intersection
Perceptron
Union

Barnes Cholesky FFT FMM LU Con LU Non Radix Volrend Water-N Water-S
0

0.2

0.4

0.6

0.8

1

PV
P

Fig. 7. Behavior of three consumer-set predictors on the SPLASH bench-
marks used, Intersection(pid + pc18)4, Perceptron120(pid + pc10 +
addr2)4, and Union(pid + pc18)4. The Intersection and Union predictors
represent the maximum PVP and Sensitivity achievable.

at each processor, but not when it is located at each directory.
The result of using directory based predictions rather than
processor based predictions is that several different behaviors
are being predicted by a single entity. This is similar to the
difference between trace prediction and branch prediction [12].
Trying to make a predictor do more makes the predictor’s job
harder and thus hurts its performance.

Figure 7 shows the behavior of one co-optimal perceptron,
instersection and union predictor on each of the benchmarks
tested. The overall trends of the various functions are constant
across all of the benchmarks tested. In general PVP is more
consistent across benchmarks than sensitivity.

Figure 8 shows the co-optimal set of predictors if the total
size of a predictor is reduced below the larger predictors we
used earlier. Though the predictor performance does decrease,
the overall trends remain the same.

V. CONCLUSIONS

We show how consumer predictors can be compared to
each other without selecting specific interconnect details by

0.3 0.4 0.5 0.6 0.7 0.8
Sensitivity

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PV

P

Intersection
Union
Up/Down Counter
Perceptron

Fig. 8. The set of co-optimal predictors that can be produced using only 4K
entries at each history table. Note the offsets on both axes.

comparing the chance of a predictor sending incorrect mes-
sages with its chance of missing opportunities. This method
produces a range of different consumer predictor options that
a system designer could pick from depending on a specific
overall implementation.

We develop a perceptron consumer-set predictor that re-
quires little more space than previous predictors. Previous
predictors have populated the extremes of PVP and sensitivity.
Our perceptron predictor is able to achieve a tradeoff between
the two, sensitivity between 0.5 and 0.65 and PVP between
0.6 and 0.8. This range represents a previously unexplored
tradeoff in consumer predictors. Unlike previous predictors, it
is possible to tune the perceptron across a wide range of PVP
and Sensitivity without any structural changes by adjusting
the percepntrons threshold. We show that a perceptron based
consumer-set predictor substantially outperforms previous pre-
dictors for systems looking for an even balance between PVP
and sensitivity.

VI. RELATED WORK IN COHERENCE PREDICTION

Previous work in coherence prediction has covered a fairly
broad spectrum. Some of these techniques [13], [14] add
states to the coherence protocol. Others focus on table based
predictors [1], [15]–[18] that predict messages before their
arrival and react appropriately.

In [13] Stenstrom et. al. propose to identify certain behav-
iors, such as migratory sharing with a simple state machine,
passing write permission on some read requests. [14] augments
the state machine of the coherence protocol allowing the
owner to invalidate blocks independently. In this manner many
invalidations can be avoided, freeing bandwidth and potentially
increasing the response time of requests for exclusive access
to data.

Later forms of coherence prediction rely on table based
approaches. The first of these, proposed by Mukherjee and
Hill [15], keeps a history of all coherence events that occured
at a processor, and uses that history as a lookup into a table
which shows the last event to follow that sequence. This simple
scheme is able to identify 62% - 93% of the coherence events

in scientific workloads. Other works [15], [18] show how such
a predictor can be used to improve the performance of a
system.

Other work focuses on predicting specific coherence events
and acting appropriately. Last Touch prediction [16] predicts
invalidation requests before they happen. Destination-Set pre-
diction [1], [17] predicts the invalidation requests that will
be issued by the directory before sending a request to the
directory.

ACKNOWLEDGMENT

This work is supported in part by an IBM Faculty Award
and NSF award CCF-0325393.

REFERENCES

[1] M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A. Wood. Using
Destination-Set Prediction to Improve the Latency/Bandwidth Tradeoff
in Shared-Memory Multiprocessors. Proc. 30th Int’l Symp. on Computer
Architecture, 2003.

[2] D. J. Sorin, M. K. Martin, M. D. Hill, D. A. Wood. Using Speculation to
Simplify Multiprocessor Design. Int’l Parallel and Distributed Processing
Symp., 2004.

[3] M. K. Martin, M. D. Hill, D. A. Wood. Token Coherence: Decoupling
Performance and Correctness. Proc. 30th Int’l Symp. on Computer
Architecture, 2003.

[4] J. Huh, J. Chang, D. Burger, G. S. Sohi. Coherence Decoupling: Making
Use of Incoherence. Proc. 11th Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, 2004.

[5] S. Kaxiras and C. Young. Coherence Communication Prediction in
Shared-Memory Multiprocessors. Proc. 6th Int’l Symp. on High-
Performance Computer Architecture, 2000.

[6] D. K. Poulsen and P. Yew. Data Prefetching and Data Forwarding in
Shared Memory Multiprocessors. Proc. 1994 Int’l Conf. on Parallel
Processing.

[7] S. Kaxiras. Identification and Optimization of Sharing Patterns for
High-Performance Scalable Shared Memory. Ph.D. Thesis, University of
Wisconsin-Madison, Aug 1998.

[8] D. A. Jimenez and C. Lin. Dynamic Branch Prediction with Perceptrons.
Proc. 7th Int’l Symp. on High-Performance Computer Architecture, 2001.

[9] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in Multi-Core
Architectures: Understanding Mechanisms, Overheads and Scaling. Proc.
32nd Int’l Symp. on Computer Architecture, 2005.

[10] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-
2 Programs: Characterization and Methodological Considerations. Proc.
22nd Int’l Symp. on Computer Architecture, 1995.

[11] M.K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS) Toolset.
Computer Architecture News (CAN) 2005.

[12] J. Gummaraju and M. Franklin, Branch Prediction in Multi-Threaded
Processors, Proc. Int’l Conf. on Parallel Architectures and Compilation
Techniques, pp. 179-188, 2000.

[13] P. Stenstrom, M. Brorsson, and L. Sandberg. An Adaptive Cache
Coherence Protocol Optimized for Migratory Sharing. Proc. 20th Int’l
Symp. on Computer Architecture, 1993.

[14] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation: Reducing
coherence overhead in shared-memory multiprocessors. Proc. 22nd Int’l
Symp. on Computer Architecture, 1995.

[15] S. S. Mkherjee and M. D. Hill. Using Prediction to Accelerate Coherence
Protocols. Proc. 25th Int’l Symp. on Computer Architecture 1998.

[16] A. Lai and B. Falsafi. Selective, accurate, and timely self-invalidation
using last-touch prediction. Proc. 6th Int’l Symp. on High Performance
Computer Architecture, 2000.

[17] M. E. Acacio, J. Gonzlez, J. M. Garca, and J. Duato. Owner Prediction
for Accelerating Cache-to-Cache Transfers in a cc-NUMA Architecture.
Proc. SC2002.

[18] A. Lai and B. Falsafi. Memory Sharing Predictor: The Key to a Specu-
lative Coherent DSM. Proc. 26th Int’l Symp. on Computer Architecture
1999.

[19] J. Nilsson, A. Landin, and P. Stenstrom. The Coherence Predictor Cache:
A Resource-Efficient and Accurate Coherence Prediction Infrastructure.
Proc. 6th IEEE Int’l Parallel and Distributed Processing Symp., 2003.

