
Multigrid on GPU: Tackling Power Grid Analysis on
Parallel SIMT Platforms

Zhuo Feng and Peng Li
Department of Electrical and Computer Engineering
Texas A&M University, College Station, TX 77843

Email: {fengzhuo, pli}@neo.tamu.edu

Abstract—The challenging task of analyzing on-chip power (ground)
distribution networks with multi-million node complexity and beyond
is key to today’s large chip designs. For the first time, we show how
to exploit recent massively parallel single-instruction multiple-thread
(SIMT) based graphics processing unit (GPU) platforms to tackle power
grid analysis with promising performance. Several key enablers including
GPU-specific algorithm design, circuit topology transformation, workload
partitioning, performance tuning are embodied in our GPU-accelerated
hybrid multigrid algorithm, GpuHMD, and its implementation. In
particular, a proper interplay between algorithm design and SIMT
architecture consideration is shown to be essential to achieve good
runtime performance. Different from the standard CPU based CAD
development, care must be taken to balance between computing and
memory access, reduce random memory access patterns and simplify flow
control to achieve efficiency on the GPU platform. Extensive experiments
on industrial and synthetic benchmarks have shown that the proposed
GpuHMD engine can achieve 100X runtime speedup over a state-
of-the-art direct solver and be more than 15X faster than the CPU
based multigrid implementation. The DC analysis of a 1.6 million-node
industrial power grid benchmark can be accurately solved in three
seconds with less than 50MB memory on a commodity GPU. It is observed
that the proposed approach scales favorably with the circuit complexity,
at a rate about one second per million nodes.

I. INTRODUCTION

The sheer size of present day power/ground distribution networks
makes their analysis and verification extremely runtime and memory
consuming, and at the same time, limits the extent to which these
networks can be optimized. In the past decade, on the standard
general-purpose CPU platform, a body of power grid analysis meth-
ods have been proposed [1], [2], [3], [4], [5], [6], [7], [8] with
various tradeoffs. Recently, the emergence of massively parallel
single-instruction multiple-data (SIMD), or more precisely, single-
instruction multiple-thread (SIMT) [9], based GPU platforms offers
a promising opportunity to address the challenges in large scale power
grid analysis. Today’s commodity GPUs can deliver more than 380
GLOPS of theoretical computing power and 86GB/s off-chip memory
bandwidth, which are 3-4X greater than offered by modern day
general-purpose quad-core microprocessors [9]. The ongoing GPU
performance scaling trend justifies the development of a suitable
subset of CAD applications on such platform.

However, converting the impressive theoretical GPU computing
power to usable design productivity can be rather nontrivial. Deeply
rooted in graphics applications, the GPU architecture is designed
to deliver high-performance for data parallelism parallel computing.
Except for straightforward general-purpose SIMD tasks such as
parallel table lookups, rethinking and re-engineering are required to
express the data parallelism hidden in an application in a suitable
form to be exploited on GPU. For power grid analysis, the above
goal is achieved in the proposed GPU-accelerated hybrid multigrid
algorithm GpuHMD and its implementation via a careful interplay
between algorithm design and SIMT architecture consideration. Such
interplay is essential in the sense that it makes it possible to balance
between computing and memory access, reduce random memory
access patterns and simplify flow control, key to efficient GPU

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction
UnitSP 1 …SP 2

Shared memory

..

…

VDD VDD VDD

VDD VDD VDD

CPU Processing

Device memory

4. Correct & Smooth on
the Original Grid on CPU

1. Compute Residual on
the Original Grid on CPU

3. Return the GMD
Solution to CPU

2. Solve the Approximate
Regular Grid on GPU

86GB/s

Geometric Multigrid
Solver on GPU

GPU Processing

2~4 GB/s

Grid Approximation

Fig. 1. Overall GpuHMD analysis flow.

computing. To the best of our knowledge, GpuHMD is the first
reported GPU based power grid analysis tool.

As shown in Fig. 1, GpuHMD is built upon a custom geometric
multigrid (MG) algorithm as opposed to a direct solver. Despite
the attempts to develop general-purpose direct matrix solvers on
GPUs [10], so far the progress has been limited for large sparse
problems due to the very natures of GPU such as the inefficiency in
handling random complex data structures and memory access. Being
a multi-level iterative numerical method, multigrid naturally provides
a divide-and-conquer based solution that meets the stringent on-chip
shared memory constraint in GPU. To further enhance the efficiency
of geometric multigrid, a topology regularization step is taken to
convert a possibly irregular 3D grid into a regular 2D structure,
thereby significantly reducing random memory access and thread
divergence. New coarse grid construction, block smoothing strategies,
restriction and prolongation operators are developed geometrically,
maintaining the desirable regularity throughout the entire multigrid
hierarchy. The proposed GpuHMD is referred to as a hybrid approach
in the sense that the entire workload is split between the host (or CPU)
and the GPU. The multigrid hierarchy is purposely made deep such
that more than 95% of the work is pushed onto the GPU. Only a
minimum of small matrix solve, residue computation and smoothing
operation is conducted on the CPU. To remove the possible small
error caused by topology regularization, a few iterative steps between
the CPU and GPU may be performed. Through in-depth theoretical
analysis and empirical data, we show that in practice the required
number of CPU-GPU iterations is typically small and accurate power
grid solutions converge fast.

In this paper, we focus only on the DC analysis of power
grids, however, the same framework can be rather straightforwardly
extended to transient analysis. Extensive experiments have shown
the promising potential of GpuHMD: it is typically more than 100X
faster than the state-of-art direct methods [11] on PC and 15X faster
than the CPU-based multigrid implementation. We envision that with

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 647

the future GPU performance improvement and the use of multiple
GPU card systems, network analyses that were impossible in the
past may become feasible, leading to a new level of verification and
design. For instance, it may be possible to facilitate the analysis
of large interconnect dominated nonlinear networks (e.g., power
grids and mesh circuits coupled with devices), where the dominant
linear portion of the problem is efficiently solved in a GpuHMD-like
fashion.

II. BACKGROUND AND OVERVIEW

We first review the power grid analysis problems and the GPU
architecture. Next, an overview of the proposed GpuHMD approach
is provided.

A. Power grid analysis

At the heart of either DC or transient power grid analysis lies the
solution of certain large matrix problems. For instance, a system of
linear equations are formulated in the DC analysis [2]:

GV = I, (1)

where when appropriately formulated, G is a symmetric positive
definite matrix representing the interconnected resistors; V is the
unknown vector of node voltages; and I is a vector of independent
current sources. The feasible solution of such large linear systems
with tens or even hundreds of millions of unknowns, as seen in
today’s industrial designs, are hampered by the excessive runtime
and memory usage required.

B. GPU matrix solvers?

A basic understanding of the SIMT GPU architecture is instru-
mental for evaluating the potential in applying GPU matrix solvers to
large power grid problems. Consider a recent commodity GPU model,
NIVIDIA G80 series. Each card has 16 streaming multiprocessors
(SMs) with each SM containing eight streaming processors (SPs)
running at 1.35GHz. An SP operates in single-instruction, multiple-
thread (SIMT) fashion and has a 32-bit, single-precision floating-
point, multiply-add arithmetic unit [12]. Additionally, an SM has
8192 registers which are dynamically shared by the threads running
on it and can access global, shared, and constant memories. The
bandwidth of the off-chip memory can be as high as 86GB/s, but
the memory bandwidth may reduce significantly under many random
memory accesses. The following programming guidelines play very
important roles for efficient GPU computing [9]:

1) Low control flow overhead: execute the same computation on
many data elements in parallel;

2) High SP floating point arithmetic intensity: perform as many
as possible calculations per memory access;

3) Minimum random memory access: pack data for coalesced
memory access.

Due to the very nature of the SIMT architecture, it remains as
a challenge to implement efficient general-purpose sparse matrix
solvers on GPU. In recent such attempts, it is reported that most
of runtime is spent on data fetching and writing, but not on data
processing [13], [14]. For instance, traditional iterative methods such
as conjugate gradient and multigrid [13] involve many sparse matrix-
vector computations, leading to rather complex control flows and a
large number of random memory accesses that can result in extremely
inefficient GPU implementations. On the other hand, a problem with
a structured data and memory access pattern can be processed by
GPU rather efficiently. The performance of a dense matrix-matrix
multiplication kernel on GPU can reach a performance of over 90
GFLOPS, which is orders of magnitude faster than on CPU [12].
Considering the above facts, it is unlikely to facilitate efficient power

SmoothSmooth

Matrix Solve

Smooth

Restrict

Smooth

Restrict Prolong & Correct

Smooth

Prolong & Correct

Smooth

Restrict

Smooth

Restrict Prolong & Correct

Smooth

Prolong & Correct

…
GPU

CPU
Send RHS to
GMD Solver

Return solution
from GPU

Matrix Solve

Check
Convergence …

CPU

Smooth

Fig. 2. Acceleration of GMD solve on GPU.

grid analysis by building around immature general-purpose GPU
matrix solvers or implementing existing CPU-oriented power grid
analysis methods [1], [2], [4] on GPU.

C. Our approach

1) Power grid uniformity: To achieve the best analysis efficiency
on SIMT platforms, understanding the physical properties of practical
power grid designs is critical. It can be expected that if the power
grid can be stored and processed like pixel graphics, the GPU SIMT
platform can be of a significant advantage over the general purpose
CPU platform. Not surprisingly, after examining a set of published
industrial power grids [15], [16], we have found that real-life designs
have a high degree of global uniformity while exhibiting some local
irregularity. Therefore, to maintain regularity on GPU, it is very
natural for us to consider solving an approximate regular power grid
that is close to the original grid. However, this brings up the need
for developing “regular” numerical methods and correction schemes
to guarantee solution accuracy.

2) GPU based geometric multigrid method: Mutigrid methods are
among the fastest numerical algorithms for solving large PDE-like
problems [17], where a hierarchy of exact to coarse replicas (e.g. fine
vs. coarse grids) of the given linear problem are created. Via iterative
updates, the high and low frequency components of the solution
error are quickly damped on the fine and coarse grids, respectively,
contributing to the efficiency of multigrid. When properly designed,
multigrid methods can achieve a linear complexity in the number of
unknowns. The hierarchical iterative nature of multigrid is attractive
to GPU platforms since the GPU on-chip shared memory is rather
limited. Multigrid methods typically fall into two categories, geomet-
ric multigrid (GMD) and algebraic multigrid (AMG). AMG may be
considered as a robust black-box method and requires an expensive
setup phase while GMD may be implemented more efficiently if
specific geometric structures of the problem can be exploited. The
key operations of a multigrid method include:

1) Smoothing: point or block iterative methods (e.g. Gauss-Seidel)
applied to damp the solution error on a grid;

2) Restriction: mapping from a fine grid to the next coarser grid
(applied to map the fine grid residue to the coarse grid);

3) Prolongation: mapping from a coarse grid to the next finer grid
(applied to map the coarse grid solution to the fine grid);

4) Correction: use the mapped coarse grid solution to correct the
fine grid solution.

On the k-th level grid with an initial solution of vk, a typical multigrid
cycle MG(k, vk) has the following steps [17]:

1) Apply pre-smoothing to update the solution;
2) Compute the residue on the k-th grid and map it to the k+1-th

coarser grid via restriction;

648

3) Using the mapped residue to solve the k + 1-th grid directly if
the coarsest level is reached, otherwise apply a multigrid cycle
MG(k + 1, vk+1) with a zero initial guess vk+1 = 0;

4) Map the solution vk+1 to the k-th grid via prolongation, and
correct the solution vk by adding vk+1;

5) Apply post-smoothing to further improve vk at the k-th level
grid and return the final vk .

A GPU-specific GMD method is developed in our approach.
Starting from a regularized power grid, all the key components of
multigrid are realized in a geometrically regular fashion across the
entire multigrid hierarchy, leading to simple flow controls and highly
regular memory access patterns, favoring the GPU implementation.

3) Hybrid multigrid (HMD) iterations: The approximate regular
power grid is solved efficiently using our custom GMD method on
GPU (Fig. 2), where no explicit sparse matrix-vector operations are
needed. The work associated with the GMD constitutes the dominant
workload of the entire GpuHMD approach. To guarantee the accuracy
of the final power grid solution, we further apply HMD iterations
between the GPU and host to remove any error that may arise from
only solving the approximate regular grid. Denote the true (original)
power grid by GridO and the regularized grid by GridR, HMD
iterations involve the following main steps (Fig. 1):

1) (CPU:) Compute the residue of the current solution on GridO

and map the residue to GridR;
2) (GPU:) Solve the GridR problem under the mapped residue

using GMD and return the solution to GridO;
3) (CPU:) Update the GridO solution using the GPU result and

apply additional smoothing;
4) (CPU:) If the solution error is small enough, exit; otherwise

repeat the above steps.
The bulk workload of the entire GpuHMD approach is done on GPU
via solving the regular grid (step-2). Only a fraction of the work such
as simple residue computation and smooth steps is preformed on the
host, where the general-purpose CPU is more efficient in terms of
handling the original (irregular) power grid.

III. REGULAR GRID APPROXIMATION

We discuss several key issues in converting a three-dimensional
irregular power grid to a two-dimensional regular approximation that
can be processed efficiently on GPU.

A. Mapping to a regular grid

The goal is to map the original 3D irregular power grid to a 2D
regular one such that the electrical property of the original grid can be
well preserved. As such, the regular grid solution can be very close
to the true solution, reducing the number of the GPU-CPU HMD
iterations required.

The mapping procedure has two subsequent steps: 3D irregular
to 2D irregular, and 2D irregular to 2D regular mappings. First, by
neglecting via resistances, all the metal layers in the network are
overlapped on the same 2D plane, forming a collapsed 2D irregular
grid. By analyzing industrial power grid benchmarks, we found
that neglecting via resistances typically does not alter the circuit
solution in any significant way. Nevertheless, the error induced can
be corrected through the HMD iterations. Then, by examining the
pitches in the collapsed 2D irregular grid, a fixed uniform pitch is
chosen for the X and Y directions for the final 2D regular grid, on
which all the circuit elements are mapped to. Consider the simple
example in Fig. 3, where a two-metal-layer irregular grid is mapped
to a single-layer regular grid. The conductance values on the regular
grid can be obtained as follows:

G1 = 2g31 + g21, G2 = 2g31 + g22, G3 = 2g32,
G4 = 2g32 + g23, G5 = g33 + g24.

(2)

Original Grid

Metal 1

Metal 2

g31 g32 g33

g21 g22

VDD

gz1

VDD

gz2

g24g23

I1

I2

(1)

(2)

(3) (4) (5)

VDD

gz1
VDD

gz2

(6)

I1

I2

G1 G2 G3

G4

G5

Regular Grid

Metal layers

(1) (2) (3) (4) (5) (6) Regular Grid
Node IndexAverage

Pitch

via via via via

Fig. 3. Cross section view of mapping a two-layer irregular grid to a single-
layer regular grid.

Note that because of irregularity of the original grid, some of
the regular grid nodes may not correspond to any of the original
nodes. In this case, small dummy conductances (Gmin = 1e−6) are
inserted between such regular grid node and its neighboring nodes.
Note also that the uniform pitches of the regular grid may be set to the
averaged pitch values in the irregular grid and can be adjusted when
appropriate. Smaller uniform pitch values lead to increased regular
grid size and improved grid approximation. The possible grid size
increase in the regular grid does not significantly impact the overall
runtime efficiency of our approach due to the linear complexity of
the GPU GMD solver. The improved grid approximation, however,
may contribute to faster HMD convergence. As will be demonstrated
later, both the accuracy and efficiency of our GpuHMD algorithm are
not sensitive to the regular grid size. This is the case even when the
regular grid size is varied from 50% to 150% of the original grid
size.

Algorithm 1 3D irregular-to-2D-regular grid mapping
Input: The original power grid netlist.
Output: The regular grid netlist consists of all the elements of Gh, Gv ,
Gz , Iz with their table indices.

1: Extract the horizontal and vertical node pitches from the netlist and
compute the average pitches δX and δY ;

2: For each circuit element except via resistors:
a) Extract their node locations xi and yi;
b) Compute their regular grid indices by:

Ixi = floor[(xi − xmin)/δX], Iyi = floor[(yi − ymin)/δY];
c) Stamp the conductance values into 2D table based storage.

B. Table-based representation of the regular grid

The 2D regular grid is represented by several tables, denoted by
Gh, Gv , Gz and Iz. The simple representation allows for efficient
coalesced memory access to the device memory and is shown to be
critical to the GPU implementation. For a regular grid node N [i, j],
the following four tables are adopted:

Gh[i, j] : Horizontally connected conductance between
node N [i, j] and node N [i + 1, j];
Gv [i, j] : Vertically connected conductance between node
N [i, j] and node N [i, j + 1];

649

Gz[i, j] : The conductance that connects node N [i, j] and
the voltage sources;
Iz[i, j] : The current sources that flows out node N [i, j].

The mapping procedure is summarized in Algorithm 1.

IV. GEOMETRIC MULTIGRID ON GPU

While the 2D regular grid can be obtained in a relatively straight-
forward manner, developing an efficient regular grid solver on GPU
is non-trivial. Naive implementations for either data transferring or
processing can lead to severe performance degradation. The proposed
GPU based GMD solver is described by covering the key issues
concerning the discussion in Section II-B.

A. Coarse grid generation and inter-grid operators

With the mapped regular 2D grid sitting at the bottom of the
multigrid hierarchy, a set of increasingly coarser grids shall be created
to occupy the higher levels. In this case, the regular grid produced
by the previous mapping step serves as the finest grid in our GMD
method. Ideally, these coarse grids should be created such that the
increasingly global behavior of the finest grid is well preserved using
a decreasing number of grid nodes. Unlike in CPU based multigrid
methods, here, it is critical to carry the regularity of the finest grid
throughout the multigrid hierarchy so as to achieve good efficiency
on the GPU platform. The goal is achieved from the following view
of the I/O characteristics of the power grid.

When creating the next coarser grid, we distinguish two types of
wire resistances: resistances connecting a grid node to a VDD source
(or VDD pad conductances) vs. those connecting a grid node to one
of its four neighboring nodes (or internal resistances) on the regular
grid, as shown in Fig. 4. Importantly, the two types of resistances
are handled differently. We maintain the same total current Iz that
flows out the network and the same total wire conductance (Gz)
that connects the grid to ideal voltage sources (e.g. total VDD pad
conductance). In this way, the same pullup and pulldown strengths are
kept in the coarser grid of a power distribution network. Denote the
voltages of M grid nodes that connect to an ideal voltage source via
a wire resistance by Vi for i = 1, ..., M , and the N loading current
sources by Ij for j = 1, ..., N . The following equation holds:

M∑
i=1

(V DD − Vi) Gzi =
N∑

j=1

Izj . (3)

To maintain approximately same node voltages Vi at V DD pad

locations in the coarser grid, we ensure that
M∑

i=1

Gzi and
N∑

j=1

Izj

are unchanged. Consequently, as shown in Fig. 4, both the V DD
pad conductance (Gz) and current loadings (or residues) are summed
up when creating the coarser grid problem. Differently, internal
conductances are averaged to create a coarser regular grid that
approximately preserves the global behavior of the fine grid.

Use H and h to indicate the fine and coarser grid components,
respectively, the coarser grid is created as follows:

Gh
h[i, j] =

1

4
× (

GH
h [2i, 2j] + GH

h [2i + 1, 2j] +

GH
h [2i, 2j + 1] + GH

h [2i + 1, 2j + 1]
)
,

Gh
v [i, j] =

1

4
× (

GH
v [2i, 2j] + GH

v [2i + 1, 2j] +

GH
v [2i, 2j + 1] + GH

v [2i + 1, 2j + 1]
)
,

Gh
z [i, j] =

(
GH

z [2i, 2j] + GH
z [2i + 1, 2j] +

GH
z [2i, 2j + 1] + GH

z [2i + 1, 2j + 1]
)
, (4)

2z
G

1z
G

VDD VDD

VDD VDD

3z
G

4z
G

VDD

4

1
iz z

i

G G

Fine Grid Coarse Grid Fine Grid Coarse Grid

2z
I

1z
I

3z
I

4z
I

4

1
iz z

i

I I

Fig. 4. VDD pads (Gz) and current sources (residues) in fine/coarse grids.

where i and j denote grid locations, and the numbers of nodes along
the horizontal and vertical directions are reduced by a factor of two
in the coarser grid. The restriction and prolongation operators are:

Rh [i, j] = RH [2i, 2j] + RH [2i + 1, 2j] +
RH [2i, 2j + 1] + RH [2i + 1, 2j + 1] ,

(5)

EH [2i, 2j] = EH [2i, 2j + 1] = EH [2i + 1, 2j] =
EH [2i + 1, 2j + 1] = Eh [i, j] ,

(6)

where residues and errors (solution corrections) are denoted by R
and E, respectively. Apparently, the coarser grid problem is defined
completely based on geometry and can be stored in the same regular
table-based representation. In our GMD implementation, the coarsest
grid is solved via a direct method on the host. To reduce the overhead
of this sparse matrix solve on CPU and fully utilize the GPU
computing power, the GMD hierarchy is purposely made deep. In
our implementation, four to five grid levels are used, making the size
of the coarsest problem vary from a few hundred to a few thousand
times smaller than the finest grid. This choice may push, say 95%,
of the overall computation onto the GPU.

B. Point vs. block smoothers

The choice of smoother is critical in GMD. Typically, point
Gauss-Seidel or weighted Jacobi smoothers are used for CPU based
GMD methods However, a block based smoother is adopted in
our approach to fully utilize the SIMT GPU computer power. On
GPU, a number (more precisely a warp [9]) of threads may be
simultaneously executed in a single-instruction multiple-data fashion
on a multiprocessor. This implies that multiple circuit nodes can be
processed in the smoothing step at the same time. In our approach, a
block of circuit nodes are loaded into a multiprocessor at a time.
Then, multiple treads are launched to simultaneously smooth the
circuit nodes in the block for a number of iterations. As a result,
such processing step (almost) completely solves the circuit block,
effectively leading to a block smoother. This approach ensures that
a meaningful amount of compute work is done before the data is
released and a new memory access takes place. In other words, it
contributes to efficient GPU computing by increasing the arithmetic
intensity. This block smoother is discussed in detail in Section V.

V. ACCELERATING GMD ON GPU

To gain good efficiency on the GPU platform, care must be taken
to facilitate thread organization, memory and register allocation,
workload balancing as well as hardware-specific algorithms.

A. Thread organization

Through a suitable programming model (e.g. CUDA [9]), threads
shall be packed properly for efficient execution on multiprocessors.
On a multiprocessor, threads are organized in units of blocks, where
the number of blocks should be properly chosen to maximize the
performance. The optimal block size shall be multiples of 32 threads

650

Execution Time

Global Memory

…

Multiprocessors

Shared Memory
SM1

Shared Memory
SM2

Shared Memory
SM3

…

SP1 SP2

SP3 SP4

SP5 SP6

SP7 SP8

SP1 SP2

SP3 SP4

SP5 SP6

SP7 SP8

SP1 SP2

SP3 SP4

SP5 SP6

SP7 SP8

Streaming Processors …

Gauss-Seidel Iterations
among blocks

Weighted Jacobi
Iterations within each block

Fig. 5. Mixed block relaxation (smoother) on GPU.

for a commercial GPU [9]. In our implementation, the actual optimal
block size is chosen experimentally.

B. Memory and register allocation

Before the GMD solve starts on GPU, 1D tables are allocated on
the CPU to store all the regular grids in the multigrid hierarchy. Then,
the data are transferred to the device (CPU). We bind the conductance
tables (Gh, Gv and Gz) to the texture memory and other data to
the on-board GPU device memory. Texture memory is cached, so
its access latency is significantly smaller than the device memory.
However, the texture memory is read-only and cannot be used for
solution updates. Therefore, residues, solution and error vectors are
stored in the device memory. Since the device memory is not cached,
coalesced memory accesses are employed to achieve the best memory
bandwidth.

The fast on-chip shared memory and registers are very limited
resources on GPU. If the required shared memory and registers
exceed what are available, an application will fail. On the other hand,
more than one block of threads should be run on the same stream
multiprocessor (SM). This will hide the memory read/write latency
in a better way, leading to a much higher performance throughput.
With this in mind, all components of our GPU GMD method are
developed carefully to fully utilize GPU resources. As an example,
in the smoothing steps, the solution and right hand side (RHS) vectors
are loaded from the global memory to the shared memory, while the
resistance grid data are loaded from the the texture memory to the
registers. The above scheme allows more than two blocks of threads
to be launched concurrently within the resource limitation on an SM.
Otherwise, if the grid data were loaded to the shared memory, only
one block of threads could be run, making the memory access latency
a higher impact.

C. Mixed block-wise smoother

In our GMD solver, the relaxation (smoothing) steps dominate
the overall computation. Hence, an efficient implementation of the
smoother is critical. On CPU, point-wise iterative methods such
as Gauss-Seidel or weighted Jacobi are often adopted. However,
to improve the arithmetic intensity and work better with efficient
coalesced (block) memory accesses and control flows, global block
Gauss-Seidel iteration (GBG iteration) and local block weighted
Jacobi iteration (LBJ iteration) schemes are introduced.

As illustrated in Fig. 5, during each GBG iteration, the whole 2D
regular grid is partitioned into small blocks which are subsequently
transferred to streaming processors. Next, k times LBJ iterations are
conducted within each block locally. Since only the threads within
the same thread block can share the data with each other, the solution

of this local block can not be shared by others unless it is sent back to
the global memory. As processed block solutions are written back to
the global memory, the smoothing of subsequent blocks will be based
upon the most recent solutions of the neighboring blocks. Therefore,
from this global point of view, the smoother is a block Gauss-Seidel
iterative (or GBG) method. On the other hand, when each block
is being smoothed, all its nodes are processed by multiple threads
simultaneously in a weighted Jacobi fashion, referred to as LBJ
iterations. The above mixed block-iteration scheme has been carefully
tailored for our GPU based GMD engine, particulary through the
following considerations:

1) To increase the arithmetic intensity, we perform k times LBJ
iterations for each global memory access. k can be determined
based upon the block size: larger block size may include more
local iterations. However, excessive local iterations may not
help the overall convergence since the boundary information is
not updated.

2) To hide the memory latency and thread synchronization time,
we allow two or more blocks to run concurrently on each
multiprocessor to avoid idle processors during the thread syn-
chronization and device memory access.

The block size may impact the overall performance significantly. A
too large block size may lead to slow convergence while a too small
size may cause bad memory efficiency and shared memory bank
conflicts. To minimize shared memory and register bank conflicts,
block sizes such as 4 × 4 or 8 × 8 are observed to offer good
performance.

D. Dummy grid nodes

As discussed before, GPU data processing favors block-like op-
erations. If the grid dimensions are not multiples of the block size,
extra handling is required. For example, assume one smoothing kernel
of the GMD solver is executed on all multigrid levels based on
8 × 8 thread blocks. Then, all the grid widths and heights need
to be modified to be multiples of the block size. To this end,
certain dummy grids can be attached to the periphery of the original
grid. It is important to isolate these dummy grids from the original
grid, as shown in Fig. 6. Otherwise, the GMD convergence can be
significantly impacted.

VDD VDD VDD

V
D

D
V

D
D

Original Grid Dummy Grid+=Final Grid

Fig. 6. Appending dummy grid nodes for a chosen block size.

VI. HYBRID MULTIGRID FOR POWER GRID ANALYSIS

Although solving the mapped 2D regular grids on GPU typically
provides pretty accurate results, the solution quality may not be
completely guaranteed since grid approximations can lead to various
accuracy levels. To have a robust error control scheme, interactions
between the 2D regular grid and the original 3D irregular grid
are important. In this work, we propose a hybrid multigrid (HMD)
analysis framework to iteratively correct the error components that
are caused by grid approximation. The main steps of our HMD flow
is shown in Fig. 1 and Fig. 7, and also outlined in Section II-C.

651

CPU

1st GMD Solve

Original Grid
Correction & Smooth

G
M

D
S

ol
ut

io
n

True
G

rid

R
esiduals

Original Grid
Correction & Smooth

G
M

D
S

ol
ut

io
n

True
G

rid

R
esiduals

2nd GMD Solve

…

…

Original Grid
Residuals

GMD Solve

GPU

HMD Execution Time

G
ri

d
 H

ie
ra

rc
h

y
F

in
es

t
C

o
ar

se
st

Start Time End Time

Fig. 7. Hybrid GPU-CPU multigrid iterations.

A. Problem formulation

Assuming for a 3D irregular power grid (GridO), the following
large linear system of equations need to be solved:

A · x = b, (7)

where A ∈ R
n×n is the original grid system matrix, representing a

linear operator A(x) : R
n → R

n, x = x∗ ∈ R
n is the exact solution

vector to be solved, and b ∈ R
n is the right hand side (RHS). Denote

the system matrix of the mapped 2D regular grid (GridR) as Ar ∈
R

m×m, which is a linear operator Ar(x) : R
m → R

m. Denote the
solution of the original grid in the k-th HMD iteration as x(k) ∈ R

n.
The following steps are performed in the k-th HMD iteration. The
residue r(k) associated with x(k) is computed and mapped onto r

(k)
r

on the 2D regular grid (GridR) as

r(k) = b − A · x(k), r(k)
r = V r

o · r(k), (8)

where V r
o ∈ R

m×n is a proper linear operator (Rn → R
m). Note

that the above simple computations are done on the CPU. With r
(k)
r ,

a solution correction e
(k)
r is computed on the regular grid using the

GPU GMD method:
Ar · e(k)

r = r(k)
r . (9)

e
(k)
r is returned to the CPU host for further processing. e

(k)
r is mapped

back to the original grid (GridO) via:

e(k) = V o
r · e(k)

r , (10)

where V o
r ∈ R

n×m is a proper linear operator (Rm → R
n). The

solution for the original grid is updated:

x(k+1) = x(k) + e(k). (11)

Finally, if the solution correction (e(k)) is below a user-defined
threshold, x(k+1) is returned as the final solution; otherwise, proceed
to the k + 1-th HMD iteration. The inter-grid (GridO and GridR)
mapping operators V r

o and V o
r may be interpreted as an prolongation

or restriction operator, respectively, as in a classical multigrid method,
depending on the relative sizes of GridO and GridR. They are also
constructed in a way similar to prolongation or restriction operators.

B. Convergence analysis

Experimentally, it is observed that the proposed HMD approach
can converge in a few iterations. To gain further insights on the
converge property, the following theoretical result is proved.

Theorem 1: Denote the spectral radius of an l × l matrix M by
ρ (M), where ρ (M) = maxi=1,··· ,l|λi|, λi is an eigenvalue of M .
The HMD iteration converges to the true solution x∗ for any chosen
initial guess x(0) if and only if:

ρ
(
I − V o

r (Ar)
−1 V r

o A
)

< 1. (12)

Proof: At the k-th HMD iteration, the residue on GridO ((8))
can be written as:

r(k) = Aε(k) = A
[
x∗ − x(k)

]
, (13)

where ε(k) is the solution error w.r.t. x∗ and shall not be confused
with e(k) in (10). Combining (8), (9) and (10) leads to

e(k) = V o
r A−1

r V r
o r(k). (14)

From (11), (13) and (14), we have

x(k+1) = x(k) + e(k)

= x(k) + V o
r A−1

r V r
o A

[
x∗ − x(k)

]
. (15)

Let B = I − V o
r A−1

r V r
o A. Substituting the definitions ε(k) = x∗ −

x(k) and ε(k+1) = x∗ − x(k+1) into (15), we have:

ε(k+1) =
[
I − V o

r A−1
r V r

o A
]
ε(k)

=
[
I − V o

r A−1
r V r

o A
]k+1

ε(0)

= Bk+1ε(0). (16)

It is not difficult to see that for any ε(0) (or x(0)), if ρ (B) < 1, ε(k)

converges to a zero vector. Furthermore,
∥∥∥ε(k+1)

∥∥∥ ≤ ‖B‖k+1
∥∥∥ε(0)

∥∥∥ ≥ [ρ (B)]k+1
∥∥∥ε(0)

∥∥∥ . (17)

It implies that if ε(k) converges to zero for any ε(0) (or x(0)), it must
be true that ρ (B) < 1.

Theorem 1 provides a very intuitive understanding of the con-
vergence property of the HMD iterations and offers a theoretical
basis to further improve the convergence rate. Let C = V o

r A−1
r V r

o ,
C ∈ R

n×n. C can be interpreted as a linear operator (Rn → R
n),

which corresponds to the correction operator of the GridO solution
x(k) by solving an approximate problem defined by GridR. If there
exists no grid approximation in GridR, then the original power grid
can be solved exactly on the regular grid: C = A−1. In this ideal
case, ρ (B) = ρ (I − CA) = 0, implying that HMD converges in
one iteration. In practice, the regular grid problem needs not to be
exactly identical to the original grid problem to have HMD converge
fast, as long as it is sufficiently close. Here, the closeness is measured
by ρ (B) (the smaller the better).

In our implementation, we have found that applying a few,
say m, additional simple point Gauss-Jacobi relaxations to fur-
ther improve the solution obtained in (11) is very beneficial. In
this case, the spectral radius (16) of the HMD iterations becomes
ρ

(
B

(
I − D−1A

)m)
, where D is the diagonal matrix corresponding

to Gauss-Jacobi iterations. This only adds a small additional cost on
the host, but makes the spectral radius even smaller, improving the
overall convergence rate.

C. Accuracy and overhead

The HMD iteration scheme favorably enhances the robustness of
the proposed algorithm and relaxes the need for a very accurate 3D-
irregular-to-2D-regular grid mapping (Section III). For a set of power
grid benchmarks, as the regular grid size is varied from 80% to 120%
of the original grid size, running two HMD iterations can always
reach a very satisfactory accuracy level of less than 1mV average
node voltage error. Increasing to three iterations will cut the average
error down to less than 0.5mV . In addition to the solution of a
small sparse matrix problem (the coarsest grid), required by the GMD
method, the host (CPU) also conducts simple smoothing, correction
and residue computation steps. The CPU runtime is typically only
1/3 to 1/10 of the total GpuHMD runtime.

652

TABLE I
DC ANALYSIS RESULTS OF THE GMD SOLVER. GridSize IS THE NUMBER OF NODES OF THE ORIGINAL POWER GRID, Nl IS THE NUMBER OF MULTIGRID
LEVELS, Nbot. IS THE BOTTOM LEVEL REGULAR GRID SIZE, NV c IS THE NUMBER OF V-CYCLES, ∆V (mv) IS THE SOLUTION RANGE (Vmax − Vmin),

Eavg IS THE AVERAGE ERROR, AND Emax IS THE MAXIMUM ERROR (THE DATA FOR THE VDD AND GND GRIDS ARE SHOWN IN THE FORM OF
V DD/GND). TC/MC IS THE RUNTIME/MEMORY USING CHOLMOD SOLVER, TCPU (TGPU) IS THE RUNTIME USING GMD ON CPU (GPU) AND
Spd. IS SPEEDUP TCPU /TGPU (THE ABOVE TC , TCPU AND TGPU ARE THE TOTAL RUNTIME FOR SOLVING BOTH THE VDD AND GND GRIDS.).

CKT GridSize Nl Nbot. NV c ∆V (mv) Eavg(mv) Emax(mv) TC(s)/MC TCPU (s) TGPU (s) Spd.
ibmpg2 127, 238 4 535 4/4 347/275 3.7/2.5 21/8.3 30/155M 2.4 0.24 10X
ibmpg3 851, 514 5 533 4/4 181/153 4.2/2.9 32/20 362/799M 16.1 0.80 20X
ibmpg4 953, 583 5 882 8/8 5.3/2.6 0.1/0.1 0.6/0.3 194/1.01G 28.5 1.48 19X
ibmpg5 1, 079, 310 5 629 10/8 48/28 1.5/1.0 4.4/4.6 N/A 25.8 1.53 17X
ibmpg6 1, 670, 494 5 1160 10/10 154/86 3.6/1.4 20.1/10.3 N/A 48.5 2.78 18X

ibmpg2 ibmpg3 ibmpg4 ibmpg5 ibmpg6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
c/

T
t

k=1
k=5
k=10

Fig. 8. Ratio of GPU computation time (Tc/Tt).

VII. EXPERIMENTAL RESULTS

Extensive experiments are conducted to demonstrate the promising
performance of the proposed GpuHMD engine. A set of published
industrial power grids [15], [16] and synthetic benchmarks are
used to compare five solvers: proposed GPU accelerated GMD
solver (GpuGMD), the CPU implementation of the same algorithm
(CpuGMD), proposed GPU accelerated hybrid solver (GpuHMD),
the GPU implementation of the same algorithm (CpuHMD), and the
state-of-the-art CPU-based direct sparse matrix solver CHOLMOD
[11]. All the algorithms are implemented using C++ and the GPU
programming interface CUDA [9]. The hardware platform is a Linux
PC running at 3.0 GHz clock frequency with an NIVDIA GeForce
8800 Ultra GPU.

The GMD solvers are terminated when the residue reaches 0.1%
(0.5% for the HMD iteration) of the initial residue. The HMD solvers
are stopped when the (estimated) average node voltage error is less
then 0.5mV . The comprehensive results of GpuGMD and GpuHMD
for all the industrial benchmarks are shown in Table I and Table II.
The results for VDD nets and GND nets are displayed as VDD/GND.
When the grid size reaches over one millon nodes, the direct solver
CHOLMOD failed due to memory limitation. For the benchmarks
to which CHOLMOD can be applied, GpuGMD and GpuHMD are
about 100X to 350X faster than CHOLMOD. GpuGMD is up to
20X faster than CpuGMD while GpuHMD is up to 16X faster than
CpuHMD. Additionally, in Table II, we show the runtime/accuracy
results when using different numbers of HMD iterations. As observed,
using one more iteration, the accuracy can be improved significantly.
For most benchmarks, GpuHMD produces a less than 0.5mV average
node voltage error and a less than 5mV maximum node voltage error.

As explained in Section V-C, GPU memory access (read/write)

TABLE III
RUNTIME (MS) COMPOSITION OF 100 RELAXATIONS ON GPU. THE PURE

COMPUTATION TIME Tc AND TOTAL RUNTIME Tt ARE LISTED AS Tc /Tt . K
IS THE NUMBER OF LOCAL BLOCK-WISE JACOBI (LBJ) ITERATIONS.

CKT ibmpg2 ibmpg3 ibmpg4 ibmpg5 ibmpg6
k = 1 25/60 45/223 60/357 49/254 73/471
k = 5 6.4/12.3 16/45 23/69 18/51 30/93
k = 10 4.2/6.9 13/24 20/37 15/28 26/49

latency can be dominant if the algorithm is not well implemented.
When the block size 4× 4, for each choice of the local Jacobi (LBJ)
iteration number k, the number of global iterations is empirically
determined by 100/k. The runtimes and ratios of the pure GPU
computing time Tc over the total GPU runtime Tt (computing
time+memory read/write time) for all industrial benchmark circuits
are shown in Table III and Fig. 8. From Fig. 8, we observe that the
pure computation time Tc can only be a fraction (15% to 60%) of
the total runtime Tt, while more local LBJ iterations (larger k) can
better hide the memory access latency. However, it is less useful to
do excessive local iterations, since they may not help the convergence
of the overall GMD solve. Therefore, the number of local iterations
(k) should be selected to tradeoff between the relaxation runtime and
global convergence rate. We suggest k = 10 for the block size of
4 × 4 and k = 20 for the block size of 8 × 8 in practice.

The following insightful experiments are also conducted. 500
smoothing steps are run on both the CPU and GPU. As shown in
Fig. 9 (a), the GpuGMD engine achieves 18X to 32X speedups
over its CPU counterpart. The runtimes of the multi-V-cycle GMD
solve are also compared on the GPU and CPU. As in Fig. 9 (b), our
GPU implementation achieves roughly 10X speedup for small grid
and 20X speedup for large grids.

ibmpg2ibmpg3ibmpg4ibmpg5ibmpg6
0

10

20

30

40

50

G
M

D
 s

o
lv

e
ti

m
e

(s
)

CPU
GPU

10X

20X

19X
17X

18X

ibmpg2 ibmpg3 ibmpg4 ibmpg5 ibmpg6
0

2

4

6

8

10

12

14

50
0

R
el

ax
at

io
n

 T
im

e
(s

ec
o

n
d

s)

CPU
GPU

18X

29X

31X

32X

30X

a. 500 Relaxation Time b. GMD Solve Time

Fig. 9. CpuGMD vs. GpuGMD: runtimes of 500 relaxations and complete
GMD solve.

The average solution error as a function of the number of HMD
iterations is shown for the largest four industrial benchmarks in Fig.

653

TABLE II
DC ANALYSIS RESULTS OF THE HMD SOLVERS. NIter IS THE NUMBER OF HMD ITERATIONS, Eavg IS THE AVERAGE ERRORS OF THE HMD SOLVERS,
Emax IS THE MAXIMUM ERRORS OF THE HMD SOLVERS, AND Ewst IS THE WORST VOLTAGE DROP/BOUNCE ERROR. THMD IS THE RUNTIME OF HMD
SOLVE AND Spd. IS SPEEDUP OF THE GPU ACCELERATED HMD (GPUHMD) SOLVER OVER THE SERIAL CPU IMPLEMENTATION (CPUHMD). THE DATA

FOR THE VDD AND GND GRIDS ARE SHOWN IN THE FORM OF V DD/GND.

CKT NIter Eavg(mv) Emax(mv) Ewst(mv) TH(s) NIter Eavg(mv) Emax(mv) Ewst(mv) TH(s) Spd.
ibmpg2 2/2 0.3/0.2 2.7/3.5 0.4/0.1 0.25 3/3 0.0/0.0 2.3/1.2 0.0/0.0 0.35 10X
ibmpg3 2/2 2.1/1.0 12.0/8.2 3.0/1.2 0.82 3/3 1.0/0.6 10.0/5.4 1.1/0.9 0.96 16X
ibmpg4 1/1 0.0/0.0 0.3/0.3 0.0/0.0 0.80 2/2 0.0/0.0 0.2/0.1 0.0/0.0 1.48 16X
ibmpg5 2/2 0.6/0.2 4.4/2.8 2.4/2.9 1.20 3/3 0.4/0.2 3.0/2.9 1.5/1.5 1.50 15X
ibmpg6 3/3 0.6/0.2 5.5/1.8 1.4/0.2 2.10 4/4 0.5/0.2 4.3/1.5 0.0/0.2 2.80 15X

10 (left). The average errors of all four benchmarks can be damped
very quickly after two or three HMD iterations.

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

Number of Iterations

A
v

e
ra

g
e

 E
rr

o
r

(m
V

)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

Regular Grid Size / Original Grid Size

N
o

rm
a

li
ze

d
 R

u
n

ti
m

e

Fig. 10. Average error vs. HMD iteration count (left); regular grid size vs.
runtime (right).

In Fig. 10 (right), the dependency of the total GpuHMD runtime
on the regular grid size is shown for IBM benchmark ibmpg6. As
the regular grid size is varied from 20% to 150% of the original grid
size, the GpuHMD HMD runtime does not vary significantly under
the same accuracy tolerance. This indicates that high accuracy in the
2D regular grid approximation is not needed. A reasonable regular
grid approximation is sufficient for fast HMD convergence.

Fig. 11 shows the runtimes and memory usages of GpuGMD
for several large synthetic 2D (topologically) regular power grids.
These power grids are generated by using the typical wire/pad con-
ductance values and current loadings observed in realistic industrial
benchmarks. The runtime and memory consumption of GpuGMD
increase rather linearly as the grid size increases. GpuGMD, the key
component of GpuHMD, scales favorably with the circuit complexity,
at a constant rate about one second (runtime) and 35Mb (memory)
per million nodes.

VIII. CONCLUSIONS

In this work, we address the challenge of large-scale power grid
analysis by developing a graphics processing unit (GPU) acceleration
engine. To gain good efficiency on GPUs, we propose to transform
an irregular grid to a regular structure so as to eliminate most
of random memory access patterns and simplify control flows. To
properly exploit the massively parallel single instruction multiple
thread (SIMT) GPU architecture, a parallel geometrical multigrid
algorithm is specially designed. New coarse grid construction and
block smoothing strategies are adopted to suit the SIMT GPU plat-
form. The robustness of the algorithm is well enhanced by an efficient
CPU-GPU hybrid multigrid iteration scheme. Careful performance
fine tuning is conducted to gain good analysis efficiency on the GPU.
Extensive experiments have shown that our GPU engine can achieve
more than 100X runtime speedup over a state-of-art direct solver
and be 15X faster than the CPU based multigrid solver.

0 5 10 15
0

5

10

15

20

Regular Grid Size (millions)

R
u

n
ti

m
e

(S
ec

o
n

d
s)

0 5 10 15 20
0

100

200

300

400

500

600

700

Regular Grid Size (millions)

M
e
m

o
ry

 U
s
a
g

e
 (

M
b

)

Fig. 11. Runtime and memory scalability of GpuGMD.

REFERENCES

[1] T. H. Chen and C. C.-P Chen. Efficient large-scale power grid analysis
based on preconditioned Krylov-subspace iterative methods. In Proc.
IEEE/ACM DAC, pages 559–562, 2001.

[2] J. N. Kozhaya, S. R. Nassif, and F. N. Najm. A multigrid-like technique
for power grid analysis. IEEE Trans. on Computer-Aided Design,
21(10):1148–1160, 2002.

[3] M. Zhao, R. Panda, S. S. Sapatnekar, and D. T. Blaauw. Hierarchical
analysis of power distribution networks. IEEE Trans. on Computer-Aided
Design, 21(2):159–168, 2002.

[4] H. Su, E. Acar, and S. R. Nassif. Power grid reduction based on algebraic
multigrid principles. In Proc. IEEE/ACM DAC, pages 109–112, 2003.

[5] Y. Zhong and M. D. F. Wong. Fast algorithms for IR drop analysis in
large power grid. In Proc. IEEE/ACM ICCAD, pages 351–357, 2005.

[6] H. Qian, S. R. Nassif, and S. S. Sapatnekar. Power grid analysis using
random walks. IEEE Trans. on Computer-Aided Design, 24(8):1204–
1224, 2005.

[7] C. Zhuo, J. Hu, M. Zhao, and K. Chen. Power grid analysis and
optimization using algebraic multigrid. IEEE Trans. on Computer-Aided
Design, 27(4):738–751, 2008.

[8] K. Sun, Q. Zhou, K. Mohanram, and D. C. Sorensen. Parallel domain
decomposition for simulation of large-scale power grids. In Proc.
IEEE/ACM ICCAD, pages 54–59, 2007.

[9] NVIDIA CUDA programming guide.
http://www.nvidia.com/object/cuda.html.

[10] N. Galoppo, N. K. Govindaraju, M. Henson, and D. Manocha. LU-
GPU: Efficient algorithms for solving dense linear systems on graphics
hardware. Proc. ACM SC, 22(3):917–924, 2005.

[11] CHOLMOD. http://www.cise.ufl.edu/research/sparse/cholmod/.
[12] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,

and W. W. Hwu. Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. In Proc. ACM PPOPP,
pages 73–82, 2008.

[13] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder. Sparse matrix solvers on
the GPU: conjugate gradients and multigrid. ACM Trans. on Graphics,
22(3):917–924, 2003.

[14] L. Buatois, G. Caumon, and Bruno Levy. Concurrent number cruncher:
An efficient sparse linear solver on the GPU. HPCC, LNCS, pages
358–371, 2008.

[15] S. R. Nassif. Power grid analysis benchmarks. In Proc. IEEE/ACM
ASPDAC, pages 376–381, 2008.

[16] IBM power grid benchmarks. http://dropzone.tamu.edu/ pli/pgbench/.
[17] W. Briggs. A multigrid tutorial. SIAM Press, 1987.

654

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

