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Abstract—In this paper, we develop a variability-aware design method-
ology for reconfigurable filters used in multi-standard wireless systems.
To model the impact of statistical circuit component variations on the

predicted manufacturing yield, we implement several different analytic
variability quantification techniques based on a double-sided implementa-
tion of the first and second order reliability methods (FORM and SORM),
which provide several orders of magnitude improvement in computational

complexity over statistical sampling methods. Leveraging these efficient
analytic variability quantification techniques, we employ an optimization
approach using Sequential Quadratic Programming to simultaneously
determine the fixed and tunable/switchable circuit element values in

an arbitrary-order canonical filter to improve the overall robustness
of the filter design when statistical variations are present. The results
indicate that reconfigurable filters and impedance matching networks
designed using the proposed methodology meet the specified performance

requirements with a 26% average absolute yield improvement over
circuits designed using deterministic techniques.

I. INTRODUCTION

As wireless applications such as cellular telephones

(GSM/CDMA), global positioning systems (GPS), Bluetooth,

wireless local area networks (802.11a/b/g and WiMAX), and

ultrawideband (UWB) based wireless consumer electronics become

increasingly more pervasive, the development of systems that support

multiple wireless standards with different operating frequencies is

crucial [1]. To reduce both implementation complexity and power

consumption, it is desirable to minimize the required hardware for

multi-standard RF transceivers by employing reconfigurable circuit

blocks for receiving and transmitting the signals associated with

the different wireless standards [2]. However, efficiently realizing

these reconfigurable multi-standard wireless communication systems

poses significant modeling and design challenges [3].

In multi-standard wireless systems, an important challenge is

the realization of reconfigurable filters for frequency selection and

impedance matching in circuits such as low noise amplifiers, power

amplifiers, mixers, and pre-processing filters [4]–[8]. Reconfigurable

filters have been physically realized utilizing standard semiconductor-

based switches and varactors [9], [10], RF MEMS-based switches

and/or tunable capacitors [6]–[8], [11], and varactors implemented

using barium-strontium-titanate (BST) dielectrics [12]. In the past, the

design of reconfigurable filters has primarily been a manual process

that combines well-established design methods for standard non-

tunable filters with the specific knowledge of the designer. Recently,

we developed an automated design technique for reconfigurable filters

leveraging a constraint-relaxation optimization method to generate

circuits that deterministically meet the specified design require-

ments [13]. However, to facilitate the development of low cost multi-

standard wireless solutions with greater reliability and manufacturing

yield, these deterministic filter design techniques must be augmented

with design methods that systematically consider circuit component

variations.

In this paper, we develop a variability-aware design methodology

for reconfigurable filters used in multi-standard wireless systems.

To model the impact of statistical circuit component variations on

the predicted manufacturing yield, we implement several different

analytic variability quantification techniques based on a double-sided

implementation of the first and second order reliability methods

(FORM and SORM), which provide several orders of magnitude

improvement in computational complexity over statistical sampling

methods. Leveraging these efficient analytic variability quantification

techniques, we employ an optimization approach using Sequential

Quadratic Programming to simultaneously determine the fixed and

tunable/switchable circuit element values in an arbitrary-order canon-

ical filter to improve the overall robustness of the filter design

when statistical variations are present. The results indicate that

reconfigurable filters and impedance matching networks designed

using the proposed methodology meet the specified performance

requirements with a 26% average absolute yield improvement over

circuits designed using deterministic techniques.

II. MODELING AND DESIGN OF RECONFIGURABLE FILTERS

Filters have important implications for impedance matching and

frequency selectivity, which greatly impact RF receiver performance

metrics such as noise, power consumption, and gain. The level of

input and output impedance matching, which should be large in

the passband of the filter and small in the stopband of the filter, is

typically measured using the scattering parameters |S11| and |S22|.
The insertion loss, which is the attenuation of a signal passing

through the filter and is typically measured using |S21|, should be
minimized in the passband. The filter must also be designed to

satisfy the power handling constraints imposed by its circuit elements,

which are especially important for tunable/switchable RF MEMS

components [14].

Reconfigurable filters are significantly more challenging to design

than their fixed valued counterparts since they must provide passband

impedance matching and stopband rejection for different sets of

frequencies while only modifying a small number of switchable

and/or tunable circuit element values. In general, reconfigurable

microwave filters in multi-standard wireless applications are realized

using either lumped circuit elements or microstrips. Both lumped

and microstrip filters are typically designed using canonical lumped

filter representations such as the Butterworth/Chebyshev bandpass

filter topology displayed in Figure 1 [17], [18] where one or more of

the passive components may have multiple tunable/switchable values.

Once the fixed and reconfigurable circuit elements in the canonical

filter are determined, the filter can be physically synthesized by
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Fig. 1. Canonical bandpass filter topology with order n.
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Fig. 2. (a) and (b) – S-parameters for the 3rd order 2-band design (design example 1 listed in Table II) that satisfy the depicted passband and stopband
constraints; (c) and (d) – Probability that the 3rd order 2-band design does not meet the performance requirements on |S22| at each of the frequencies in the
passband and the stopband for standard (|S22| ≤ −10 dB and |S22| ≥ −4 dB) and reduced (|S22| ≤ −9 dB and |S22| ≥ −5 dB) design requirements.

employing lumped passive components for each circuit element or

by utilizing well-known techniques to transform the lumped circuit

elements into their equivalent transmission line representations [17],

[18]. Therefore, to develop a generalized technology-independent

variability-aware design method to improve the manufacturing yield

of reconfigurable filters, we focus on the design of the fixed and

tunable/switchable component values in the canonical filter topology

displayed in Figure 1 in this paper.

To model the impedance matching and insertion loss associated

with the filter topology of order n displayed in Figure 1, we
utilize a two-port ABCD parameter formulation, which provides a

convenient means for characterizing the cascaded stages of the filter.

The S-parameters (S11, S21, S22) of the filter are then determined

based on the ABCD parameters using standard 2-port parameter

transformations [18]. The parasitic resistances associated with the

capacitors and inductors in the filter model are calculated based

on the quality factor of the passive components. Given the power

handling limitations of certain reconfigurable filter implementation

technologies such as RF MEMS [14], we also model the voltage,

current, and power at each node in the filter. We provide more details

on the filter model in [13]. Leveraging this generalized model, we

can efficiently characterize and optimize the yield of reconfigurable

filters in multi-standard wireless applications when circuit component

variations are present.

III. VARIABILITY QUANTIFICATION

FOR RECONFIGURABLE FILTERS

A. Impact of Circuit Component Variations

Sources of statistical variation must be considered in during the

reconfigurable filter design process in order to generate robust designs

with acceptable manufacturing yield. For reconfigurable filters, the

sources of statistical variation can include both the uncertainty in the

complex electromagnetic models for the implemented lumped and

distributed filters as well as process variations during fabrication.

The distribution and standard deviation of the manufactured circuit

component values will depend on the implementation technology for

the filter. For instance, in [15] integrated capacitors implemented

using metal finger and metal-insulator-metal topologies have reported

standard deviations in capacitance of 0.65% and 0.11%, respectively,

while in [16], a standard deviation in effective inductance of up to 5%

was theoretically predicted for integrated spiral inductors. Given the

technology-dependent nature of the statistical distribution of circuit

component values, we consider a wide-range of possible standard

deviation values in this paper.

To understand the impact of circuit component variations on

reconfigurable filters, we examine the yield of a 3rd order 2-

band reconfigurable filter design created using the deterministic

design optimization method discussed in [13]. The design and its

specifications correspond to design example 1 listed in Table II in

Section V. The filter is implemented with fixed capacitor values

of [C1, C2, C3] = [0.964, 1.155, 0.921] pF and with fixed inductor
values of [L1, L3] = [0.1, 0.1] nH. The 2-bands are selected using
a switchable inductor with values of L2 = [2.001, 0.552] nH, which
correspond to the 2.1-2.5 GHz and 5.1-5.9 GHz bands, respectively.

The performance characteristics of the 2-band reconfigurable filter

are depicted in Figures 2a and 2b, respectively. As displayed in the

figures, each operating band has a range of passband and stopband

constraints with the critical passband constraints defined as the

constraints on the S-parameters at the frequencies at the edge of

the passband and the critical stopband constraints defined as the

constraints on the S-parameters at the frequencies in the stopband

closest to the passband.

To assess the yield implications of circuit component variations, we

simulated the probability of a constraint violation for |S22| at several
discrete frequencies in the passband and the stopband using Monte

Carlo sampling. Figure 2c depicts this point-wise constraint violation

probability for independent normally distributed circuit component

values with standard deviations of 5%. Note that the constraint

violation probabilities associated with |S11| and |S21| produce similar
results. Within a given continuous passband or stopband frequency

region, the critical passband and stopband constraints have the largest

point-wise constraint violation probability, and these probabilities

are highly correlated with the constraint violation probabilities at

nearby frequencies. Therefore, the critical passband and stopband

constraints will typically have the most impact on the overall yield

of the reconfigurable filter. To reduce the probability of a constraint

violation, we can exploit the post-fabrication reconfigurability pro-

vided by additional tunable circuit elements in the filter design.

The results depicted in Figure 2c demonstrates that the point-wise

constraint violation probability is substantially reduced if tunable

circuit elements are added to increase the yield. Reducing the

aggressiveness of the passband and stopband design requirements to

|S22| ≤ −9 dB and |S22| ≥ −5 dB also decreases the probability
of a constraint violation as displayed in Figure 2d.
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Fig. 3. (a) |S22| contours for the 3rd order 2-band design (band 2 at 5.5
GHz) in the z-plane where the statistical distributions of C2 and L2 have been
converted to independent normal random variables with standard deviations of
1. (b) Regions of integration corresponding to the DS-FORM and DS-SORM
analytic variability quantification methods.

B. Methods for Variability Quantification

To effectively optimize the design of the reconfigurable filter, we

must be able to efficiently characterize the performance impact of sta-

tistical component variations. Random sampling using Monte Carlo

simulation is the traditional approach for determining the statistical

distribution of a given performance metric resulting from circuit

component variations. The number of samples (Nsamples) required

to achieve a level of accuracy (a) for a given failure probability (Pf )

for a Monte Carlo simulation can be approximated by Nsamples =
(1−Pf )/(a2Pf ) [19]. To obtain an accuracy level of a = 0.01 (1%)
when using Monte Carlo simulation, 104 samples are needed when

Pf is 0.5, and approximately 106 samples are needed when Pf is

0.01. While more sophisticated techniques such as Latin Hypercube

Sampling and Importance Sampling can reduce the required number

of samples by an order of magnitude [20], [21], the required number

of samples is still too computationally demanding for optimization

problems where the statistical model must be evaluated hundreds of

times for a large number of performance constraints. Furthermore, for

gradient-based nonlinear optimization techniques, the random nature

of sampling techniques will cause numerical stability problems during

the computation of finite-difference gradients.

In contrast to sampling techniques, analytic variability quantifi-

cation methods deterministically calculate the failure probability

without random sampling based on

Pf = P [g(−→xv) ≥ gc] =

Z

g(−→xv)≥gc

f(−→xv)d−→xv (1)

where g(−→xv) and gc correspond to a given performance metric and its

associated constraint, respectively. The vector −→xv contains the circuit

component random variables, and f(−→xv) is the joint probability
density function of the circuit component value distribution [22]. In

general, directly computing the integral in (1) requires computation-

ally complex numerical methods. Consequently, efficient techniques

for approximating (1) are needed.

C. Analytic Variability Quantification with FORM and SORM

The first and second order reliability methods (FORM and SORM)

have been developed to efficiently approximate (1) in order to deter-

mine Pf with respect to a particular performance requirement [22]–

[24]. The general process for these analytic variability quantification

techniques typically consists of the following steps [23]:

1) Map the set of random variables −→xv (x-space) with their

arbitrary statistical distributions to a set of normal random

variables−→zv (z-space) with a mean of 0 and a standard deviation

of 1 using standard methods such as the Rosenblatt or Nataf

transformations [23];

2) Determine the most probable points (MPP) of failure associated

with each performance constraint in z-space;

3) Compute a first or second order approximation of the constraint

surface at the MPPs and use the approximation to estimate Pf .

Steps 2 and 3 are explained in detail in the following sections.

1) MPP Calculation: The MPP is defined as the closest point in

z-space to the origin where the performance constraint is violated.

This corresponds to the point in the z-plane where the highest

probability of a constraint violation occurs based on the jointly

normal distribution of the transformed design variables. To locate

the MPP for a given performance constraint, we solve the following

nonlinear optimization problem:

Minimize ‖ −→zv ‖2

Subject to gz(
−→zv) ≥ gc

−σz ≤ −→zv ≤ σz (2)

where gz(
−→zv) is a given performance constraint function mapped

to the z-plane variables, and σz is a bound on the space of the

statistically significantly standard deviations in which to search for

the MPP. We set σz = 3 in this study. Figure 3a displays the
|S22| contours for the 3rd order 2-band design (band 2 at 5.5
GHz) in the z-plane where the statistical distributions of C2 and L2

have been converted to independent normal random variables with

a standard deviation of 1. In this case, the performance constraint

is |S22| ≤ −10 dB. The first MPP associated with the two design
variables is indicated by the point −→zp1.

While in many applications only one MPP is statistically signifi-

cant, for typical filter performance constraints on the S-parameters

at certain frequencies, only a narrow range of circuit component

values will meet the specified performance requirements. Therefore,

in addition to locating the primary MPP by solving (2), we also

search for a secondary MPP, −→zp2, by solving (2) with the additional

constraint on −→zv that the solution must be in the opposite quadrant

from the quadrant containing −→zp1. In practice, it typically requires

several hundred model evaluations to locate −→zp1 and
−→zp2, which is

several orders of magnitude less than the number of model evaluations

required for Monte Carlo simulations as we discuss in Section III-D.

2) First/Second Order Constraint Surface: Once we have deter-

mined the MPPs associated with a particular constraint, we utilize

either a first or second order approximation of the constraint surface
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TABLE I

COMPARISON BETWEEN ANALYTIC VARIABILITY QUANTIFICATION

METHODS FOR THE 3RD ORDER 2-BAND FILTER (DESIGN EXAMPLE 1)

Std. Freq. |S11| Probability of Not Meeting |S11| Requirement
Dev. (GHz) Req. (dB) FORM DS-FORM SORM DS-SORM Sampling

5%

1.60 ≥-4 0 0 0 0 0

2.10 ≤-10 0.402 0.402 0.408 0.408 0.419

2.30 ≤-10 0.018 0.020 0.026 0.028 0.022

2.50 ≤-10 0.500 0.500 0.516 0.516 0.499

3.27 ≥-4 0.471 0.471 0.478 0.478 0.474

3.84 ≥-4 0 0 0 0 0

5.10 ≤-10 0.500 0.500 0.505 0.505 0.513

5.50 ≤-10 0.035 0.046 0.040 0.053 0.048

5.90 ≤-10 0.328 0.328 0.335 0.335 0.328

7.89 ≥-4 0.096 0.096 0.104 0.104 0.098

2%

1.60 ≥-4 0 0 0 0 0

2.10 ≤-10 0.267 0.267 0.270 0.270 0.277

2.30 ≤-10 0 0 0 0 0

2.50 ≤-10 0.500 0.500 0.507 0.507 0.495

3.27 ≥-4 0.428 0.428 0.430 0.430 0.424

3.84 ≥-4 0 0 0 0 0

5.10 ≤-10 0.500 0.500 0.502 0.502 0.504

5.50 ≤-10 0 0 0 0 0

5.90 ≤-10 0.132 0.132 0.134 0.134 0.133

7.89 ≥-4 0.001 0.001 0.001 0.001 0.001

Mean Relative Error

3.06% 1.42% 2.77% 3.11% N/ABetween FORM/SORM

and Sampling

Mean Absolute Error

0.004 0.003 0.005 0.005 N/ABetween FORM/SORM

and Sampling

Average CPU Time (s) 0.18 0.22 0.18 0.22 293.34

at the MPPs to determine Pf . We calculate the first order linear

approximation of the constraint surface at the MPP using

Pform1 = Φ(±β1) (3)

where Pform1 is the probability of a constraint violation based on the

first order information at −→zp1, Φ(·) is the standard normal cumulative
distribution function, β1 =‖ −→zp1 ‖2, and the sign of β1 is determined

by the type of constraint function [23]. This is known as the first

order reliability method (FORM). Based on −→zp2, we also calculate

the probability of a constraint violation (Pform2) at the secondary

MPP using a formulation similar to (3). Figure 3b depicts the region

of integration used to determine Pform1 and Pform2. The total

probability of failure is Pf = Pform1 + Pform2. We refer to this as

double-sided FORM (DS-FORM).

To provide a second order approximation of the constraint surface

at the MPP, more complex formulations are required. In [24], the

authors develop an analytic technique to obtain this second order

approximation based on a local circular representation of the angle

of curvature near the MPP, which is depicted in Figure 3b. This

technique is known as the second order reliability method (SORM).

Details on a typical method for the calculation of the probability of a

constraint violation at a given MPP (Psorm1 at
−→zp1 or Psorm2 at

−→zp2)

using SORM are provided in [24]. When we use both the primary

and secondary MPPs to calculate Pf (Pf = Psorm1 + Psorm2), we

refer to this as double-sided SORM (DS-SORM).

D. Accuracy and Speed of FORM and SORM for Filter Design

To assess the accuracy of analytic variability quantification using

the FORM and SORM, we compare the probability of a constraint

violation computed using these techniques to Monte Carlo simulation

results for the 3rd order 2-band reconfigurable filter design discussed

in Section III-A with circuit component value variations that are

normally distributed with standard deviations of 5% and 2%. The

results are listed in Table I. In certain cases, using SORM/DS-

SORM over FORM/DS-FORM provides a modest improvement in

the accuracy of Pf . However, in other cases, the circular curva-

ture used to approximate the constraint surface using the SORM

formulation from [24] overestimates Pf , particularly in the cases

where the double-sided methods yield substantially different results

from standard FORM/SORM. The DS-FORM technique provides the

lowest error (1.42%) on average for the simulated cases with respect

to the Monte Carlo simulation results. Furthermore, the DS-FORM

method provides three orders of magnitude improvement in runtime

over Monte Carlo simulations with enough samples to provide 1%

accuracy.

IV. VARIABILITY-AWARE RECONFIGURABLE FILTER DESIGN

OPTIMIZATION

We formulate the variability-aware design optimization problem

for reconfigurable filters as

Minimize Pftotal

Subject to S11IT ≤ S11IC, S11OT ≥ S11OC

S22IT ≤ S22IC, S22OT ≥ S22OC

S21IT ≥ S21IC, S21OT ≤ S21OC

SPT ≤ SPC

−−−→xmin ≤ −→x ≤ −−−→xmax (4)

where Pftotal is the summation of the probabilities that each perfor-

mance metric will fail to meet its required value for the applicable

critical passband constraints and critical stopband constraints on

|S11|, |S21|, and |S22| as well as for the applicable power handling
constraints in each of the M frequency bands of the reconfigurable

filter. We also probabilistically compute the failure probability associ-

ated with the S-parameter constraints that are active at the conclusion

of the deterministic optimization process. The failure probabilities

are calculated using the DS-FORM method described in Section III-

C. Note that we continue to deterministically apply the non-critical

passband and stopband constraints on |S11|, |S21|, and |S22| during
the optimization process to ensure that the design will continue to

meet the specified design requirements.

The design variables in the optimization problem are the individual

fixed and tunable/switchable capacitors and inductors in each series

and shunt branch of the nth order filter,

−→x =
h−→
C1,

−→
C2, · · · ,

−→
Cn,

−→
L1,

−→
L2, · · · ,

−→
Ln

i

. (5)

If
−→
Ci or

−→
Li is a switchable or tunable circuit element, the design

variable vector contains several component values that span the

element value ranges associated with the switchable or tunable states.

The deterministic passband constraints on |S11| (S11IT ≤ S11IC),

|S22| (S22IT ≤ S22IC) and |S21| (S21IT ≥ S21IC) as well as the

deterministic stopband constraints on |S11| (S11OT ≥ S11OC), |S22|
(S22OT ≥ S22OC), and |S21| (S21OT ≤ S21OC) are defined in the

same manner as those described in [13]. The constraint SPT ≤ SPC

limits the power at each node of the filter to ensure that the power

handling capabilities of the circuit components are not exceeded in

any of the possible reconfigurable states. The circuit element values

are constrained by xmin and xmax to ensure that their values are

suitable for on-chip or in-package integration.

The first step in the proposed variability-aware reconfigurable filter

design methodology is to leverage the deterministic automated design

method proposed in [13] to create a reconfigurable filter design that

provides a suitable start point for the variability-aware design opti-

mization process. We then solve the (4) using Sequential Quadratic
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TABLE II

RECONFIGURABLE FILTER DESIGN EXAMPLES FOR THE VARIABILITY-AWARE DESIGN METHODOLOGY

Design Frequency Zs ZL S
i

11min
& S

i

11max
& RBi & Lmin Lmax Cmin Cmax Quality SP C

Example Bands (GHz) (Ω) (Ω) S
i

22min
S

i

22max
RT i (nH) (nH) (pF) (pF) Factor (mW)

1
WCDMA – 802.11b/g

50 80 -10 dB -4 dB 0.300 0.10 10.0 0.01 5.0

20 (L)

N/A
(3rd order)

(2.1–2.5 GHz) and and

802.11a (5.1–5.9 GHz) 50 (C)

2

WCDMA (2.11–2.17 GHz)
25

50 -10 dB -3 dB 0.130 0.05 5.0 0.05 5.0
100

500
802.11b/g (2.405–2.484 GHz)

to
(5th order) 802.11a (5.15–5.35 GHz)

50
(Resonator)

802.11a (5.725–5.825 GHz)

TABLE III

PERCENTAGE YIELD FOR EXAMPLE 1 CREATED WITH AND WITHOUT

VARIABILITY-AWARE OPTIMIZATION (VAO)

Percentage of Designs Meeting Requirements (Yield in %)

No Tunable | C1 Tunable | C2 Tunable | C3 Tunable

Req. Std. No With No With No With No With

Set Dev. VAO VAO VAO VAO VAO VAO VAO VAO

1

5.0% <0.1 <0.1 0.1 0.3 0.1 0.4 <0.1 0.3

2.0% <0.1 1.0 0.4 3.5 1.0 6.0 0.2 3.9

1.0% 0.1 8.3 1.3 15.1 3.4 26.2 0.8 21.6

0.5% 0.4 31.4 3.5 41.0 8.3 62.0 2.1 62.1

2

5.0% 4.3 8.3 9.9 14.6 25.3 37.8 9.6 16.8

2.0% 29.2 47.7 45.1 59.4 66.9 87.2 38.7 68.7

1.0% 68.5 88.7 83.0 93.7 96.4 99.8 80.1 97.7

0.5% 97.3 >99.9 99.7 >99.9 >99.9 >99.9 99.6 >99.9

3

5.0% 16.6 38.4 27.7 52.4 51.9 86.5 28.5 63.8

2.0% 69.0 94.3 81.3 97.3 96.6 >99.9 78.3 99.8

1.0% 98.2 >99.9 99.5 >99.9 >99.9 >99.9 99.2 >99.9

0.5% >99.9 >99.9 >99.9 >99.9 >99.9 >99.9 >99.9 >99.9

Requirement Passband |S11| and |S22| ≤ −10 dB

Set 1: Stopband |S11| and |S22| ≥ −4 dB

Requirement Passband |S11| and |S22| ≤ −9.5 dB

Set 2: Stopband |S11| and |S22| ≥ −4.5 dB

Requirement Passband |S11| and |S22| ≤ −9 dB

Set 3: Stopband |S11| and |S22| ≥ −5 dB

Programming (SQP), a gradient-based nonlinear programming tech-

nique [25]. Based on the simulations in [13], the reconfigurable filter

design problem is convex in the local region around any given point

in the design space, and therefore, SQP is well-suited for solving

the variability-aware reconfigurable filter optimization problem. The

solution to the optimization problem provides the circuit element

values for the variability-aware design. Once a final set of circuit

values is obtained, we then utilize sampling techniques to determine

the yield provided by the design.

Several different runs of the optimization method with different

design requirements and circuit configurations can be performed

to examine the trade-off between hardware complexity, design re-

quirements, and the desired manufacturing yield when a given level

of statistical variation in the circuit component values is present.

Specifically, we combine variability-aware optimization with two

other complementary design techniques to increase manufacturing

yield: (1) replace the fixed circuit elements with tunable components

to dynamically compensate for circuit component value variations

post-fabrication and (2) relax the design requirements associated

with the reconfigurable filter. By applying these design techniques

in conjunction with variability-aware optimization, we can produce

reconfigurable filter designs with the desired hardware complexity,

performance, and yield.

V. RESULTS

To evaluate the yield improvement provided by the variability-

aware design methodology for reconfigurable filters, we apply the

proposed methodology to two design examples, which are initially

created using the deterministic optimization process described in [13]

based on the constraints listed in Table II. We assume independent

and normally distributed circuit component value variations with

standard deviations ranging from 5% to 0.5%. Note that when tunable

elements are added for the purposes of variability compensation,

we assume that the maximum and minimum values of the tunable

elements have a 4-to-1 ratio, which can be attained by both RF

MEMS and semiconductor based variable capacitors [9], [26].

In design example 1, we consider filters with the 3 sets of

design requirements listed in Table III. We previously discussed the

deterministic version of the 3rd order 2-band filter in design example

1 in Section III-A and in Figures 2a and 2b. We also consider the

yield of designs with a tunable circuit element replacing either C1,

C2, or C3. The average CPU time for generating the cases using

the variability-aware optimization method is 18.8 minutes using a

MATLAB implementation of the proposed method on a Windows

machine with a 2.4 GHz AMD Opteron processor and 2 GB of

RAM. In contrast, variability-aware optimization using Monte Carlo

simulations would require approximately 17.4 days to complete if the

numerical instability associated with the random sampling method for

finite-difference derivative calculations could be overcome.

Table III lists the percentage of realized filter implementations

meeting the requirements for design example 1. We utilize Monte

Carlo simulations to determine the percentage yield for each design.

Regardless of the presence of tunable circuit elements and/or relaxed

design constraints, the variability-aware design optimization process

(”with VAO” in Table III) generates reconfigurable filters that provide

substantially greater yield than the designs generated using only

deterministic optimization (”no VAO” in Table III). Excluding the

cases where the yield for the designs created without variability-

aware optimization is less than 0.5% and greater than 95.0%, the
average yield improvement provided by the variability-aware design

optimization process is 21.5% and 412.6% in absolute and relative

terms, respectively. On average, this yield improvement is obtained

at the expense of a decrease in passband |S21| of 0.13 dB (7.9%).
The increasing yield obtained as the design constraints are relaxed

from requirement set 1 to requirement set 3 demonstrates that the

proposed methodology provides an effective means for exploring the

trade-off between performance and yield.

In the second design example, we generate a 5th order recon-

figurable impedance matching network with 4 operating frequency

bands corresponding to WCDMA (2.11-2.17 GHz), 802.11b/g (2.405-

2.484 GHz), and 802.11a (5.15-5.35 GHz and 5.725-5.825 GHz) [5].

The filter is designed to match Zs values that range from 25 Ω to 50
Ω. The canonical filter’s inductor values are [L1, · · · , L5] = [0.050,
0.595, 0.050, 0.526, 2.853] nH, and the filter’s fixed capacitor values

are [C1, C5] = [2.306, 1.561] pF. The continuously tunable elements
C2 and C4 have capacitance values ranging from [0.050, 0.367] pF

and [1.329, 1.233] pF, respectively, to achieve impedance matching

when Zs varies from 25 Ω to 50 Ω. C3 is a switchable capacitor with
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TABLE IV

PERCENTAGE YIELD FOR EXAMPLE 2 CREATED WITH AND WITHOUT

VARIABILITY-AWARE OPTIMIZATION (VAO)

Percentage of Designs Meeting Requirements (Yield in %)

C2, C4 Tunable C2–C4 Tunable C1–C5 Tunable

Req. Std. No With No With No With

Set Dev. VAO VAO VAO VAO VAO VAO

1

5.0% <0.1 <0.1 <0.1 4.6 30.7 60.0

2.0% <0.1 <0.1 6.6 25.8 72.2 99.5

1.0% <0.1 <0.1 27.5 59.3 95.6 >99.9

0.5% <0.1 4.9 68.9 91.2 99.9 >99.9

2

5.0% 1.8 >99.9 88.8 >99.9 99.8 >99.9

2.0% 26.3 >99.9 99.7 >99.9 >99.9 >99.9

1.0% 73.6 >99.9 >99.9 >99.9 >99.9 >99.9

0.5% 97.9 >99.9 >99.9 >99.9 >99.9 >99.9

Requirement Passband |S11| and |S22| ≤ −10 dB

Set 1: Stopband |S11| and |S22| ≥ −3 dB

SP C ≤ 500 mW

Requirement Passband |S11| and |S22| ≤ −9 dB

Set 2: Stopband |S11| and |S22| ≥ −4 dB

SP C ≤ 600 mW

four discrete values of [4.209, 3.215, 0.520, 0.322] pF that correspond

to the four frequency bands of the filter with increasing frequency.

In design example 2, we consider the percentage yield of the

nominal case where C2 and C4 are tunable circuit elements and

cases where the other circuit elements are tunable. We determine

the yield for the nominal and reduced design requirement sets

displayed in Table IV. Table IV lists the percentage of realized filter

implementations meeting the design requirements for design example

2. Excluding the cases where the yield for the designs created without

variability-aware optimization is less than 0.5% and greater than

95.0%, the average yield improvement provided by variability-aware
optimization is 31.8% and 632.5% in absolute and relative terms,

respectively. On average, this yield improvement is obtained at the

expense of a decrease in passband |S21| of 0.04 dB (2.8%).

In both design examples, the yield improvement obtained using

the variability-aware optimization method greatly depends on the

standard deviation of the circuit element values. When the standard

deviation of the circuit element values is relatively large, the yield

of the design with the nominal requirements is relatively low. This

low yield implies that the original deterministic design has extremely

aggressive performance requirements given the relatively large circuit

element value variations, and therefore, the variability-aware design

optimization method can only provide a modest absolute yield

increase. In these large standard deviation cases, the variability-

aware design optimization method must be coupled with changes

in the design such as tunable circuit elements and/or relaxed de-

sign requirements to substantially increase the manufacturing yield.

Therefore, the designer must decide how to best trade-off the increase

in manufacturing yield with the performance implications of relaxed

design requirements and the additional circuit complexity of adding

tunable circuit elements. The proposed robust automated design

methodology provides the designer with the means to efficiently

explore this trade-off for a wide range of desired yield values.

VI. CONCLUSION

In this paper, we develop a variability-aware design methodology

for reconfigurable filters used in multi-standard wireless systems.

Leveraging efficient analytic variability quantification techniques, the

proposed method employs an optimization approach using SQP and

utilizes tunable circuit elements to improve the overall robustness

of the filter when component variations are present. The results

indicate that reconfigurable filters and impedance matching networks

designed using the proposed methodology meet the specified per-

formance requirements with a 26% average absolute yield improve-

ment over circuits designed using deterministic techniques. The pro-

posed variability-aware design methodology provides a technology-

independent means for creating reconfigurable filters with increased

reliability and yield, which is crucial for the cost-effective realization

of RF transceivers in multi-standard wireless applications.
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