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Abstract— Coupled oscillator networks occur in various domains

such as biology, astrophysics and electronics. In this paper,

we present a comprehensive procedure for rapid and accurate

simulation of large coupled oscillator networks using widely

accepted, fully-nonlinear Perturbation Projection Vector (PPV)

phase macromodels. We validate our method against full sim-

ulation of 20x20 coupled network of Brusselator biochemical

oscillator and obtain computational speedups of 170x over

full simulation. Furthermore, we apply the method to study

self-organization phenomenon of Brusselator under asymmetric

coupling and time period variations.

I. INTRODUCTION

Networks of coupled oscillators occur in multitude of physical and

natural systems. For example, the dynamics of auto catalytic and

oscillating biochemical Brusselator reaction is modeled by coupled

oscillators [1]. Natural pacemaker of the heart consists of tens of

thousands of cells called sinoatrial node. Each pacemaker cell is an

oscillator that produces periodic electrical signals. The reliable and

periodic pumping of the heart is driven by rhythmic electrical activity

of the network of pacemaker cells [2]. The synchronous flashing of

fireflies is yet another example of coupled oscillators in the nature

[3]. Each firefly produces flash periodically; but, when fireflies gather

together, these insects emit a flash upon the sight of lights produced

by neighbouring fireflies. This collaborative behaviour results in

a spectacular synchronized flashing. Recently, utility power grid

has been studied using a network of coupled oscillators [4]. Each

individual oscillator is mathematically modeled by a set of nonlinear,

coupled partial differential equations (PDEs). Solving such PDEs

analytically, even for a single oscillator, is almost always a formidable

task. Thus, analysis and simulation of coupled oscillator network is

of great practical importance.

The direct technique is to solve PDEs that governs the dynamics of

the oscillator in the time domain. This time-course integration method

is not suitable for simulation of oscillators as it inherently accumu-

lates phase errors without limit during simulation [5]. So, hundreds

of timesteps per oscillation cycle are required for acceptable accuracy

(see Fig. 7), which leads to high computational cost. The situation

becomes even worse for coupled oscillator systems with numerous

oscillators. Another technique is to use phase domain models, which

was pioneered by Winfree [6] and later simplified by Kuramoto [7].

Winfree constructed the model for nearly identical oscillators with

the assumption that the coupling among the oscillators is small. This

assumption allow the separation of phase and amplitude variations

of the oscillator. The amplitude variations die quickly and oscillator

relaxes to a steady state limit cycle, since the perturbation from other

oscillators is small. Thus, only phase variations need to be tracked

to determine the approximate state of the oscillator. In his model,

the rate of change of the phase of an oscillator is determined by

oscillator’s interaction function called “phase sensitivity”. However,

no algorithm was proposed to obtain these interaction functions.

Kuramoto later simplified Winfree’s model by approximating the

interaction functions as sinusoids. But these sinusoidal interaction

functions accumulate significant errors for non-harmonic oscillators

[8], [9]. However, nonlinear PPV macromodel, already established

for individual oscillator overcome these errors. Moreover, they can

be algorithmically extracted in an computationally efficient manner

[5], [10]. The simulation based on PPV macromodel show large

simulation speedups due to system size reduction and use of larger

timesteps, without affecting accuracy.

In this paper, we provide the procedure and validation for a

fast method developed for simulating large networks of coupled

oscillators [9]. We start from a PDE description of a specific reaction-

diffusion system, the Brusselator, and show how such oscillatory PDE

systems can be discretized in space to obtain a network of oscillators

coupled spatially. We indicate how perturbation terms required for

the application of PPV method can be obtained. This method can

be generalized for any spatially coupled electronic or biological

oscillators. Finally, using the procedure, we simulate a system of

a 200x200 coupled oscillator network under parametric variations.

The remainder of paper is organized as follows. In Section II, a

brief review of the nonlinear PPV phase macromodel is presented.

Section III deals with Brusselator biochemical oscillator model de-

scription and details to develop differential-algebraic equation (DAE)

of the oscillator. We show how the PPV phase macromodel of

an independent oscillator can be abstracted from the PDE of the

Brusselator by observing perturbation terms. In Section IV, details

to solve the oscillator network for phase of each oscillator and

using them to reconstruct the oscillator states across the network

are presented. In Section V, we validate our method against a full

simulation for a coupled oscillator network, and show phase error

accumulation in time-course transient simulation of a simple two

oscillator network. Next, in Section VI, collective behaviour of the

Brusselator system is studied under asymmetric coupling strength and

time period variations.

II. NONLINEAR PHASE MACROMODEL

In this section, we review the nonlinear phase macromodelling

technique using the PPV phase macromodel [5]. The PPV phase

macromodels are well suited for large systems involving coupled

oscillators as they dramatically improves efficiency and accuracy. A

starting point is the differential equation which describes oscillator

under external perturbations

d~x

dt
+~f (~x) =~b(t) (1)

where ~x(t) is a vector of oscillator states and ~b(t) represents the

vector of perturbation signals applied to corresponding states of free

running oscillator. Assuming ~b(t) and the amplitude variations are

small, the solution to this oscillator subject to perturbation can be

shown [5] to take the following form

~xp(t) =~xs(t +α(t)) (2)

where ~xp(t) represents the waveform of the perturbed oscillator, ~xs(t)
is the steady state periodic solution of unperturbed oscillator and α(t)
is the phase deviation caused by the external perturbation~b(t). In [5],

Demir et al proved that the phase deviation α(t) is governed by a

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 815



simple scalar equation

dα(t)

dt
=~V T

1 (t +α(t)) ·~b(t) (3)

where ~V T
1 is the PPV of system size. Each component in PPV

represents the oscillator’s phase sensitivity to the applied perturbation

signal. In the next section, we apply PPV macromodelling technique

to single Brusselator biochemical oscillator and show how this

technique of the phase macromodelling can be extended to coupled

oscillator networks. The PPV macromodels can be obtained both in

frequency and time domain algorithmically [10], unlike Winfree’s

interaction functions.

III. DESCRIPTION OF THE NUMERICAL PROCEDURE FOR

BRUSSELATOR EQUATION

It is well known that many types of biochemical reaction-diffusion

(RD) systems [1] produce intricate and beautiful spatial patterns

(“phase waves”). For example, the patterns in Fig. 11(b) result from

a simple type of biochemical RD system called the Brusselator.

The PDEs of a RD system have the form

∂~c(x,y, t)

∂ t
= R(~c, t)+Dc∇

2~c (4)

where x, y are spatial dimensions and~c is a vector of concentrations

of the chemical species taking part in RD reaction. The generation

speed of chemical species is given by R(~c, t) and its functional

form depends on the specific system being studied. The diffusion

coefficients are represented by matrix Dc and second term in the RHS

of (4), Dc∇2~c, represents change in the ~c by diffusion. For example,

the Brusselator system is modeled by the following nonlinearly

coupled PDEs [11]

∂u

∂ t
= A− (B+1)u+u2v+Du ∇

2u

∂v

∂ t
= Bu−u2v+Dv∇

2v

(5)

where A and B are constants specific to reaction, u and v are the

chemical concentrations of two species, and their temporal derivatives

represent the rate of change of their concentrations with time. The

diffusion coefficients are represented as Du and Dv. We use (5) to

present the coupled oscillator simulation method.

In order to solve (5) numerically, we choose rectangular grid as

shown in Fig. 1 to discretize PDEs spatially. Let the grid points be

denoted by (i, j), where i ∈ {1,N1}, j ∈ {1,N2} and thus the network

size is N1 ×N2. Each grid point represents an oscillator, as we will

verify later, described by the nonlinearly coupled PDE (5). The line

joining the grid points corresponds to coupling of an oscillator with

its neighbour.

To discretize the PDE (5), we use second-order central difference

scheme for the Laplacian operator, ∇2, obtained using Taylor series

expansion as

∇
2u

∣

∣

∣

i, j
≃

ui−1, j(t)+ui+1, j(t)−2ui, j(t)

∆x 2

+
ui, j−1(t)+ui, j+1(t)−2ui, j(t)

∆y 2

∇
2v

∣

∣

∣

i, j
≃

vi−1, j(t)+ vi+1, j(t)−2vi, j(t)

∆x 2

+
vi, j−1(t)+ vi, j+1(t)−2vi, j(t)

∆y 2

(6)

where ∆x and ∆y are space discretization steps in x and y dimen-

sions respectively. For boundary points, we use non-flux boundary

(i,j+1)

(i+1,j)(i,j)(i−1,j)

(i,j−1)

∆

∆x

y

x

y

Fig. 1. Rectangular grid for discretizing the Brusselator PDEs.

conditions given as
(

∂u

∂n

)

i=[1,N1]; j=[1,N2]

= 0

(

∂v

∂n

)

i=[1,N1]; j=[1,N2]

= 0

(7)

where n is normal to the boundary. The boundary conditions play a

direct role in determining the perturbations across the grid. Then, (5)

is evaluated at each grid point using (6) and (7). For example, at any

internal point (i, j) we have

d

dt
ui, j(t) = A− (B+1)ui, j(t)+u2

i, j(t)vi, j(t)+(Cu(t))i, j

d

dt
vi, j(t) = Bui, j(t)−u2

i, j(t)vi, j(t)+(Cv(t))i, j

(8)

where,

(Cu(t))i, j = Du

[

ui−1, j(t)+ui+1, j(t)−2ui, j(t)

∆x 2

+
ui, j−1(t)+ui, j+1(t)−2ui, j(t)

∆y 2

]

,

(Cv(t))i, j = Dv

[

vi−1, j(t)+ vi+1, j(t)−2vi, j(t)

∆x 2

+
vi, j−1(t)+ vi, j+1(t)−2vi, j(t)

∆y 2

]

.

(9)

For simplicity, we define cux, cuy, cvx and cvy as

cux =

(

Du

∆x 2

)

, cuy =

(

Du

∆y 2

)

,

cvx =

(

Dv

∆x 2

)

, cvy =

(

Dv

∆y 2

)

.

(10)

The diffusion terms, Cu(t) and Cv(t), contribute to perturbations of

an oscillator from other oscillators in the grid. Thus, the characteris-

tics of a single oscillator can be captured by eliminating the diffusion

terms, Cu(t) and Cv(t), from (8) as

d

dt
u(t)−A+(B+1)u(t)−u2(t)v(t) = 0

d

dt
v(t)−Bu(t)+u2(t)v(t) = 0

(11)

Note that in the above equation, we have dropped the grid point index

(i, j) to make it clear that if we put the diffusion terms equal to zero,
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there will be no coupling effect or perturbations from the neighboring

oscillators and the PDE at each node in the network will be the same

and can be represented by (11).

Next we develop the DAE of (11). It will be same for every

oscillator in the grid as we have eliminated the diffusion terms, Cu(t)
and Cv(t). These terms will be incorporated later while solving for the

coupled oscillator network (in Section IV) as external perturbations

to an oscillator. To represent the PDEs (11) of the Brusselator in a

convenient circuit’s DAE form, we start with

d

dt
~q(~x)+~f (~x)+~b(t) =~0 (12)

where~x are the unknowns. For (11) we can write, ~q(~x) =~x and~b(t) is

the vector of perturbations from neighbouring oscillators. Thus, for an

independent oscillator, ~b(t) = 0. Next, we consider ~x = [u(t) v(t)]T ,

then ~f (~x), ∂~f
∂~x

and
∂~q
∂~x

for (11) can be written as

~x =

(

u(t)

v(t)

)

~f (~x) =

(

−A+(B+1)u(t)−u2(t)v(t)

−Bu(t)+u2(t)v(t)

)

∂~f

∂~x
=

(

B+1−2u(t)v(t) −u2(t)

−B+2u(t)v(t) u2(t)

)

∂~q

∂~x
=

(

1 0

0 1

)

(13)

Using the above DAE of the Brusselator, we extract the steady state

waveform and PPV [10] of u and v for A = 0.5, B = 1.7 using the

harmonic balance method. The waveforms obtained are shown in

Fig. 2(a) and Fig. 2(b).
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(a) Plot of steady state.
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(b) Plot of PPVs.

Fig. 2. Plot of the steady state and the PPV of u and v.

The PPV waveforms need to be extracted only once and can be

reused for a coupled oscillator network simulation as we show next.

IV. SIMULATION DETAILS OF COUPLED OSCILLATOR NETWORK

USING PPV MACROMODELS

In this section, we present the details for simulating large coupled

oscillator networks. The PPV phase macromodelling technique for a

single oscillator can be extended for coupled oscillator networks, by

modeling ~b(t) in (3) to account for coupling among oscillators. For

example, the oscillators at grid points (i, j + 1) , (i, j−1), (i + 1, j)
and (i−1, j) cause perturbations in oscillator states at grid point (i, j)
through coupling as shown in Fig. 3. The vector of perturbations,
~bi, j(t), at the grid point (i, j) can be obtained by comparing (8) and

(11). The components of ~bi, j(t) are (Cu(t))i, j and (Cv(t))i, j, for the

u and v state of the oscillator respectively. Therefore, for any grid

point (i, j) in the network, perturbation vector ~bi, j(t) can be written

i−1,j

i,j+1

i+1,ji,j

i,j−1

j

i

Fig. 3. Contribution of perturbation from the neighboring grid points.

as

~bi, j(t) =

(

b_ui, j(t)

b_vi, j(t)

)

(14)

where,

b_ui, j(t) = (Cu(t))i, j (15)

b_vi, j(t) = (Cv(t))i, j (16)

Next, we solve for the phase deviation of oscillators in the network

using PPV, ~V T
1 (t) and the perturbation signal, ~b(t).

At any point (i, j), the phase deviation αi, j(t) can be calculated

using (3) as the solution of following equation

α̇ i, j(t) =~V T
1 (t +αi, j(t)) ·~bi, j(t)

α̇ i, j(t) =
(

ppv_u(t +αi, j(t)) ppv_v(t +αi, j(t))
)

·

(

b_ui, j(t)

b_vi, j(t)

)

= ppv_u(t +αi, j(t))b_ui, j(t)+ ppv_v(t +αi, j(t))b_vi, j(t)

= f (t,αi, j(t))
(17)

where ppv_u(t) and ppv_v(t) are PPVs of for u and v, respectively.

The second order Runge-Kutta (RK2) numerical method can be

used to solve for ~α(t). According to RK2 algorithm, the phase

deviation for point (i, j) at time tn+1 = tn + h, where h is timestep

used in the simulation, is solved as shown

αn+1|i, j = αn|i, j + k2|i, j

k2|i, j = h f

(

tn +
h

2
, αn|i, j +

k1|i, j

2

)

= h[ppv_u

(

tn +
h

2
+ αn|i, j +

k1|i, j

2

)

b_ui, j

(

tn +
h

2

)

+ ppv_v

(

tn +
h

2
+ αn|i, j +

k1|i, j

2

)

b_vi, j

(

tn +
h

2

)

]

(18)

and k1 is calculated as

k1|i, j = h f (tn, αn|i, j)

= h[ppv_u(tn + αn|i, j)b_ui, j(tn)

+ ppv_v(tn + αn|i, j)b_vi, j(tn)]

(19)

Assuming the amplitude variations are small, the perturbed solu-

tions for u(t) and v(t) under the effect of~b(t) are given by (2). Thus,

for grid point (i, j) at time t = tn

ui, j(tn) = uss(tn +αi, j(t))

vi, j(tn) = vss(tn +αi, j(t))
(20)
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where uss(tn) and vss(tn) are the steady state solution at t = tn in the

absence of the perturbation signal, ~b(t).
Using the above procedure, we calculate the phase deviation, ~α(t)

and use it to compute the perturbed solution, ~u(t) and ~v(t) of the

network.

V. NUMERICAL RESULTS

In this section, we apply and validate the technique presented above

using the Brusselator oscillator. A simple, coupled oscillator network

of two oscillators is represented schematically in Fig. 4. The line

joining the oscillators represent the coupling between u and v nodes

of each oscillator. We first simulate the two oscillator network using

the PPV phase macromodelling technique for coupled oscillators. The

two oscillators start with random initial phase between 0 and 2π and

we take A = 0.5, B = 1.7 and cux = cuy = cvx = cvy = 0.025.

1 2

Fig. 4. Schematic of two coupled oscillators.

The phase deviation and oscillator state waveforms obtained are

shown in Fig. 5 and Fig. 6. After a few oscillation cycles, d~α
dt

becomes constant, indicating that the oscillators get phase locked.

We can see from u waveforms in Fig. 6 that oscillators indeed get

phase locked. The coupling between the two oscillators forces them

to get into phase.

Now, we compare the results obtained with the time-course full

simulation of the above system, for different time steps under same

initial conditions. The full simulation results are computed using same

system parameters and RK2 numerical method. From Fig. 7, we can

see the efficiency of proposed method against the full simulation.

For example, using 100 timesteps per oscillation cycle in the full

simulation and the proposed method, the former method accumulates

significant phase errors. However, when we increase the number of

timesteps in the full simulation the phase error reduces. As it can be

seen, the result closely match with larger number of time points in

the full simulation.
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Oscillator 1

Oscillator 2

Fig. 5. Phase shift in the two oscillator using the nonlinear PPV phase
macromodel.

Next, we simulate a 20x20 coupled Brusselator oscillator network

using full system simulation and proposed method for similar initial

conditions and a non-flux boundary condition for boundary points.

The parameters A, B, cux , cuy, cvx and cvy are chosen to be the same

as before. We take 200 timesteps per oscillation cycle for PPV based

simulation and 1500 timesteps for full simulation, to get comparable

accuracies. We plot the simulation results of u state of oscillator

at position (1,1) and v state of oscillator at (10,10) in the coupled

network in Fig. 8 and Fig. 9. It can be seen from Fig. 8 and Fig. 9

that nonlinear PPV based coupled oscillator simulation method results

in a close match with full system simulation (with sufficiently high

number of time steps), which validates our method. However, the

proposed method is computationally cheaper than the full simulation.
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Fig. 6. Phase locked u waveforms of two oscillators using PPV macromodel.
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Fig. 7. Plot of u waveform for oscillator 1 using PPV macromodel and full
simulation (FS).

On an AMD Athlon64 3800+ based workstation, running MAT-

LAB on Linux kernel 2.61.19, our technique using PPV phase

macromodels took 70 s for 100 oscillation cycles as compared to

12000 s with full simulation for comparable accuracy (implemented

on the same workstation). This is a 170-fold speedup and is expected

to go higher for large coupled oscillator networks, involving a larger

number of oscillators. The speed up is due to the fact that we

calculate nonlinear phase macromodel only once and use that across

the network for further analysis.

VI. EXPLORING SELF-ORGANIZATION UNDER ASYMMETRIC

COUPLING AND TIME PERIOD VARIATION

In this section, we simulate a larger coupled oscillator network,

using the procedure developed in the previous sections to explore

the effect of asymmetric coupling and time period variations in

the network for random and given initial conditions of ~α at t = 0.

The Brusselator self-organizes itself forming spatio-temporal patterns

and this has been experimentally observed [1], [12]. The network

is made up of 200 × 200 identical oscillators, with free running

frequency of each oscillator as f0 = T0
−1 and coupling parameters

cux, cuy, cvx and cvy, as defined in Section III. The self-organization

and subsequent pattern formation depends on A, B and coupling

parameters. For simulation purposes, we chose A = 0.5, B = 1.7 and

nominal cux
−1 = 40, cux

−1 = 40, cux
−1 = 40 and cux

−1 = 40.
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Fig. 8. Plot of u waveform of (1,1) oscillator.
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Fig. 9. Plot of v waveform of (10,10) oscillator.

A. Random initial condition simulations

The oscillators in the grid are assigned random initial phase

between 0 to 2π as shown in Fig. 10. Each small dot in the phase

plot represents the phase of that oscillator. The oscillators with the

same phase have the same color. The network is simulated for 200

oscillation cycles (t=200T) and solved for ~α(t).
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Fig. 10. Random initial phase of oscillators in the network at t=0.

1) Network simulation without variation: We simulate the network

with random initial phase for each oscillator. For simulation without

any variation in the coupling parameter or the time period, Fig. 11

shows the phase plot of oscillators at different time instants. As time

evolves, the mutual coupling between the oscillators forces phase

lock between them in a localized fashion, which can be seen in the

form of spiral patterns or phase waves in Fig. 11(a) at t = 50T . These

patterns grow and emerges as seen in Fig. 11(b) at t=200T. We call

these spirals as seed.
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(a) Phase plot at t= 50T.
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(b) Phase plot at t= 200T.

Fig. 11. Phase plot of the network with random initial conditions.

2) Network simulation with variations: We now simulate the

network with small variations in the time period, T and in coupling

parameters. In the first simulation, the coupling related parameters

cux
−1, cuy

−1, cvx
−1 and cvy

−1 are varied is such a way that they

follow a Gaussian distribution, N(40,49). The plot of the phase of

oscillators at t = 200T is shown in Fig. 12. It can be seen that

spiral patterns, almost similar to Fig. 11, are formed and network is

robust against variations in coupling. This variations can be physically

mapped to the anisotropy of the physical system under consideration.

For example, heart is not isotropic and homogeneous in all directions

[13]. A practical and useful application of the proposed method can

be to simulate auto-oscillatory cells of the mammalian heart.
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(a) Phase plot at t= 200T.

Fig. 12. Phase plot with random initial phase and variations in the coupling
parameters.

In the second simulation, the normalized time period of oscillators

in the network is varied as a Gaussian distribution, N(1,1e-7). The

phase plots are shown in Fig. 13. Again, similar patterns form with

small random time-period variations, but the pattern formation in the

network is not robust against it.
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(a) Phase plot at t= 50T.
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(b) Phase plot at t= 200T.

Fig. 13. Phase plot with random initial phase and variations in the time
period.

B. Given initial condition simulations

In this subsection, we analyze the collaborative behaviour of the

oscillators in the network for a given initial phase. We start by placing

a seed at the center of network as shown in Fig. 14, enclosed by

a dashed rectangle for illustration purpose, and analyze its growth.
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Further, we demonstrate the collaborative behaviour of oscillators in

the network under parametric variations for given initial conditions.
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Fig. 14. Phase plot of oscillators with given initial condition (seeded).

1) Simulation without noise: After placing the seed, we simulate

the network for similar values of A, B and coupling parameters

mentioned in Section VI-A. This results in a stable spiral pattern

growth encompassing the whole network and phase synchronization

among oscillators takes place, as illustrated in Fig. 15.
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(a) Phase plot at t= 50T.

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(b) Phase plot at t= 200T.

Fig. 15. Phase plot with given initial conditions illustrating seed growth.

2) Simulation with noise: In a similar manner as in Section VI(A),

we investigate the effect of parameter variations on the seed growth.

In the first simulation, we simulate the network with Gaussian noise in

the coupling parameters, cux
−1, cuy

−1, cvx
−1 and cvy

−1, of N(40,49)

i.e. with a standard deviation (SD) of 17.5%. The phase plot at

different time instants is shown in Fig. 16. It can be seen that the

network is robust and basic elliptical patterns are still present.
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(a) Phase plot at t= 50T.
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(b) Phase plot at t= 200T.

Fig. 16. Phase plot with seeded network and variations in coupling parameter.

In the second simulation, we simulate the network with normalized

time period varying as a Gaussian distribution, N(1,1e-7), across the

network. The phase plots at different time instants are shown in

Fig. 17. Thus, the network is affected by the noise in time period

but the basic seed pattern remain the same.

VII. CONCLUSIONS

We have presented a comprehensive procedure for simulation of

coupled oscillator networks using the phase-domain nonlinear PPV

macromodels. The method is generally applicable to any spatially

coupled oscillator network. We have validated our method for 20x20
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(a) Phase plot at t=50T.
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(b) Phase plot at t= 200T.

Fig. 17. Phase plot with initial seed and Gaussian noise in time periods.

coupled Brusselator biochemical oscillator demonstrating speedups

over the time-course full simulation. In addition, the proposed method

provides useful insights into self-organization phenomenon of Brus-

selator under parametric variations. Currently, we are working on its

application to simulate the conduction system of heart.
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