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Abstract—Side channel attack based upon the analysis of power
traces is an effective way of obtaining the encryption key from
secure processors. Power traces can be used to detect bitflips
which betray the secure key. Balancing the bitflips with opposite
bitflips have been proposed, by the use of opposite logic. This is
an expensive solution, where the balancing processor continues to
balance even when encryption is not carried out in the processor.

We propose, for the first time, a multiprocessor algorithmic
balancing technique to prevent power analysis of a processor
executing an AES cryptographic program, a popular encryption
standard for embedded systems. Our technique uses a dual proces-
sor architecture where two processors execute the same program in
parallel, but with complementary intermediate data, thus balancing
the bitflips. The second processor works in conjunction with the
first processor for balancing only when the AES encryption is
performed, and both processors carry out independent tasks when
no encryption is being performed.

Accessing the encryption key or the input data by the first
processor begins the obfuscation by the second processor. To stop
the encryption by the second processor, we use a novel signature
detection technique, which detects the end of the encryption
automatically. The multiprocessor balancing approach (MUTE-
AES) proposed here reduces performance by 0.42% and increases
the size of the hardware by 2X (though reduces to 0.1% when no
encryption is being performed). We show that Differential Power
Analysis (DPA) fails when our technique is applied to AES. We
further illustrate, that by the use of this balancing strategy, the
adversary is left with noise from the power profile with little useful
information.

I. INTRODUCTION

The rapid increase in the use of embedded systems for
performing secure transactions, has proportionally increased the
security threats which are faced by such devices. Side channel
attack, a sophisticated security threat to embedded devices like
smartcards, mobile phones and PDAs, exploits the external
manifestations like processing time [8], power consumption
[17] and electromagnetic emission [25] to identify the internal
computations. Power analysis attack, introduced by Kocher et al.
[16] in 1998, is still used by adversaries to eavesdrop on confi-
dential data while the device is executing a secure transaction.
The adversary observes the power trace dissipated/consumed by
the chip during the encryption/decryption of a cryptographic
program (such as DES, AES, RSA, ECC, etc.) and predicts
the secret key used for encryption by extracting necessary
information from the power trace.
There are two key power analysis methods: (1), Simple Power

Analysis (SPA), which reveals direct information about the in-
termediate data from the power magnitude; and (2), Differential
Power Analysis (DPA), which requires multiple power traces
to perform a statistical analysis to predict the data used in
computations [16]. SPA identifies the Hamming weights (i.e.,
number of 1’s set in the output [7]) of the intermediate data using
the power magnitude of certain instruction executions, based on
the hypothesis that the higher the Hamming weight, the higher
the power magnitude [19]. This hypothesis allows an attacker to
guess the correct key more quickly, than if he/she were to use
brute force. DPA is a more powerful technique than SPA, which

is based on the hypothesis that there is a significant difference
in the power consumption in processing 1’s and 0’s [16].

The bitflips (or the Hamming weight) caused by the secret
key are significantly visible in the power trace, causing enough
variations to reveal values. Balancing such bitflips during the
encryption is one of the most appropriate solutions for these
power analysis attacks. Recent upsurge in the use of multiproces-
sors in embedded systems and their vast deployment in devices
performing secure transactions (such as mobile phones) [2, 22,
36] motivated the use of a solution involving a multiprocessor
architecture to balance the bitflips. The balancing can be per-
formed using multiprocessors by executing the algorithm using
instructions with proper data in one processor, while executing
the inverted data in parallel in the second processor.

This paper proposes a multiprocessor balancing technique
using two processors (called MUTE-AES), where a second
processor is utilized to execute instructions of the AES program
in parallel with the first processor but with inverted intermediate
data. The balancing is performed only when necessary, by com-
bining the second processor during the time when the encryption
program is executed in the first processor.

An encryption program starts by accessing the key and the
input data from the data memory. In this paper, the balancing is
triggered when the key or the input data is accessed from the
data memory and the balancing is stopped when the signature1

of the AES encryption expires. Both processors will execute in-
dependently and the second processor will start balancing when
the first processor identifies an encryption routine (by accessing
the input data or key which are in specific locations). The second
processor is allowed to continue its original execution after the
balancing is ceased.

Despite there being sufficient noise in a multiprocessor en-
vironment, where multiple processors might be doing tasks in
parallel, masking the actual behavior in the power profile from
a single processor is difficult. Millions of samples taken will
statistically average out the noise, which then will reveal the
encryption key. Hence, the balancing technique described here
guarantees the power analysis resistance all of the time and does
not allow any leakage of secure information to an adversary.

The rest of the paper is organized as follows. Section II
discusses previous countermeasures proposed to combat power
analysis based attacks. The algorithmic balancing methodology
for AES is presented in Section III. Section IV defines the
system architecture and details the signature detection. The
experimental setup is explained in Section V. Experimental
results are presented in Section VI. A discussion is provided
in Section VII. The paper is concluded in Section VIII.

1Signatures can be used to detect the encryption routines in a program based
on certain unique patterns of instruction executions. For example, in AES, there
are closely clustered XOR instructions, signifying that encryption is taking place.
We use such a signature in AES encryption, computed based on concomitance
analysis [14]
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II. RELATED WORK

Power analysis attacks have been researched extensively in
the recent past, and various countermeasures have been proposed
to combat such attacks. The key countermeasures are masking,
current flattening, non-deterministic processing and balancing.
Masking techniques [9, 12, 20] involve the use of random

values in the actual computation to obfuscate the power profile
from revealing a correlated magnitude with the actual data being
processed. To protect the AES algorithm, the result after each
round is additionally computed with random values to produce
random traces at critical points in the power profile [34].
Current flattening technique proposed by Muresan and Gebo-

tys [21] uses nops to provide sufficient discharge to maintain
the dissipated current at a fairly constant value. The secure
coprocessor [31], which is designed for AES-based biometric
applications, uses a constant power dissipating logic for any
bit transitions. This coprocessor increases area cost by 3X and
power cost by 4X. A signal suppression technique is proposed by
Ratanpal et al. [26] to reduce the variations in the power profile
for different inputs using a separate hardware component.
A non-deterministic processor [18] can be used to execute

the program out-of-order, where the adversary will not be able
to determine the instructions and their corresponding points in
the power trace. This will not only scramble the power patterns
for every execution of the program but also fails in Differential
Power Analysis (DPA), breaching the correlation between the
simulation and the power measurement.
We have observed several logic/circuitry level balancing tech-

niques [13, 30, 32, 33] proposed in the recent past. These
techniques use a complementary logic or a modified secure logic
to balance bitflips. For example, if the original logic flips from
0 → 1, the complementary logic is designed to flip from 1 →
0 at the same time as the original circuitry. Dual-Rail logic [30]
(also known as Dual-Rail pre-charge (DRP)) contains double the
logic, one the original logic circuit and the other a similar logic
but complementing the discharge from bitflips of the original
[28]. This DRP design dissipates the same amount of power
regardless of the data. Sense Amplifier Based Logic (SABL)
[13] is designed to dissipate an unvarying amount of dynamic
power for all bit transitions. The four possible bit transitions are
1→ 0, 0→ 1, 1→ 1 and 0→ 0. The Wave Dynamic Differential
Logic (WDDL) is proposed by Tiri and Verbauwhede [32, 33]
to dissipate power which is input independent. WDDL utilizes a
complementary gate in parallel to the original, which receives the
inverted inputs of the original, thus producing inverted outputs
of the original gate. This results in an unvarying balanced power
for different inputs.
Most masking techniques are algorithmic specific approaches

requiring a higher degree of manual intervention and are proved
to be vulnerable to second-order DPA attacks [15, 23, 35]. A
highly dependent code segment cannot be executed out-of-order,
and thus not protected by non-deterministic processors [18]. The
current flattening technique [21] flattens the dissipated current
based on basic blocks and consumes 75% additional runtime.
Even though the circuitry level balancing techniques [13, 30, 32,
33] provide strong resistance to power analysis attacks, they also
increase the chip area by 2X (some techniques require 4X), to
accommodate the complementary logic. These additional logic
circuits, which are permanently built inside the chip, are futile
when no encryption is performed. WDDL techniques [32, 33]
also require the routing of wires to be balanced, and the DRP
logic [30] needs an additional compilation of special libraries.
Our multiprocessor balancing technique, MUTE-AES, also

requires manual intervention and it is algorithm specific at
this stage, similar to masking techniques [9, 12, 20]. However,
MUTE-AES is comparatively easy to generalize by examining

the algorithm and is not vulnerable to second-order DPA.MUTE-
AES does not need a complete software modification compared
to current flattening [21] and it does not cause much runtime
overhead. Compared to the hardware balancing methods [13, 28,
30, 32, 33],MUTE-AES consumes twice the hardware only when
balancing is required, by utilizing the already available proces-
sor. A miniscule amount of additional hardware is associated for
the synchronization and signature detection circuit in MUTE-
AES. The second processor is borrowed in MUTE-AES only
when an encryption/decryption part in a cryptographic program
is executed by the first processor, and otherwise the second
processor is left for normal processing of other tasks. MUTE-
AES does not need any libraries to be modified or compiled as
has to be done in for DRP logics [30]. Hence, MUTE-AES is an
easily implementable system with reduced area overhead usage
for switching and synchronizing when no balancing is required.

A. Contributions

• For the first time, an algorithmic level multiprocessor
balancing technique is proposed for AES.

• A Signature Detection technique is presented to switch off
the balancing processor.

B. Limitations and Assumptions

• Our technique addresses only multiprocessor embedded
systems with at least two identical processors.

• We assume that our system is self contained with separate
memories for each of the processors.

• Caching is disabled during balancing.
• The secret key and the input data are stored in fixed data

memory locations.
• Our balancing system has minimal or no operating system

support.
• Both processors are clocked by a single source.
• The system only balances the AES algorithm, and not

other encryption algorithms. Other algorithmic methods are
needed to balance other encryption programs.

III. ALGORITHMIC BALANCING

We present here the algorithmic balancing as applied to AES
to protect AES from power analysis. As shown in Figure 1(a),
the AES encryption has several main functions: a key scheduling
process which will generate subkeys (K1,K2,...) for each round
from the original Key, the AddRoundKey function to XOR the IN-
PUT with the Key, the SubBytes function for the SBOX lookups,
ShiftRows and MixColumns to scramble the intermediate bytes.
There are four SBOXes used in the SubBytes function.
Figure 1(b) and Figure 1(c) depict two different inversion

approaches (partial and complete) in AES algorithm. The partial
inversion approach is presented here only to emphasize the sig-
nificance of the complete inversion. Both inversion approaches
have the same key scheduling function as shown in Figure 1. The
inverted key Key of the original AES is divided into subkeys
and the inversion is performed when and where necessary to
create inverted subkeys (denoted as i in a round box in Figure 1
on the right side segment of both figures). The SBOXT used
in key scheduling is a transposed version (i.e., indices swapped)
of the original SBOX, so called due to the inverse value used
for the index. As the partial inversion in Figure 1(b) reveals,
the inverted input INPUT is bitwise XORed (the encryption in
128-bit AES is performed in a 4×4 byte matrix) with the inverted
first subkey K1. Since this will produce the normal output as the
original AES (normal output denoted as n) the normal SBOX
accesses will be performed. This will be followed by the normal
ShiftRows and MixColumn operations. The final function in the
first round (Round 1) is the AddRoundKey function which will
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(c) Complete Inversion

Fig. 1. AES Algorithmic Balancing (images influenced by [29])

XOR the intermediate data with the second inverted subkey K2.
Hence, an inverted output will be produced (denoted as f ) after
Round 1. This inverted output is again inverted (the inversion is
denoted as a round box labeled i in Figure 1(b)) and the normal
value of the original AES is sent to the next round. Similar
process continues till the end of the AES encryption.

The complete inversion as shown in Figure 1(c) has the same
key scheduling process of the partial inversion, but has two main
different components in the encryption process (the changed
components are shaded). Instead of the inverted input INPUT ,
the original input INPUT is used. And all the SBOXes (four

SBOXes) in SubBytes
T

are inverted and transposed of the orig-
inal. The AddRoundKey operation for the original input INPUT
and the inverted subkey K1 will produce the inverted output of

the original (denoted as f to specify flipped). Since SubBytes
T

is inverted and transposed the inverted indices coming into the
SBOXes will produce the inverted outputs compared to the
SBOX outputs in the original AES. There will be four inverted
outputs (each from an SBOX) and the AddRoundKey operation
with the inverted subkey K2 will produce the inverted outputs
of the original. This will continue till the end of the program.
These modifications have produced a complete inversion in terms
of data bits throughout the encryption.

The partial inversion in Figure 1(b) does not process the
inverted data at the SBOX operations, but generates inverted out-
puts after the AddRoundkey operation of each round. This has a
considerable effect in balancing (even though it is not completely
balanced) especially when we look at the implementation of the
AES encryption for each round, which does the XOR with the
subkey first and then the SBOX accesses. For example, the first
32 bits intermediate result Y0 in an encryption round is produced
(in the C code) as Y0 = K1ˆFT 0ˆFT 1ˆFT 2ˆFT3; where FT 0,
FT 1, FT 2 and FT 3 are the four SBOX lookups. According
to this implementation it is visible that there is balancing in the
process, since the inverted subkey produces inverted intermediate
data after each XOR. However, the SBOXes (which are the main
attack points) are receiving the normal input as the original
and producing normal output. Since there is pipelining in the
processor, there exists a chance that the balancing in the pipelines
obfuscates the unbalanced SBOX access pipeline stages.

Since the inverted approaches shown in Figure 1 use certain
extra flipping operations (denoted as i in round blocks), the
original AES program should also have similar operations with

the same set of instructions to synchronize both programs (i.e.,
original and inverted). Note that balancing is performed by
executing same instructions in parallel but with complemented
data values, which shows that the synchronization between
processors is important. Hence, we created variables for such
flipping operations, assigning all 0’s in the original program and
all 1’s in the inverted program. XORing at both instances with
that variable will perform the required task.
The attack point (the place where DPA is performed) in AES

is the SBOX access, where an 8-bit intermediate data is loaded
and stored into the memory. The following analysis proves
that complete algorithmic balancing will provide an effective
countermeasure against power analysis side channel attack for
AES. To do this we consider a power model based on Hamming
distance [6], as shown in the following Equation

P = kH + n, (1)

where P is the power consumed, H is the Hamming weight
function, k is the scalar gain and n is a noise term. H is given
by Y ⊕X , where X is the previous value in the register and Y is
the new value after the operation. As in the paper by Brier et al.
[6] we assume that the initial value X = 0 (such an assumption
is valid for any pre-charged logic [33]).
The 8-bit intermediate data in the Original AES (shown in

Figure 1) is referred as x and the 8-bit intermediate data in the
complete inversion (shown in Figure 1(c)) is referred as x. The
values of x and x are complementary, and as such the Hamming
weights between x and x will be the number of bits in x. Since
the Hamming weights for x ⊕ x is always 8, the attack point
is no longer vulnerable; k and n are constants, and since H
is constant, P is a constant value. If the attack also considers
the power consumption caused by the bitflips in the bus during
load and store, the power model is added with an additional
component rHb as explained in [4]. The modified power model
is presented in Equation 2, where r is the scalar gain and Hb is
the Hamming weight in the bus during load or store.

P = kH + rHb + n (2)

Since the complete balancing uses complementary index and
retrieving complementary outputs from the SBOX (as shown in
Figure 1), the resulting Hamming weight Hb is also constant.
Hence, the power consumption P is still maintained at a constant
value.

680



IV. SYSTEM ARCHITECTURE

In this section we present the MUTE-AES architecture, which
includes an in-built module (called FUNIT) for signature detec-
tion to stop balancing by identifying the encryption routine in
AES. It is assumed that the key and input data are stored and
retrieved from well known fixed memory locations, thus the start
time is well understood.

A. Signature Detection

The instruction(s) sequences in an execution trace can be
monitored and analyzed to accurately identify the encryption
routines in a processor [5]. Concomitance analysis [14] is used
in this paper to capture the encryption routine in AES, by looking
at instruction executions to realize the patterns of temporal
correlation. According to this analysis the signature for the
encryption routine of the AES is identified as the consecutive
XOR instructions occurring within a 15 instruction window as
shown in Figure 2.

Encrypt:

  sw $2,8($30)

  lw $2,4($30)

  lw $3,8($30)

xor $2,$2,$3

  sw $2,4($30)

  lw  $3,8($30)

  sll  $2,$3,$2

  lw  $3,0($30)

  xor $2,$3,$2

  sw $2,0($30)

  lw  $3,0($30)

  srl  $2,$3,0x10

…

…

…

     .end Encrypt

N<=15

Fig. 2. Signature to Capture AES encryption

A comprehensive analysis of signature detection within en-
cryption programs, and non-cryptographic programs are reported
in [5], where it is shown that there is almost no signature
hits which occur in non-cryptographic programs (with very few
false positives). The signature detection unit, FUNIT, is shown
in Figure 3 which exploits two flag registers: (1), xorreg, to
indicate an XOR instruction execution (i.e., turns on when an
XOR instruction is executed); and (2), sel, to indicate whether
two consecutive XORs are seen within an instruction window of
15 (i.e., turns on when only two consecutive XORs are seen).
A counter is used to count each instruction execution for the
window computation. When an XOR instruction is executed
while the counter is under 15 and above 0, the sel flag is either
turned on or left on, the xorreg is turned off, and the counter is
reset. If the counter is above 15, the sel is turned off and the
xorreg is turned off, and the counter is reset.

 FUNIT counter

sel

xorreg

data memory

CORE1

Fig. 3. Signature Detection Circuit

AES encryption uses key scheduling to create subkeys before
encryption. Such an operation also requires balancing where
the subkeys need to be created on-the-fly using the inverted
secret key. However our signature detection captures only the
encryption routine but not the key scheduling part. Therefore
in our approach we propose to set the sel flag when the secret

key or input data is initially accessed from the data memory,
by using the fixed addresses the key and data are stored. Since
the encryption continues after the last access of the memory
location where the encryption key or input data is stored, it is not
possible to stop the balancing based on memory locations. Note
that the only way to stop the second processor from balancing
is when the signature expires. Thus, the signature detection unit
is a necessity to stop balancing. i.e., the start of the balancing
is triggered by first the access to the memory location of the
encryption key or the input data, and the balancing is ended
when the signature is no longer detected.
If there is only a fixed encryption program, then it is possible

to use the start and the end of the instruction memory addresses
to start and stop balancing. However, our system allows for
relocatable AES code to be implemented, by only having to
know the data memory locations (which are usually fixed). The
operating system can be also used to indicate the encryption
program for balancing instead of a signature detection for the
encryption routine in AES.

B. Processor Design

The multiprocessor balancing architecture, MUTE-AES, is
presented in Figure 4. Here we present the setup for only the
complete balancing, which provides balancing throughout the
algorithm as shown in Figure 1. Two processors, CORE1 and
CORE2, are designed to execute the same program executing in
parallel (CORE1 and CORE2 executing the programs designed
in Figure 1(a), Figure 1(c) respectively), and perform indepen-
dently when no encryption is performed. Separate instruction
memories (1 and 2) and data memories (1 and 2) are used for
CORE1 and CORE2 as shown in Figure 4. The Data Memory
1 of CORE1 is initialized with the proper key (K), input data
(D) and proper SBOXes, whereas Data Memory 2 of CORE2
is initialized with the inverted key (K’), input data (D) and
modified SBOXes (the key scheduling SBOX is transposed and
the SubBytes SBOXes are inverted and transposed as explained
in Section III). There are three main flag registers used in the
architecture for balancing: (1), sel register, which is set and reset
using the Signature Detection unit as explained in Section IV-A;
(2), start register, which is used to start both processors (CORE1
and CORE2) for balancing; and (3), hold register, which is used
to pause balancing when an interrupt has to be serviced by any
one of the processors in the middle of balancing.

CPU

Data

Memory

1

Key  K

Data D

SBOX

Instruction Memory 1

imab imdb

clock

reset

clock

reset

Data

Memory

2

Key  K’

Data D

SBOX’

clock reset

Instruction Memory 2

clock reset

imab imdb

 FUNIT 

CORE1

Register

CORE2

Register

sel

start

hold

Fig. 4. Processor Architecture

The CPU includes two processors (CORE1 and CORE2),
which fetch instructions from their own instruction memories,
and FUNIT for signature detection as shown in Figure 4. The
AES program binary used for balancing is stored in a part of
Instruction Memory 2. When the sel flag is set, CORE1 sends an
interrupt to CORE2. CORE2 saves its state in the stack (i.e., all
the registers, PC, etc.). Until CORE2 is ready to balance, CORE1
is stalled. CORE2 sets the start flag register after saving its own
state. As soon as the start flag is set both cores start to execute
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their program for balancing (the balancing program for CORE2
is pointed to by a vector - much like an interrupt vector). When
sel flag is cleared, CORE1 clears the start flag. When both flags
(sel and start) turn off, CORE2 restores its stack and continues
executing its original process. Note that both programs are in
lock step mode.
Any one of the processors (CORE1 or CORE2) can receive

an external interrupt from the operating system while balancing
is in progress. If such an interrupt occurs the processor which
receives the interrupt will set the hold flag (or else it can be an
inter-processor interrupt) and both processors will pause. The
processor which receives the interrupt saves its state and will
service the interrupt. After the interrupt is served, the processor
restores its state and clears the hold flag. Then both processors
will resume encryption and balancing. The interrupts from one
processor to another are typically handled by operating systems
using software interrupts [11, 27]. In our experiments we did not
have an operating system executing, and as such no interrupts
were simulated for power measurements.
Note that the caches are disabled during balancing, since

having a cache will cause problems in synchronizing processors.
However, a scratchpad memory can be used for the encryption
program if disabling the caches causes excessive performance
penalty.

V. EXPERIMENTAL SETUP

Our framework is implemented in a processor with the PISA
(Portable Instruction Set Architecture) instruction set (as imple-
mented in SimpleScalar tool set with a six stage pipeline [24])
without cache. The experimental setup for the power analysis
implementations of a Single Processor (used as a base processor)
and the MUTE-AES processor is outlined in Figure 5. The
AES program in C is compiled using the GNU/GCC cross
compiler for the PISA instruction set, and binaries are produced.
ASIPMeister [1], an automatic processor design tool, is used to
generate synthesizable VHDL description of the processor.

Synthesized 

Processor 

Model

Modelsim

Simulator

Execution

Traces

&

Generated

Waves

PrimePower
Power

Analysis

Imem 

(Addr, Data)Binary

Sin.Proc.

MUTE

Fig. 5. Experimental Setup

The synthesizable VHDL versions of the Single Processor and
the MUTE-AES processor are synthesized using the Synopsys
Design Compiler. ModelSim hardware simulator is used to
simulate the program binary with the synthesized processor to
generate the stimulus wave with switching information. The
execution trace is extracted for future use from ModelSim after
simulation. Power measurements are performed using Prime-
Power in watts (W ). As shown in Figure 5 the address (Addr)
and instruction opcode (Data) of instruction memory (Imem)
are extracted from the execution trace. Perl scripts are used
to reannotate the power values to the execution trace. DPA is
implemented in a separate C program, and the execution extracts
the necessary instruction power values from the trace.

VI. RESULTS

In this section we present the experimental results starting with
the differential power analysis plots and then with hardware and
runtime analysis.

A. Differential Power Analysis (DPA)

We performed the Differential Power Analysis (DPA) on AES
to predict the correct 8 bits of the secret key based on the
definitions from [12, 16], where the first output bit from the forth
SBOX in first round is used for partitioning. The attack point
for power measurement is the load instruction from the SBOX.
All the DPA plots here are drawn for the DPA bias values (Y
axis in watts) versus the possible 256 key values (i.e., 0 to 255
for 8 bits). A single processor (without any countermeasure) is
attacked to determine the scenario of the attack and also as a
base case. Figure 6 depicts the DPA plots for a single processor,
where the top plot is attacked at the load (LW) instruction, the
bottom left at the XOR instruction and the bottom right plot
using the average of the power consumption during the SBOX
access (i.e., average of the power magnitudes starting from load
till the store after the SBOX lookup). In all three cases shown in
Figure 6 the correct key (value of 14) is clearly identified by a
significant peak, thus successfully passing the attack hypothesis.
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Fig. 6. DPA plots on a single processor: No Balancing

To justify the necessity of the complete inversion algorithm
for the countermeasure, the partial inversion explained in Sec-
tion III is attacked using DPA. As Figure 7 depicts, the correct
key is still predicted using the load (LW) instruction and the
XOR instruction, both of which reveal a significant peak. This
experiment shows that the balancing effect caused by operations
other than the SBOX accesses cannot mask the key. Hence, the
SBOX accesses play an important role in revealing the key, and
has to be balanced completely.

(a) @ LW (b) @ XOR

Fig. 7. DPA plots for Partial Balancing
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Figure 8 presents the DPA plots for the completely balanced
processor architecture which is explained in Section III. As the
plots reveal, the DPA signals at the correct key guess (value 14)
failed to produce significant peaks for all the three cases (i.e.,
load instruction, XOR instruction and average during SBOX
access). The DPA bias values are much smaller and have a
smaller variation when compared to the values observed for the
single processor, especially at the load (LW) instruction (which
is the main attack point exploited by previous researchers [12]).
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Fig. 8. DPA plots for Complete Balancing

To demonstrate the security of our method we compare runs
of the encryption algorithm with two different inputs (these are
randomly chosen) and subtract the two “clock cycle accurate”
power traces. The only information available to the attacker
comes from the differences between the power traces for differ-
ent data inputs chosen. Thus, for an attacker to be able to extract
any usable information about the key from the power traces, the
power traces for different inputs must be distinguishable.
We used Fast Fourier Transform (FFT) analysis to examine

the spectrum available. Our experiments show that the difference
when balancing is used (shown in Figure 9(c)), is much lower
with more zeroes than the difference for a single processor
(shown in Figure 9(a)), and that the frequency spectrum of the
difference looks much like white noise (shown in Figure 9(d)),
unlike the spectrum of the difference for a single processor
(shown in Figure 9(b)) that exhibits many well defined peaks.
Similarly, when the same input data but two different keys

are used, and the two clock cycle accurate power traces are
subtracted, and the FFT of the resulting signal is obtained, the
spectrum largely resembles that of white noise, suggesting that
there is little information available. The resulting FFT spectrum
value is also much smaller in magnitude when compared to
that of a single processor. However, if an attacker is able to
extract any usable information from the power trace (about the
key), then the power trace and the key value must have non
negligible correlation. Thus, the FFT of the difference of power
traces for different keys must be above the noise threshold. Thus,
the magnitude of the difference and its spectrum indicate that no
information above the noise level is present in the power trace,
regardless of what data or key is used. This also proves that
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Fig. 9. FFT Analysis

our balancing technique (MUTE-AES) prevents the system from
Simple Power Analysis (SPA). Since MUTE-AES balances the
intermediate data throughout the AES algorithm (i.e., Hamming
weight of the processed data is always balanced) there won’t be
any correlation between Hamming weight and power magnitude.

B. Hardware Summary

Table I shows the hardware details of the balanced processor
(MUTE-AES) architecture, generated by Synopsys Design Com-
piler. The first column of Table I categorizes the main hardware
properties (which are area, clock, dynamic power and leakage
power). The second column presents the property values for
Single Processor. The properties for the MUTE-AES architecture
without the signature detection unit is presented in the third
column, and column four details the properties for MUTE-AES
with the signature detection unit implemented.

Single No Sig. With Sig.

Area (cell) 110921.67 213457.61 213855.72
Clock (ns) 41.63 49.61 50.50
Power: Dyn. (mW ) 38.44 76.78 80.19

Leak. (µW ) 1.49 2.87 2.85

TABLE I

HARDWARE SUMMARY

When compared to the single processor the area, dynamic
power (Dyn.), leakage power (Leak.) are doubled for the MUTE-
AES architecture, as shown in Table I, sinceMUTE-AES uses two
processors. The clock period slightly increased for MUTE-AES
compared to the single processor, due to signature detection. The
hardware is increased approximately by 0.1% when the signature
detection unit is added to MUTE-AES.

C. Performance Overhead

The performance overhead caused, when the second processor
is switched for balancing, is tabulated in Table II. Normal AES
program costs 175,600 clock cycles including memory accesses.
There will not be any delays in finishing the currently executing
pipelines before switching, since the signature is detected at the
memory stage.

As shown in Table II, every time balancing is performed,
there is a delay of 722 clock cycles, which includes saving and
restoring necessary registers, setting and clearing the flag for
switching and memory accesses. This delay costs only 0.42%
percentage in runtime. Note that this overhead does not include
any delay in software interrupts which might occur while the
system is encrypting.
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Clock Cycles

Basic AES 175600
Delay

Save Registerfile 320
Save Registers,PC 40
Set start flag 1
Clear start flag 1
Restore registerfile 320
Restore Registers,PC 40

Total Delay 722

Performance Overhead 0.42 %

TABLE II

PERFORMANCE OVERHEAD

VII. DISCUSSION

We used a specific processor to act as the master processor
to identify the signature using the attached flag registers and
affix the second processor for balancing when needed. If there
is an operating system, it can force an application to run
on one processor [3], thus scheduling the AES program to
always execute on the primary processor. In any other dynamic
scheduling case each processor in the multiprocessor system
should be attached with necessary flag registers, so that the
processor which is acting as master at a particular instance can
perform signature detection by updating its associated flags. This
would also help the operating system schedule the cryptographic
program on an available processor or a processor executing a
lower priority task. Note that, operating systems are not preferred
for smart cards but are heavily utilized in mobile phones and
PDAs.
Similar algorithmic level balancing can be done using a VLIW

processor, where a normal instruction and a complementary
instruction can be included in a word [10]. But in such a case,
VLIW will not be able to execute any other program when
encryption is not performed. MUTE-AES is more flexible and
requires less manual software modification than a VLIW.
Since balancing is done by a specific processor all of the

time, a powerful magnetic probe can be placed on top of the
chip to observe the electro magnetic (EM) dissipation only on
that processor, which is executing the correct program. There is a
chance the correct key can be exposed from these measurements.
To prevent this scenario, the place and route of the chip should
be performed in such a way, so that it is impossible for the
adversary to extract the EM profile of a specific core.

VIII. CONCLUSIONS

This paper presented a multiprocessor balancing technique to
prevent power analysis attacks in the AES cryptographic pro-
gram. A dual processor chip is used where the second processor
is affixed for balancing only when the encryption program in
AES is detected using a signature by the first processor.
Since balancing is performed only when necessary, the per-

formance of our system is significantly improved in comparison
to other balancing methods. The same methodology applies with
minimal changes to any encryption program that operates in
a ”bit-wise” manner, by either permuting or flipping bits in
an essentially independent way (such as TripleDES). However,
similar methods can be developed for non-bit-wise methods such
as RSA, but are harder to implement and, while significantly
safer than non-balanced single processor methods, do not result
in perfect masking as for AES.
Our technique successfully prevents Power Analysis attacks

and with careful place and route prevent Electro Magnetic
Analysis attacks. The performance penalty is only 0.42% each
time balancing is performed with around 2X in hardware cost.
Note that there is only 0.1% hardware cost when no balancing
is performed.
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