
Reduce Register Files Leakage Through
Discharging Cells

Lingling Jin, Wei Wu, Jun Yang
Dept. of Computer Science

Univ. of California, Riverside, 92521
Email: ljin,wwu,junyang@cs.ucr.edu

Chuanjun Zhang
Dept. of Computer Science
and Electrical Engineering

Univ. of Missouri-Kansas City, 64110
Email: zhangchu@umkc.edu

Youtao Zhang
Dept. of Computer Science
Univ. of Pittsburgh, 15260
Email: zhangyt@cs.pitt.edu

Abstract— We propose a low-leakage register file cell design
based on the observation that the physical registers in a super-
scalar processor have very short life cycles. When a register is
dead, we discharge its cells to ‘0’ to greatly reduce the leakage
current from the read bitlines to the ground. Our design has no
impact to critical register read access path. Projected to future
45nm technology, our design yields additional 38% and 47%
leakage power savings on top of the existing low-leakage cell
designs for 64-bit and 32-bit datapath, respectively. Taking into
the account of dynamic energy savings due to the elimination of
write ‘0’ operations, our design saves nearly 20% of total energy.

I. INTRODUCTION

Recent trend in continuous reduction in CMOS technology
size has introduced new challenges to microprocessor designs.
Aggressive �� scaling results in exponential growth in leakage
current and within a few process generations, it is predicted
that the leakage energy could be comparable to the dynamic
energy [2]. Such a situation is particularly critical for register
files. Recent study has shown that the integer register file
is typically the hottest spot of a microprocessor [7], and
leakage power is an exponential function of the temperature.
Therefore, reducing the leakage power of the register file is a
critical problem for efficient thermal management and high-
performance processor designs.

There have been various techniques to reduce the leakage
power of a register file. Most leakage optimized design adopts
low leakage, but also slow transistors, e.g. with high-��, on
non-critical paths. However, this method cannot be applied to
critical path, such as register read path. R. Krishnamurthy et.
al. reported 13%[5] slowdown by using high-�� gate on read
bitline. A more substantial set of leakage reduction techniques
called “LBB” were presented by S. Heo et. al. [3]. They
segment read bitline, along with the register file into subbanks.
Once an entire subbank is dead, the subbank read bitline is
turned off, saving the leakage on the bitline. As we can see,
this scheme is only effective when all of the registers in a
bank are dead. Also, when the register bank turns to be alive,
pre-charging the read bitline to ‘1’ is required, which causes
energy overhead and impacts register read access time.

In this paper, we propose a new technique that can reduce
the leakage current on the read bitlines without sacrificing the
CPU performance. Our design is based on the findings that the
leakage power dissipated when a cell stores ‘0’ is only 1/8 of

the leakage power when a cell stores ‘1’. The basic idea of
our scheme is to turn bit ‘1’ into ‘0’ whenever the register is
dead. We discharge the ‘1’ using a small high-�� gate so that
the energy overhead by discharging is minimum. Our scheme
begins to save leakage immediately after the register is dead,
rather than waiting for the entire bank of registers to become
free as in [3]. Also, nullifying a dead register will not change
the correctness of the program execution. In our design, no
performance overhead is imposed to read operations.

We evaluated our design using both circuit simulation and
architecture simulation. Both 64-bit and 32-bit datapath are
studied. Projected to 45nm technology, we saved 38% and
47% of total leakage power for 64-bit and 32-bit datapath
respectively, or 11% and 14% of total register power. The
discharge circuit only imposes 2.5% dynamic energy overhead
on write operations but no overhead on read operations. This
overhead can be reduced partially, because write ‘0’ instruction
does not need to be performed since after discharging, the
register’s default value is ‘0’. With this optimization, we can
save additional 6% and 7% dynamic power, and a total of
16% and 20% of register power for 64-bit and 32-bit processor
respectively.

The remainder of the paper is organized as follows. Section
2 reviews the low-leakage register cell structure and the
motivation of our design. Section 3 elaborates the new cell
structure. Section 4 and 5 presents the circuit and simulation
experiment results. Section 6 concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first give a brief review of the con-
ventional low-leakage register file cell structure which is
optimized for stored value of ’0’. Then, we analyze its leakage
features and our observations.

A. Register cell analysis

Due to the large number of read and write ports, standard
register’s cell is different from cache cell. First, the read bitline
is in single-ended favor to reduce the routing and area cost.
Second, in order to increase access speed and protect the
bit value in cell, register file uses a two-transistor read port.
Third, to optimize register access energy, all the read ports are
arranged to one side of the storage cell. Based on the fact that

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

more zeros are stored in register than ones[12], designer placed
read ports to the side so that when ‘0’ is stored, the single-
ended read bitline is not discharged during evaluation[9].

In Figure 1, we illustrate such an 8-read and 4-write ports,
dual-�� cell structure in which all transistors except those (e.g.,
m� and m�) on read ports have high-�� transistors.

4X write port

A
RS7 RS0

...

... ...

8X read port

L1 L2

L3 L3

m1

m2

m3

L4 L5

A

Fig. 1. An 8-read 4-write low-leakage register file cell. High-�� transistors
are shaded.

The cell in Figure 1 has five main leakage paths, labeled
from L1 to L5 in the graph. We used HSPICE TSMC 0.18 �m
technology to measure the leakage power at 100ÆC on all five
types of paths when the cell is storing ‘1’ and ‘0’ respectively.
The results are summarized in Table I.

Storing ‘1’ Storing ‘0’
(nW) % (nW) %

L1 1.013 0.28 0.606 1.24
L2 0.618 0.17 0.968 1.98
L3(�8) 363.22 99.23 46.171 94.41
L4+L5(�4) 1.192 0.33 1.159 2.37

Total 366.042 100 48.905 100

TABLE I

LEAKAGE DISTRIBUTION OF THE CELL WHEN STORING A ‘1’ AND A ‘0’.

As we can see that L1, L2 and L4, L5 are all low-
leakage paths for both bit ‘1’ and ‘0’ since their leakage path
contains high-�� transistors. L3 is critical read path, and uses
low-�� transistors. So its leakage dominates the total leakage
expense. What is interesting here is that the leakage power
on L3 when the bit is ‘1’ versus ‘0’ differs greatly so that
total leakage current for bit ‘1’ is approximately 7.5 times the
current of bit ‘0’.Therefore, suppressing the leakage from the
bitline to a cell storing a ‘1’ becomes very important on this
already low-leakage cell structure.

B. Register live range analysis

In a typical high-performance superscalar processor, an
architecture register A that appears as the destination of some
instruction is first mapped to a physical register P. Some cycles
later, P will be written with the result of the instruction, and
the result is also passed to pending reads. When the instruction
is retired, P will be returned to the free list maintained by the
renaming logic. At this point, physical register P is considered
dead since its stored value will be considered as invalid by the
processor. Therefore, we define the life cycle of a register to
be from the time when it is written till the time it becomes
dead.

Our design is based on the fact that registers usually have
very short life cycles in a superscalar processor. Here we refer

to physical registers as opposed to architecture registers. When
the register is not alive, its value needs not be maintained and
we can discharge all the ‘1’s into ‘0’ so that the leakage on
L3 in Figure 1 is greatly reduced.

To see the opportunities of reducing the leakage on L3 by
discharging a register once it is dead, we ran experiments on
SPEC2000 to measure the percentages of the time the registers
being dead vs. live. We found that on average, a register is alive
for only 16% of the time. This feature shows great opportunity
for saving the leakage power when a register is dead. If we
assumed the same ratio of number of ‘1’ versus number of ‘0’
as before, i.e., 25% vs. 75%, final leakage that exist is

���� ����� ��� � �� �	�
 � ���� �� ����

���� � � ���� ���
� 	��

of the current total leakage if all the cells holding a ‘1’ is
discharged once a register is dead. Next, we will describe how
our new cell is designed.

III. THE DESIGN OF THE CELL

The primary modification to the register circuitry is to add
a discharge gate to the storage cell of each bit, as shown in
Figure 2. When a register is dead, we use this discharge gate to
force the bit value to become zero. As we have shown earlier,
a cell storing a ‘1’ has 7.5� the leakage than storing a ‘0’.
Turning a ‘1’ to ‘0’ will greatly reduce the leakage current on
read bitline.

A. The new storage cell design

We add a transistor with a width of two feature size to
point A. We term this transistor a “discharge” gate since its
function is to discharge the cell storing a ‘1’ when the entire
register is dead. The discharge gate is turned of during the
normal read/write operations. This transistor itself is of high-
�� so that it consumes little leakage power when it is off. The
control signal is generated from the renaming logic, indicating
when the register is dead.

Discharge cell

A.....

... ...

4X write ports8X read ports

A

m

Fig. 2. The design of new cell with discharge gate.

The discharging procedure works as the following. When
the register is dead and the discharge gate is turned on, if a
cell already contains a ‘0’, no effect is taken; if it contains a
‘1’, the voltage at A is pulled down to ‘0’ gradually, causing
the PMOS m to open, which pulls up � to ‘1’. Therefore, the
cell is flipped from storing a ‘1’ to storing a ‘0’.

This procedures resembles a write access that flips the cell’s
content. A normal write is performed by the two write bitlines
that push the value into the cell simultaneously. Whereas in
our case, the cell is flipped by a single transistor. Note that all

the bits in a register share the same discharge signal, similar to
an extremely simplified write port with no decoder, no bitline,
but a single write select with a fixed bit value of zero. As a
result, it is slower than the normal write operation. This can
be seen through the voltage variation at A when the cell is
discharging versus when the cell is being written with a ‘0’.
We also measured the total current in the cell for the two
different operations (see Figure 3).

V
o
l
t
a
g
e
s

0

0.5

1

1.5

Time

40n 40.2n 40.4n

Write

Discharge

C
u
r
r
e
n
t
s

0

200u

Time

40n 40.2n 40.4n

Discharge

Write

Fig. 3. Voltage at A and current in the cell.

From Figure 3, it is easy to see that the voltage of the
discharging process drops slower than that of a write access.
This has made the current in the cell persist longer, introducing
a slightly larger energy than that in a normal write operation.
An implication here is that if a cell originally stored a ‘1’ and
was discharged to ‘0’, but then will be written with ‘1’ again,
there will be extra dynamic power burned to change the state
of this cell twice. However, our discharging method is very
lightweight. We have measured that the energy dissipated in
the storage cell is at most 4% of the total energy on the entire
write path including the decoder and write bitline, the detailed
number will be show in Section 4 TableIV.

Another overhead of our design comes from the discharge
signal wordline that drives the discharge cells. It resembles
a normal wordline. Adding such a line to the discharge cell
introduces some area overhead. In the original register file
design, there are 12 wordlines in total: eight for reads and 4 for
writes. Adding extra wordline imposes about 8% (1/12) of area
overhead to register data array. We used Cacti [8] to analyze
the area of other components such as the sense amplifiers and
data output drivers. We found that the overall area overhead
is below 5% for a 64-bit register file. We will give detailed
power analysis for the discharge cell and the signal line in the
section 4.

B. Setting the discharge signal

This discharge signal is set by the renaming logic because
it keeps the information about the liveness of a physical
register. In a conventional superscalar, the renaming logic has
one entry for each physical register to record its status [14].
Typical renaming logic contains an “unmapped” bit and a
“completed” bit[13]. The “unmapped” bit indicates whether or
not a physical register is mapped to an architecture register;
and the “completed” bit denotes if the physical register has
been written. These two bits can be utilized to switch the
discharge gate. Most renaming logic is placed close to register
file such as Alpha 21264, because each read/write register

operation will trigger the updating of the status bits. The
energy dissipated to pass the signal from renaming logic to
register file should be negligible

C. Zero detection for saving partial write energy

Since the register values are discharged to ‘0’ as soon as
they are not live anymore, we can safely claim that a register
contains a ‘0’ before it is written with a new value. Moreover,
there is no need to re-write a ‘0’ into a register since it already
contains one. Such an optimization can save the dynamic
power dissipated due to the write of ‘0’.We ran SPEC2000
benchmarks, and found that on average, above 25% of the
values being written are ‘0’. There are substantial opportunities
for saving the dynamic power.

To avoid a redundant write of ‘0’, it is sufficient to detect
if the value is a ‘0’ before it is written into the register file.
Such a detection is typically present in modern processors
for various optimizations such as early zero detection [6],
early detection of divide-by-zero [1], or partitioned register file
design [4]. Adding such a detection logic does not prolong the
datapath but often reduces the latency in the execution stage.
Therefore, we leverage the existing techniques for the zero-
detection before the register writes and throttle the access if
a zero is detected. The overhead of the detection circuitry is
negligible as it can be combined with the ALU without any
additional latency [6].

IV. CIRCUIT EVALUATION

In this section, we present both timing and power simulation
results for base case and our design. We built the register
file circuit using TSMC low-�� and high-�� processes, and
simulated read and write operations in HSPICE. As described
earlier, we modeled two register files of 128 physical registers,
each of which is 64-bit or 32-bit. The entire register file is
divided into 8 sub-banks with each sub-bank containing 16
registers similar to the design in [5].

A. Process technologies

We used five generations of dual-Vt processes: 180nm,
130nm, 90nm, 65nm and 45nm process, to evaluate our
design. We used the TSMC 0.18� library from MOSIS [11]
to simulate the 180nm high-�� and low-�� transistors. Other
technologies’ parameters are scaled based on ITRS’s recent
consensus prediction[10]. The parameters of 180nm technol-
ogy is measured at 100ÆC.

Based on [10],we estimated the percentage of leakage power
within the total power, and ploted it in Figure 4. We can see
that for 180nm technology, the leakage power is only about
2% of the total register file power, while in 45nm technology
size, it increases to 32%. The role of leakage power becomes
evident as the technology size shrinks. Hence, our technique
will be of more significance to future technologies.

B. Leakage power reduction with the discharge gate

The purpose of putting a discharge gate in a cell is to pull
the bit value from ‘1’ to ‘0’ so as to close the leakage path

406080100120140160180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Technology Size (nm)

Leakage Energy (% Total Energy)

Fig. 4. The trend in leakage and dynamic power with future technologies.

from the bitline due to a ‘1’. Therefore, the more the number
of ‘1’s in the register array, the more leakage power it can
save. Another factor that affects the amount of total leakage
savings is how long a register stays “discharged”, i.e., being
dead. We will report such results in the Experiment section as
it requires architecture simulations. To see the leakage power
for a single register line before and after the discharge, which
depends on the 0-1 distribution in the cells, we first collected
the data from 21 SPEC2K benchmarks for both the 32-bit and
64-bit register files. On average, there are 24% and 14% of
cells that contain a ‘1’ for 32-bit and 64-bit register arrays
respectively. Recall that the leakage due to a ‘1’ is nearly 7.5
times the leakage of a ‘0’ (Table I). Such a difference makes
the potential savings for flipping ‘1’ significant.

Combining the distributions and the leakage power of a cell
containing a ‘0’ or a ‘1’ in Table I (the leakage due to the
added high-�� gate is negligible), the leakage power of a 64-
bit or a 32-bit register can be derived. We show such leakage
for a dead register line with five technology sizes in Table II.
As we can see that with the discharge cell, 47.6% and 59.9%
of savings can be achieved for a 64-bit and a 32-bit register
respectively.

64-bit (�W)
Tech Size(nm) 180nm 130nm 90nm 65nm 45nm

Base Case 6.17 18.58 51.45 51.10 48.24
w/discharge cell 3.13 9.42 26.10 25.90 24.45

32-bit (�W)
Base Case 3.90 11.73 32.49 32.27 30.46

w/discharge cell 1.56 4.71 13.04 12.95 12.22

TABLE II

LEAKAGE POWER OF A DEAD REGISTER.

C. Dynamic energy overhead with the discharge gate

Discharging storage cell’s content has impact on pending
write operations, and driving the discharge gate causes extra
dynamic energy. In this section, we give quantitative analysis
on dynamic energy overheads and compare them to normal
write energy.

Our new cell structure introduces a small amount of dy-
namic power to the write accesses. The energy of read accesses
is intact since reads happen only when the register is live.
The writes consume more power because the cells may have
changed states when they were dead. Specifically, the dynamic
power overhead in write accesses mainly comes from the
following three aspects:

1) Discharging a cell containing a ‘1’ — a ‘1’ becomes ‘0’
in the cell;

2) Writing a ‘1’ into a cell following action (1) — a ‘0’
becomes ‘1’ again;

3) Charging the extra gate during the writing of a ‘1’ —
an ‘x’ becomes ‘1’;

The first three aspects affect all state changes in a storage
cell except for the case of ‘0’ to ‘0’. To understand the power
during the state changes quantitatively, we simulated those
cases in HSPICE and list the results in TableIII. The numbers
presented here only includes energy dissipation on storage
cells.

before � Base Our design (pJ)
after (pJ) discharge write total
0�0 0.00005 0.00001 0.00005 0.00006
0�1 0.04811 0.00001 0.04865 0.04866
1�0 0.05158 0.05997 0.00005 0.06002
1�1 0.00005 0.05997 0.04865 0.10916

Weigh Avg(64b) 0.01204 0.01526
Weigh Avg(32b) 0.01769 0.02503

TABLE III

DYNAMIC ENERGY OF WRITING ONE BIT REGISTER CELL (180NM

TECHNOLOGY).

In the first column, ‘x’�‘y’ means writing a value ‘y’ into
the cell holding an ‘x’. Second column shows the write energy
in the base case. In our design, a write operation undergoes two
steps: discharge, and then write, which are shown in column
three and four respectively. The last column summarizes the
previous two columns to obtain the total dynamic power. That
is, the total energy of ‘x’�‘y’ is computed as the energy in
discharging ‘x’ plus the energy of ‘0’�‘y’.

We can see that in case of ‘0�0’, little energy is consumed
in either base case or our new design because the state of
the cell does not change. In case of ‘0�1’, the discharging
energy is still very little, but the write energy in our design is
larger than the base case (0.04865 vs. 0.04811) because the
discharge gate itself is effectively a small capacitor added to A
in Figure 1. It would be charged slightly when ‘1’ is written.
In case of ‘1�0’, the discharging energy becomes dominant
and is also larger than writing the cell with ‘0’ (0.05997 �

0.05158) for the reasons explained in section 3. However, this
is only for the energy in the cell. If we use a write access to
flip the bit, it would cost a lot more energy since other logic
such as the decoder would be involved. For the above three
states, the energy increases in our design are all quite modest
since the cell state changes at most once.

Lastly, in case of ‘1�1’, the discharging and the writing
energy share equal role since the cell state changes twice.
The energy for one cell in this case increases significantly.
However, the probability of ‘1�1’ is quite low. we have
found that across different benchmarks, the write accesses
are roughly 39% of the total register accesses while the 1�1
happens only 3.4% (6.1%) of the total writes for 64-bit (32-
bit) registers. We will see later that the overall dynamic energy
increase is very minimum

Another major overhead comes from the extra wordline that

drives to the discharge gate. The energy of this wordline is
around half of the the normal register wordline energy because
the discharge signal only drives one gate while the wordline
drives two gates per cell. For example, the energy for driving
the signal of a 64-bit register file is 0.315pJ.

Based on above detail energy analysis, we list the dynamic
energy for base case and overhead in our design in Table IV.
Since only write access is affected by our scheme, only dy-
namic write energy is listed. The overhead is measured for one
discharge operation. Values for different process technologies
are also listed.

64-bit (1E-3 pJ)
Tech Size(nm) 180nm 130nm 90nm 65nm 45nm
BaseCase 20392 11800 2547 947 459

cell overhead 206 119 26 10 5
discharge WL 315 182 39 15 7
Total overhead 521 301 65 25 12

32-bit (1E-3 pJ)
BaseCase 16335 9453 2040 769 367

cell overhead 235 140 29 11 5
discharge WL 182 105 23 8 4
Total overhead 417 245 52 19 9

TABLE IV

DYNAMIC WRITE ENERGY INCREASE.

It can be seen that, our design only increases around 2.5% of
total write energy. As technology size scaled down, dynamic
overhead reduce quadratically. When it gets to 45nm technol-
ogy, the overhead would be as low as 0.012pJ. Also, from our
experimental experience, the writes account for roughly 39%
of the total register accesses. So the dynamic energy overhead
is only a small portion of the total energy consumption.

D. Discharge cell analysis

0 100 200 300
0

0.5

1

1.5

2
180nm

cycles

en
er

gy
(p

J)

0 100 200 300
0

1

2

3

4

5
130nm

cycles

en
er

gy
(p

J)

0 100 200 300
0

1

2

3

4
90nm

cycles

en
er

gy
(p

J)

0 100 200 300
0

0.5

1

1.5

2
65nm

cycles

en
er

gy
(p

J)

0 100 200 300
0

0.2

0.4

0.6

0.8

1
45nm

cycles

en
er

gy
(p

J)

Idle

Discharge

Dynamic
Overhead

Fig. 5. Cumulative Base case energy and with discharge cell energy
comparison of one dead register line for 64-bit datapath.

From above discussion, we can see that after a register
line is dead, using the discharge gate can achieve 40%-60%
of leakage power savings. However, the discharge gate itself
dissipates extra dynamic energy due to the pull-down activity.
If the leakage energy saved did not exceed the dynamic energy
the cell spends, there would be no net energy savings. To

achieve overall energy savings, the register dead cycles have
to be long enough. We now discuss the opportunities of
energy savings as register dead cycle increases. We illustrate
the relation between cumulatedenergy consumption and dead
cycles for different technologies in Figure 5.

The line labeled ‘Idle’ represents the energy consumption
as the register dead cycle increases in the base case. The line
labeled ‘Discharge’ represents our new register design. After
the register is dead, the cumulative energy for the base case is
increasing at a constant rate from the origin due to its constant
leakage consumption after register is dead. With the discharge
gate, cumulated energy starts from 0.512pJ (from TableIV)
because the dynamic energy in the discharging process, and
increases at almost half the speed of base case(due to reduced
leakage, refer to TableII). From cycle ‘0’ to the point where
these two lines meet, our new design consumes more energy.
However, as long as the dead cycles surpass the point, our
design starts to gain energy savings. We term the point where
two lines meet as ‘breakeven’ point.

As we can see, when the technology size decreases the
breakeven point also moves backward. The breakeven point
is 160 cycles for the 180nm technology, and reduced to 8
cycles for the 45nm technology. As a result, in the near future
technologies, using our scheme can achieve energy savings in
only few cycles after the register is dead.

V. EXPERIMENTS

A. Architecture parameters and benchmarks

To measure the collective leakage energy and dynamic
energy changes, we simulated our design on a modified
Simplescalar [15]. Detailed parameters of the simulator is
listed in TableV.

Issue width 4
Reorder buffer 80
Int physical register 128
Ld/St queue 64/64
I-cache/D-cache 64K/2-Way/64B Block
Unified L2 cache 4M/8-Way/128B Block
IntALUs/IntMult/FPAlUs/FPMult 8/4/4/2

TABLE V

SIMULATION PARAMETERS.

We simulated 21 benchmarks from SPEC2K. Each bench-
mark is fast forwarded for one billion instructions and then
executed for five hundred million instructions.

B. Overall leakage reduction and the impact on dynamic
power

The overall leakage energy and total energy savings for
45nm technology normalized to the base case is shown in
Figure 6. The leakage saving result is close to what we have
estimated in the previous sections since .the lifetimes of the
registers across different benchmarks do not vary too much.
Also, as technology scales, the dynamic overhead is almost
negligible. The register file with 32-bit values have some
more savings than the 64-bit registers since the percentage
of bit ‘1’ is higher. On average, there are up to 38% and

47% leakage energy savings for 64-bit and 32-bit register files
respectively. The overall energy shows about 11% and 14%
savings. However, the savings will grow as technology size
keeps on decrease.

Figure 7 reports the leakage energy and total energy sav-
ings for different processes. Around 30% leakage savings is
observed in 130nm process. After 90nm, the leakage saving
reaches 37% and 45%, and grows slowly afterwards. For
180nm technology, since its dynamic power is much larger
than leakage power, the dynamic overhead of our scheme
is an overkill, resulting negative leakage savings. However
the dynamic overhead is quite small compared with register
read/write energy, the total energy overhead is only 0.17% and
0.36% of the total energy for 180nm technology.

0%

20%

40%

60%

80%

am
m
p

ap
pl
u

ap
si ar
t

bz
ip

cr
af
ty

eq
ua
ke

fm
a3
d

ga
lg
el

gz
ip

m
cf

gc
c

m
es
a

m
gr
id

pa
rs
er

pe
rl

sw
im

tw
ol
f

vo
rte
x

vp
r

wu
pw

ise

Av
er
ag
e

64 bit

32 bit

0%

5%

10%

15%

20%

25%

30%

35%

40%

am
m
p

ap
pl
u

ap
si ar
t

bz
ip

cr
af
ty

eq
ua
ke

fm
a3
d

ga
lg
el

gz
ip

m
cf

gc
c

m
es
a

m
gr
id

pa
rs
er

pe
rl

sw
im

tw
ol
f

vo
rte
x

vp
r

wu
pw

ise

Av
er
ag
e

64 bit

32 bit

Fig. 6. Leakage energy and total energy savings for 45nm process

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

180nm 130nm 90nm 65nm 45nm

64 bit

32 bit

-2%

0%

2%

4%

6%

8%

10%

12%

14%

180nm 130nm 90nm 65nm 45nm

64 bit

32 bit

Fig. 7. Leakage energy and total energy savings across different processes

C. Saving dynamic energy by eliminating writing ‘0’s

Though our design has introduced a small amount of
dynamic power overhead, it also creates opportunities for
saving dynamic power from other sources. We have explained
earlier that writing a ‘0’ into a register is unnecessary since by
default, any register contains a ‘0’. Eliminating those writes
saves power in decoder, wordline driving, and cell energy.
On average 26% of writes can be eliminated. Considering
the dynamic power overhead from the discharge gate, the net
savings are 6% and 7% on average for the benchmarks we
tested.

0%

4%

8%

12%

16%

20%

24%

180nm 130nm 90nm 65nm 45nm

64 bit

32 bit

Fig. 8. Overall energy savings.

With the savings in dynamic energy and leakage energy,
we re-evaluated the total energy savings across all technology
sizes for our design. From Figure 8, we can see that even
with 180nm technology, there are 7% and 8% of total energy
savings, mostly from eliminating writing ‘0’s. For 45nm,
our total energy savings are 16% and 19.5%, showing the
effectiveness of our design using a very simple technique.

VI. CONCLUSION

We proposed a technique to save leakage and dynamic
power of a register file by observing that most physical
registers have short life cycle time. We can discharge the
cells in the dead registers to save the leakage on the bitlines.
Experiments have shown significant savings (16-19.5%) and
great potential using future technology sizes.

REFERENCES

[1] D. Brooks and M. Martonosi, “Value-based clock gating and operation
packing: dynamic strategies for improving processor power and perfor-
mance,” ACM Transaction on Computer Systems, Vol. 18, No. 2, pp. 89-
126, May 2000.

[2] V. De and S. Borkar, “Technology and design challenges for low power
and high performance,” ISLPED, pp. 163-168, 1999.

[3] S. Heo, K. Barr, M. Hampton, and K. Asanovic, “Dynamic fine-grain
leakage reduction using leakage-biased bitlines,” the 30th International
Symposium on Computer Architecture, pp. 137-147, 2003.

[4] M. Kondo, H. A. Nakamura, “Small, Fast and Low-Power Register File
by Bit-Partitioning,” the 11th High-performance Computer Architecture,,
pp.40-49, Feb 2005.

[5] R. Krishnamurthy, A. Alvandpour, G. Balamurugan, N. Shanbhag, K.
Soumyanath, and S. Borkar, “A 130-nm 6-GHz 256�32 bit leakage-
tolerant register file,” IEEE Journal of Solid-State Circuits, Vol. 37, No.
5, May 2002.

[6] D. R. Lutz, D. N. Jayasimha, “Early zero detection,” International
onference on Computer Design, pp. 545-551, 1996

[7] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan. “Temperature-Aware Microarchitecture,” the 30th Interna-
tional Symposium on Computer Architecture, pp. 2-13, 2003.

[8] P. Shivakumar, N. Jouppi, “Cacti 3.0: An integrated cache timing, power
and area model,” Western Research Lab (ERL) Research Report, 2001/2.

[9] J. Tseng and K. Asanovic, “Energy-efficient register access,” the 13th
Symposium on Integrated Circuits and Systems Design, Sept. 2000.

[10] ITRS 2003 Edition, http://public.itrs.net/Files/2003ITRS
/Home2003.htm.

[11] MOSIS, https://www.mosis.org
[12] L. Villa, M. Zhang, K. Asanovic “Dynamic Zero Compression for Cache

Energy Reduction,” the 33rd International Symposium on Microarchitec-
ture, Dec. 2000.

[13] M. Moudgill, K. Pingali, S. Vassiliadis “Register Renaming and Dy-
namic Speculation: an Alternative Approach,” In Proceedings of the 26th
annual international symposium on Microarchitecture (Micro26), 1993

[14] J.S. Liptay, “Design of the IBM Enterprise System/9000 high-end
processor,” IBM J. Res. Develop. Vol.36 No.4, July 1992

[15] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,”
Technical Report 1342, Univ. of Wisconsin-Madison, Comp. Sci. Dept.,
1997.

