
Game-Theoretic Timing Analysis
Sanjit A. Seshia and Alexander Rakhlin

EECS Department, UC Berkeley
{sseshia,rakhlin}@eecs.berkeley.edu

Abstract— Estimating the worst-case execution time (WCET)
of tasks is a key step in the design of reliable real-time software
and systems. In this paper, we present a new, game-theoretic
approach to estimating WCET based on performing directed
measurements on the target platform. We model the estimation
problem as a game between our algorithm (player) and the
environment of the program (adversary), where the player seeks
to find the longest path through the program while the adversary
sets environment parameters to thwart the player. We present
both theoretical and experimental results demonstrating the
utility of our approach. On the theoretical side, we prove that
our algorithm can converge to find the longest path with high
probability. Experimental results indicate that our approach is
competitive with an existing technique based on static analysis
and integer programming. Moreover, the approach can be easily
applied to even complex hardware/software platforms.

I. INTRODUCTION

Timing analysis plays a central role in the design of real-
time embedded systems. The main problem is to determine the
worst-case execution time (WCET) of programs, commonly
referred to as tasks, and then use the result to provide timing
guarantees on the system composed of these tasks. WCET
estimates are core components of any methodology to design
reliable real-time systems, since they are used in scheduling
algorithms and to give formal guarantees on real-time perfor-
mance and correctness (see, e.g., [1]).

There has been much research on the WCET estimation
problem over the last 20 years [2], [3]. The overall problem
has two dimensions: the path problem, which is to find the
worst-case path through the task, and the state problem, which
seeks to find the worst-case environment state to run the
task from. Significant progress has been made, especially in
the computation of bounds on loops in tasks, in modeling
the dependencies amongst program fragments using (linear)
constraints, and modeling some aspects of processor behavior.
However, as pointed out in recent papers by Lee [4] and
Kirner and Puschner [5], it is becoming increasingly difficult
to precisely model the complexities of the underlying hardware
platform (e.g., out-of-order processors with deep pipelines,
branch prediction, caches, parallelism) as well as the software
environment. This results in WCET bounds that are either too
pessimistic or too optimistic. Additionally, the evaluation of
WCET estimation tools is ad-hoc and based on performing
random, unguided measurements and seeing how close to the
bound these measurements get. As Kirner and Puschner [5]
write, a major challenge for measurement-based techniques is
the automatic and systematic generation of test data.

We address these challenges by presenting GAMETIME, a
measurement-based technique for WCET analysis based on
a novel game-theoretic paradigm. We model the estimation
problem as a game between our WCET estimation algorithm
(player) and the environment of the program (adversary),
where the player seeks to find the longest path through the
program while the adversary sets environment parameters

to thwart the player. Over many rounds of the game, our
algorithm learns enough about the environment to be able to
predict the longest path with high probability. Our algorithm
is not only robust to adversarial choices made by the environ-
ment, but also to errors in measurement.

A key idea in our approach is to perform directed mea-
surements of the program, by sampling only so-called basis
paths. The idea is that the length of any program path can be
estimated as a linear combination of the observed lengths of
the basis paths. We believe that this concept of basis paths and
our estimation algorithm are useful concepts for quantitative
analysis in general, both for software as well as for circuits.

We present both theoretical and experimental results demon-
strating the utility of our approach. On the theoretical side, we
prove that if we run our algorithm “long enough” (formalized
in Section IV), it can find the longest path in the task with
high probability. Once the longest path has been found, it can
be repeatedly run to estimate the worst-case execution time.
Our results enable us to find not just a single longest path, but
also paths of length within ε of the longest.

We have implemented our approach in a tool called GAME-
TIME. We present experimental results comparing GAMETIME
to the WCET estimation tool Chronos [6], and results indicate
that our approach is competitive with existing techniques based
on static analysis and integer programming, without incurring
the difficulties involved in modeling complex processor be-
havior. Moreover, since the approach is measurement-based,
it is easy to apply to varied and complex platforms.

The outline of the paper is as follows. We begin with a
survey of related work in Section II. The basic formulation
and an overview of our approach is given in Section III.
The algorithm and main theorems are given in Section IV,
and experimental results in Section V. We conclude with a
discussion of other applications of this work in Section VI.

II. BACKGROUND AND RELATED WORK

We briefly review literature on WCET estimation and results
from learning theory that our algorithms are based upon.

A. WCET Estimation
There is a vast literature on WCET estimation, comprehen-

sively surveyed by Li and Malik [2] and Wilhelm et al. [3],
[7]. For lack of space, we only include here a brief discussion
of current approaches and do not cover all tools. References
to current techniques can be found in a recent survey [3].

There are two parts to current WCET estimation methods:
program path analysis (also called control flow analysis) and
processor behavior analysis. In program path analysis, the
tool tries to find the program path that exhibits worst-case
execution time. In processor behavior analysis (PBA), one
models the details of the platform that the program will exe-
cute on, so as to be able to predict environment behavior such
as cache misses and branch mis-predictions that determine

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 575

execution time. PBA is an extremely time-consuming process,
with several man-months required to create a reliable timing
model of even a simple processor design.

Current tools are broadly classified into those based on
static analysis (e.g., aiT, Bounds-T, SWEET, Chronos) and
those that are measurement-based (e.g., RapiTime, SymTA/P,
Vienna M./P.). Static tools rely on abstract interpretation and
dataflow analysis to compute facts at program points that
identify dependencies between code fragments. Even static
techniques use measurement for estimating the time for small
program fragments, and measurement-based techniques rely
on techniques such as model checking to guide path explo-
ration. Static techniques perform implicit path enumeration
(IPET), usually based on integer linear programming. Static
techniques is effective, in practice, in computing loop bounds.

In comparison, our technique is measurement-based, and
hence suffers no over-estimation. It is distinct from exist-
ing measurement-based techniques due to the novel game-
theoretic formulation and use of current results from learning
theory. Our approach does rely on some static techniques,
in deriving loop bounds and using symbolic execution and
satisfiability solvers to compute inputs to drive the program
down a specific path of interest. In particular, note that
our approach completely avoids the difficulties of processor
behavior analysis, instead directly executing the program on
its target platform.

While adversarial analysis has been employed for related
problems, such as system-level dynamic power manage-
ment [8], to our knowledge, the adversarial analysis technique
in this paper is the first for timing estimation and for estimating
quantitative parameters of programs.

B. Learning Theory
Results of this paper build on the game-theoretic linear pre-

diction literature in learning theory. This field has witnessed an
increasing interest in sequential (or online) learning, whereby
an agent discovers the world by repeatedly acting and receiv-
ing feedback. Of particular interest is the problem of learning
in the presence of an adversary with a complete absence of
statistical assumptions on the nature of the observed data.

The problem of sequentially choosing paths to minimize the
regret (the difference between cumulative lengths of the paths
chosen by our algorithm and the total length of the longest
path after T rounds) is known as an instance of bandit online
linear optimization. The “bandit” part of the name is due to
the connection with the multi-armed bandit problem, where
only the payoff of the chosen “arm” (path) is revealed. The
basic “bandit” problem was put forth by Robbins [9] in 1952
and has been well-understood since then. The recent progress
comes from the realization that well-performing algorithms
can be found (a) for large decision spaces, such as paths in
a graph, and (b) under adversarial conditions rather than the
stochastic formulation of Robbins. We believe it is useful to
bring out these results for the problem of timing analysis.

We refer the reader to the recent book of Cesa-Bianchi
and Lugosi [10] for a comprehensive treatment of sequential
prediction. Some relevant results can be found in [11]–[13].

III. THEORETICAL FORMULATION AND OVERVIEW

The worst-case execution time (WCET) estimation problem
can be defined as follows:

Given a terminating software task S and a platform
M on which S executes, estimate the longest time S
takes to terminate on M.

A central idea in our theoretical formulation is that the
platform can be treated as an adversary about which we
learn over time through repeated experimentation. The learned
information is then used to predict the program path that
corresponds to the worst-case execution time. This game-
theoretic approach is in contrast to the traditional approach
of modeling a-priori all the complexities of the platform.

The main ideas in our theoretical formulation are elaborated
below.
Game-theoretic formulation: We model the WCET estima-
tion problem as a game between the WCET estimation tool
T and the environment E of S.

The game proceeds over multiple rounds, t = 1,2,3, In
each round, T picks the inputs to S. These inputs determine
the path taken through the program. Simultaneously, E adver-
sarially picks environment parameters, such as the state of the
cache before running S. This choice by E can depend on the
inputs selected by T .

At the end of each round t, T receives as feedback the
execution time lt of S for its chosen path under the parameters
chosen by E . Note that we assume that T only receives the
overall execution time of the task, not a more fine-grained
measurement of (say) each basic block in the task along the
chosen path. This enables us to minimize any skew from
instrumentation inserted to measure time.

Based on this feedback lt , T must modify its input-selection
strategy to improve its chances of picking the inputs that
trigger the WCET of the task.

The goal of T is to select inputs so that within a time
horizon T it can accumulate enough data to identify, with
high probability, the longest execution time of S that could
have been exhibited during rounds t = 1,2, . . . ,T .

Note that this longest execution time need not be due to
inputs tried out by T .

By permitting E to select environment parameters based on
T ’s choice of path, we can model path-dependent timing as
well as perturbation in execution time of a single path due to
variation in environmental conditions or measurement error.
The more predictable the timing behavior of the platform,
the smaller this perturbation will be. For theoretical analysis,
we model the perturbation as a random variable whose
mean is bounded by a parameter µmax. If a platform has
predictable timing, such as the PRET processor proposed by
Edwards and Lee [14], it would mean that µmax is small.
(The µmax parameter will play a role in determining the rate
of convergence of our proposed algorithm.)

Formulation as a graph problem: An additional aspect of
our model is that the game operates on the control-flow graph
GS of the task S (with loops unrolled).

In this setting, the game described above works as follows.
At any round t, the player T selects a path xt through the
graph GS from a designated source node (entry point of the
function) to a designated sink node (exit point/return statement
of the function). This is performed by picking input values for
S that drive execution down path xt . E selects lengths for all
source-sink paths in GS, where this selection can depend on
the choice of xt . However, E only reveals the length lt of the
chosen path xt .

576

The goal of T is thus to select paths so that within a time
horizon T it can accumulate enough data to identify, with high
probability, the longest path in GS during rounds t = 1,2, . . . ,T .

For ease of theoretical analysis, we will assume that E
initially chooses the worst-case (longest) times for each path,
and then, upon observing xt , perturbs the chosen time for
xt by pt to obtain lt . While this assumption does not lose
any generality in modeling the WCET problem, it allows us
to cleanly factor out the term pt that represents the timing
predictability of the platform.

We next give an overview of our approach.

Overview of Our Approach
We describe the working of our approach using a small pro-

gram from an actual real-time system, the Paparazzi unmanned
aerial vehicle (UAV) project [15]. Figure 1 shows the C source
code for the altitude control task in the Paparazzi
code, which is publicly available open source.

void altitude_control_task(void) {
if (pprz_mode == PPRZ_MODE_AUTO2

|| pprz_mode == PPRZ_MODE_HOME) {
if (vertical_mode == VERTICAL_MODE_AUTO_ALT) {
/* inlined below: function altitude_pid_run(); */
float err = estimator_z - desired_altitude;
desired_climb = pre_climb + altitude_pgain * err;
if (desired_climb < -CLIMB_MAX)

desired_climb = -CLIMB_MAX;
if (desired_climb > CLIMB_MAX)
desired_climb = CLIMB_MAX;

}}}

Fig. 1. Source code for altitude control task

Starting with the source code for a task, and all the
libraries and other definitions it relies on, we run the task
through a C pre-processor and the CIL front-end [16] and
extract the control-flow graph (CFG). In this graph, each node
corresponds to the start of a basic block and edges are labeled
with the basic block code or conditional statements that govern
control flow. Figure 2 shows the CFG for the code shown in
Figure 1.

Note that we assume that code terminates, and bounds are
known on all loops. Thus, we start with code with all loops
(if any) unrolled, and the CFG is thus a directed acyclic graph
(DAG). We also pre-process the CFG so that it has exactly
one source and one sink. Each execution through the program
is a source-to-sink path in the CFG.

An exhaustive approach to program path analysis will need
to enumerate all paths in this DAG. However, it is well-known
that even a DAG can have exponentially many paths (in the
number of vertices/edges). Thus, a brute-force enumeration of
paths is not going to be efficient.

Our approach is to sample a set of basis paths. The key
idea is to view each source-sink path as a vector in {0,1}m,
where m is the number of edges in the program. The ith entry
of the vector for a path x corresponds to edge i of the CFG,
and is 1 if edge i is in x and 0 otherwise. The set of all valid
source-sink paths thus forms a subset P of R

m.
We compute the basis for P in which each element of the

basis is a source-sink path. Figure 3 illustrates the ideas using
a simple “2-diamond” example of a CFG. In this example,
paths x1, x2 and x3 form a basis and x4 can be expressed as
the linear combination x1 + x2− x3.

Our algorithm, described in detail in Section IV, randomly
samples basis paths of the CFG and drives program execution

Fig. 2. Control-flow graph for altitude control task

down those paths by generating tests using symbolic execution.
From the observed lengths of those paths, we estimate edge
weights on the entire graph. This estimate, accumulated over
several rounds of the game, is then used to predict the
longest source-sink path in the CFG. Theoretical guarantees
on performance are proved in Section IV and experimental
evidence for its utility is given in Section V.

IV. ALGORITHM AND THEORETICAL RESULTS

Let P be the set of paths between source u and sink v
in the directed acyclic graph G = (V,E). We associate each
of the paths with a binary vector with m = |E| components,
depending on whether the edge is present or not. The path
prediction interaction is modeled as a repeated game between
our algorithm (Player) and the program environment (Adver-
sary). On each round t, we choose a path xt ∈ P ⊆ {0,1}m

between u and v. The adversary independently chooses the
lengths of paths in the graph. We assume that this choice
is made by first choosing the worst-case delays, or weights,
wt ∈ R

m on the edges of G, and then perturbing the overall
path length exhibited to us (Player). In other words, the true
worst-case length of the chosen path is xT

t wt , the dot product

577

1

2

5

6

3

4

7

8

9

10

x1 = (1,1,1,0,0,1,1,0,0,1)

x2 = (1,0,0,1,1,0,0,1,1,1)

x3 = (1,1,1,0,0,0,0,1,1,1)

x4 = (1,0,0,1,1,1,1,0,0,1)

x4 = x1 + x2 − x3

Fig. 3. Illustration of Basis Paths. An edge label indicates the position for
that edge in the vector representation of a path.

between the path vector and the weight vector. However, we
only observe a corrupted version xT

t wt + pt , where the scalar
random variable pt represents the perturbation introduced by
the adversary based on our choice xt . No other information is
provided to us; not only do we not know the delays of the
paths not chosen, we do not even know the contributions of
particular edges on the chosen path. We further assume that
the adversary is adaptive in that wt and pt can depend on the
past history of choices by the player and the adversary.

Now, suppose that there is a single fixed path x∗ which is
the longest one on each round. One possible objective is to
find x∗. In the following, we exhibit an efficient randomized
algorithm which allows us to find it correctly with high
probability. In fact, our results are more general: if no single
longest path exists, we can provably find a batch of longest
paths. We describe how our theoretical approach paves a road
for analyzing worst-case execution time given a range of
assumptions at hand.

Before diving into the details of the algorithm, let us sketch
how it works:
• First, compute a representative set of basis paths, called

a barycentric spanner (see section IV-A)
• For a specified number of iterations τ, do the following:

? pick a path from the representative set
? observe its length
? construct an estimate of delays on the whole graph from
the observed value

• Find the longest path or a set of longest paths based on
the average of the estimates over τ iterations.

It might seem mysterious that we can re-construct delays on
the whole graph based a single number, which is the total
length of the path we chose. To achieve this, our method
exploits the power of randomization and a careful choice of a
representative set of paths. The latter choice is discussed next.

A. Focusing on a Barycentric Spanner
It is well-known in the game-theoretic study of path pre-

diction that any deterministic strategy against an adaptive
adversary will fail [10]. Therefore, the algorithm we present
below is randomized. As we only observe the entire length
of the path we choose, we are bound to select from the set
of paths covering the whole graph or else we risk missing a
highly time-consuming edge. However, simply covering the
graph is not enough – note that such coverage corresponds
to “statement coverage” in the program, without covering all

ways of getting to a statement. Indeed, a key feature of the
algorithm is the ability to exploit correlations between paths
to guarantee that we find the longest. Hence, we need a
barycentric spanner (introduced by Awerbuch and Kleinberg
[13]), a set of up to m paths with two valuable properties:
any path in the graph can be written as a linear combination
of the paths in the spanner, and the coefficients in this
linear combination are bounded in absolute value. The first
requirement says that the spanner is a good representation
for the exponentially-large set of possible paths; the second
says that lengths of some of the paths in the spanner will be
of the same order of magnitude as the length of the longest
path. These properties enable us to repeatedly sample from
the barycentric spanner and reconstruct delays on the whole
graph. We then employ concentration inequalities1 to prove
that these reconstructions, on average, converge to the true
delays of the paths. Once we have a good statistical estimate
of the true weights on all the edges, it only remains to run a
longest-path algorithm (linear-time LONGEST-PATH for directed
acyclic graphs).

The existence of a barycentric spanner has been shown
in Awerbuch and Kleinberg [13]. In particular, the authors
provide the following procedure to find a 2-barycentric spanner
set (where coefficients are bounded in absolute value by 2)
{b1, . . . ,bm} ∈ P (see also [11]).

Algorithm 1 Finding a 2-Barycentric Spanner
1: (b1, . . . ,bm)← (e1, . . . ,em).
2: // Compute a basis of P :
3: for i = 1 to m do
4: bi← argmaxx∈P |det(x,B−i)|
5: end for
6: // Transform B into a 2-barycentric spanner:
7: while ∃x ∈ P , i ∈ {1, . . . ,m} satisfying
|det(x,B−i)|> 2|det(bi,B−i)| do

8: bi← x
9: end while

In Algorithm 1, B = (b1, . . . ,bm) and B−i =
(b1, . . . ,bi−1,bi+1, . . . ,bm). The output of the algorithm
is a 2-barycentric spanner B; i.e., any path x ∈ P can be
written as x = ∑m

i=1 αibi with |αi| ≤ 2. It is shown [13] that the
running time of Algorithm 1 is only quadratic in m. Gyorgy et
al. [12] extend the above procedure to the case where the set
of paths spans only a b-dimensional subspace of R

m (where
b ≤ m), a scenario which is more realistic for our setting.
Slightly abusing notation, let B be the b×m matrix with bi’s
as rows. We define the Moore-Penrose pseudo-inverse of B
as B+ = BT(BBT)−1. It holds that BB+ = Ib.

B. The Algorithm
Our algorithm, called GAMETIME, is given below as Algo-

rithm 2. For theoretical analysis, let M be any upper bound on
the length of the longest path. Before specifying the algorithm,
we make the following assumptions on the the additive factors
pt , as discussed in Section III. If a path xt is chosen, pt is a
random sample such that |E[pt |xt]| ≤ µmax and for simplicity
assume that this distribution (conditional on xt) has support

1Concentration inequalities are sharp probabilistic guarantees on the devi-
ation of a function of random variables from its mean.

578

over a bounded interval [−N,0]. (Note however, that we place
no restrictions on the value of N.)

Algorithm 2 GAMETIME

1: Input τ ∈ N, δ > 0, ρ > 0
2: Compute a 2-barycentric spanner {b1, . . . ,bb}
3: for t = 1 to τ do
4: Environment chooses wt in an adversarial manner.
5: We choose it ∈ {1, . . . ,b} uniformly at random.
6: Environment chooses a distribution with support [−N,0]

and mean µit ,t ≥−µmax, draws pt .
7: We predict the path xt = bit and observe the path length

`t = bT

it wt + pt
8: Estimate ṽt ∈ R

m as ṽt = b`t · eit , where {ei} denotes
the standard basis.

9: Compute estimated weights w̃t = B+ṽt
10: end for
11: Use the obtained sequence w̃1 . . . w̃τ to find a longest

path(s). For example, for Theorem 4.2, we compute x∗τ :=
argmaxx∈P xT ∑τ

t=1 w̃t .

Since we have assumed an adaptive adversary that produces
wt based on our previous choices x1 . . .xt−1 as well as the
random factors p1 . . . pt−1, we should take care in dealing with
expectations. Let us denote the conditional expectation Et [A] =
E[A|i1, . . . , it−1, p1, . . . , pt−1], keeping in mind that randomness
at time t stems from our random choice it and the adversary’s
random choice pt given it . We stress that the adversary can
vary not only pt , but also the distribution of pt , according to
the path chosen by the Player.

The following Lemma is key to proving that Algorithm 2
performs well. It quantifies the deviations of our estimates of
the delays on the whole graph, w̃t , from the true delays wt
(which we cannot observe).

Lemma 4.1: With probability at least 1−δ, for all x ∈ P ,
∣

∣

∣

∣

∣

1
τ

τ

∑
t=1

(w̃t −wt)
Tx
∣

∣

∣

∣

∣

≤ 2bµmax

+ τ−1/2c
√

2b+2ln(2δ−1), (1)

where c = 2b(2M +N +µmax).
Proof: We will show that Et w̃t x≈wt x for any x∈ P , i.e.

the estimates are almost unbiased2 (modulo the perturbation
pt) on the subspace spanned by {b1, . . . ,bb}.

Define vt = Bwt just as ṽt = Bw̃t . It holds that the bias
of ṽt as an estimator of vt is exactly the bias introduced by
the adversary through pt ’s. Indeed, taking expectations with
respect to it and pt ,

Et ṽt = Eit
[

Ept [b(bT

it wt + pt) · eit |it]
]

=
1
b

b
∑
i=1

b(bT

i wt) · ei +
b
∑
i=1

µi,tei

= Bwt +µt = vt +µt

where µt is the vector of biases chosen by the adversary for
round t.

2For random variables X and X̃ , X̃ is said to be an unbiased estimate of X
if E[X − X̃] = 0.

Fix any α∈ {−2,2}b. We claim that the sequence Z1, . . . ,Zτ,
where Zt = αT(ṽt−vt−µt) is a bounded martingale difference
sequence. Indeed, Et Zt = 0 by the previous argument. A bound
on the range of the random variables can be computed by
observing

|αTṽt |= |αT[b(bT

it wt + pt)eit]| ≤ 2b|bT

it wt + pt | ≤ 2b(M +N)

and
|αTµt | ≤ 2‖µt‖1 ≤ 2bµmax, |αTvt | ≤ 2bM

implying
|Zt | ≤ 2b(2M +N +µmax) = c.

An application of Azuma-Hoeffding inequality (see e.g.
Lemma A.7 in [10]) for martingale differences yields, for the
fixed α,

Pr
(
∣

∣

∣

∣

∣

τ

∑
t=1

Zt

∣

∣

∣

∣

∣

> c
√

2τ ln(2(2b)δ−1)

)

≤ δ/2b.

Having proved a statement for a fixed α, we would like
to apply the union bound3 to arrive at the corresponding
statement for any α ∈ [−2,2]b. This is implausible as the
set is uncountable. However, applying a union bound over
the vertices of the hypercube {−2,2}b is enough. Indeed,
if |∑τ

t=1 Zt | = |αT ∑τ
t=1(ṽt − vt −µt)| ≤ ξ for all vertices of

{−2,2}b, then immediately |∑τ
t=1 Zt | ≤ ξ for any α ∈ [−2,2]b

by linearity. Thus, by union bound,

Pr
(

∀α ∈ [−2,2]b,

∣

∣

∣

∣

∣

τ

∑
t=1

αT(ṽt − vt)−
τ

∑
t=1

αTµt

∣

∣

∣

∣

∣

≤

c
√

2τb+2τ ln(2δ−1)

)

≥ 1−δ.

Any path x can be written as xT = αTB for some
α ∈ [−2,2]b. Furthermore, w̃t = B+ṽt implies that xTw̃t =
αTBB+ṽt = αTṽt and xTwt = αTvt . We conclude that

Pr
(

∀x ∈ P ,

∣

∣

∣

∣

∣

τ

∑
t=1

(w̃t −wt)
Tx
∣

∣

∣

∣

∣

≤ (2)

2bτµmax + c
√

2τb+2τ ln(2δ−1)

)

≥ 1−δ.

and the statement follows by dividing by τ.

With the help of Lemma 4.1, we can now analyze how the
longest (or almost-longest) paths with respect to the estimated
w̃t ’s compare to the true longest paths.

Definition 4.1: Define the set of ε-longest paths with re-
spect to the actual delays

S ε
τ =

{

x ∈ P : 1
τ

τ

∑
t=1

wT

t x≥max
x′∈P

1
τ

τ

∑
t=1

wT

t x′− ε

}

and with respect to the the estimated delays

S̃ ε
τ =

{

x ∈ P : 1
τ

τ

∑
t=1

w̃T

t x≥max
x′∈P

1
τ

τ

∑
t=1

w̃T

t x′− ε

}

.

In particular, S 0
τ is the set of longest paths.

579

path length

nu
m

be
r o

f p
at

hs

ε+2ξ

1
τ ∑τ

t=1 w̃T

t x

1
τ ∑τ

t=1 wT

t x

ε

Fig. 4. Illustration of the second inclusion in Lemma 4.2. The set of ε-
longest paths, the object of interest, is contained in the set of (ε+2ξ)-longest
paths w.r.t. to the sequence w̃1, . . . , w̃τ. Under a margin assumption, equality
between the two sets can be shown, as exhibited by Theorem 4.2.

The following Lemma makes our intuition precise: with
enough trials τ, the set of longest paths, which we can calculate
after running Algorithm 2, becomes identical to the true set of
longest paths. We illustrate this point graphically in Figure 4:
In a histogram of average path lengths, the set of longest paths
(the right “bump”) is somewhat smeared when considering the
path lengths under the estimated w̃t ’s. In other words, paths
might have a slightly different average path length under the
estimated and actual weights. However, we can still guarantee
that this smearing becomes negligible for large enough τ,
enabling us to locate the longest paths.

Lemma 4.2: For any ε > 0 and for ξ = 2bµmax +
τ−1/2c

√

2b+2ln(2δ−1),

S̃ ε
τ ⊆ S ε+2ξ

τ and S ε
τ ⊆ S̃ ε+2ξ

τ

with probability at least 1−δ.
Proof: Let x∈ S̃ ε

τ and y ∈ S 0
τ . Suppose that we are in the

(1−δ)-probability event of Lemma 4.1. Then
1
τ

τ

∑
t=1

wT

t x≥ 1
τ

τ

∑
t=1

w̃T

t x−ξ≥max
x′∈P

1
τ

τ

∑
t=1

w̃T

t x′− ε−ξ

≥
1
τ

τ

∑
t=1

w̃T

t y− ε−ξ≥
1
τ

τ

∑
t=1

wT

t y− ε−2ξ

= max
x′∈P

1
τ

τ

∑
t=1

wT

t x′− ε−2ξ,

where the first and fourth inequalities follow by Lemma 4.1,
the third inequality is by definition of maximum, and the
second and fifth are by definitions of S̃ ε

τ and S 0
τ , resp. Since

the sequence of inequalities holds for any x∈ S̃ ε
τ , we conclude

that S̃ ε
τ ⊆ S ε+2ξ

τ . The other direction of inclusion is proved
analogously.

While the above statement is very general, we now give
one interesting implication for finding a longest path under
the following assumption.

Assumption 4.1: There exists a single path x∗ that is the
longest path on any round with a certain (known) margin ρ:

∀x ∈ P, x 6= x∗, ∀t, (x∗− x)Twt > ρ

3Also known as Boole’s inequality, the union bound says that the probability
that at least one of the countable set of events happens is at most the sum of
the probabilities of the events, e.g. Pr(A∪B)≤ Pr(A)+Pr(B).

Under the above margin assumption, we can, in fact, recover
the longest path, as shown in the next Theorem.

Theorem 4.2: Suppose Assumption 4.1 holds with ρ >
4bµmax. We run the Algorithm 2 for τ = 8(ρ−4bµmax)

−2c2(b+
ln(2δ−1)) iterations.

Then with probability at least 1−δ, Algorithm 2 outputs

x∗τ := argmax
x∈P

xT

τ

∑
t=1

w̃t

and x∗τ is equal to x∗.
Proof:

Let x∗τ = argmaxx∈P x∑τ
t=1 w̃t . We claim that, with probabil-

ity 1−δ it is equal to x∗. Indeed, suppose x∗τ 6= x∗. By Lemma
4.2, x∗τ ∈ S̃ 0

τ ⊆ S 2ξ
τ . Thus,

1
τ

τ

∑
t=1

wT

t x∗τ ≥
1
τ

τ

∑
t=1

wT

t x∗−2ξ.

Assumption 4.1, however, says that

1
τ

τ

∑
t=1

wT

t x∗τ <
1
τ

τ

∑
t=1

wT

t x∗−ρ

leading to a contradiction whenever ρ ≥ 2ξ = 4bµmax +
τ−1/22c

√

2b+2ln(2δ−1)). Rearranging the terms and using
ρ − 4bµmax > 0, we arrive at τ ≥ 8(ρ− 4bµmax)−2c2(b +
ln(2δ−1)), as assumed. We conclude that with probability at
least 1−δ, x∗τ = x∗ and {x∗}= S̃ 0

τ = S 2ξ
τ .

The following weaker assumption also has interesting im-
plications.

Assumption 4.2: There exists a path x∗ ∈ P such that it is
the longest path on any round

∀x ∈ P, ∀t, (x∗− x)Twt ≥ 0
If, after running Algorithm 2 for enough iterations, we

find all ε-longest paths, Lemma 4.2 guarantees that, under
Assumption 4.2, the longest path x∗ is one of them with
high probability. We can then use this information to test the
candidate paths to find the worst-performing path over another
set of iterations. We omit the details due to lack of space.

V. EXPERIMENTAL RESULTS

A. Implementation
Our timing analysis tool, also called GAMETIME, operates

in four stages, as described below.
1. Extract CFG. GAMETIME begins by extracting the control-
flow graph (CFG) of the real-time task whose WCET must
be estimated. This part of GAMETIME is built on top of the
CIL front end for C [16]. Our CFG parameters (numbers of
nodes, edges, etc.) is thus specific to the CFG representations
constructed by CIL. In general, nodes correspond to the start
of basic blocks of the program and edges indicate flow of
control, with edges labeled by a conditional or basic block. In
our experience, this phase is usually fast, taking no more than
a minute for any of our benchmarks.
2. Compute basis paths. The next step for GAMETIME is to
compute the set of basis paths and the B+ matrix. This is done
as discussed in Section IV. This phase can be somewhat time-
consuming; in our experiments, the basis computation for the
largest benchmark (statemate) took about 15 minutes.

580

3. Generate program inputs. Given the set of basis paths
for the graph, GAMETIME then has to generate inputs to
the program that will drive the program’s execution down
that path. It does this using constraint-based test generation,
by generating a constraint satisfaction problem characterizing
each basis path, and then using a constraint solver based
on Boolean satisfiability (SAT). This phase uses the UCLID
decision procedure [17] to generate inputs for each path and
creates one copy of the program for each path, with the
different copies only differing in their initialization functions.
For our experiments, this constraint-based test generation
phase was also very quick, taking less than a minute for each
benchmark. It is possible for the set of constraints for a basis
path to be infeasible. In such a case, we heuristically adjust
the basis to find a feasible set of paths. In all our experiments
so far, the generated set of basis paths has always been
feasible. Developing more systematic strategies for dealing
with infeasible paths is left to future work.
4. Predict longest path. Finally, Algorithm 2 is run with the
set of basis paths and their corresponding programs, along with
the B+ matrix. The number of iterations in the algorithm, τ,
depends on the mode of usage of the tool. In the experiments
reported below, we used a deterministic simulator, and hence
τ was set equal to b, since we perform one simulation per
basis path. In general, τ can be pre-computed as described
in Section IV or increased gradually while searching for
convergence to a single longest path.
The run-time for this phase depends on the execution time
of the program and the number of iterations of the loop in
Algorithm 2; for our experiments, this run-time was under a
minute for all benchmarks.

The estimated longest path is then executed (or simulated)
several times to calculate our estimate of the WCET.

B. Benchmarks
Our benchmarks were selected from amongst those used

in the WCET Challenge 2006 [18], which were drawn from
the Mälardalen benchmark suite [19] and the PapaBench
suite [15]. In particular, we looked for benchmarks with
two features. First, rather than use artificially constructed toy
benchmarks, we looked for implementations of actual real-
time systems. Second, we looked for benchmarks that had
several paths and were of various sizes, but which did not
require automatic estimation of loop bounds. This second
criterion ruled out, for example, benchmarks that compute a
discrete cosine transform or did data compression, because
there is usually just one path through those programs (going
through several iterations of a loop), and variability in run-
time usually only comes from characteristics of the data. Most
benchmarks in the Mälardalen suite are of this nature.

The main characteristics of chosen benchmarks is shown
in Table I. The first three benchmarks, altitude, stabilisation,
and climb control, are tasks in the open source PapaBench
software for an unmanned aerial vehicle (UAV) [15]. The
last benchmark, statemate, is part of the code generated from
a STATEMATE Statecharts model for an automotive window
control system (single loop iteration only). Note in particular,
how the number of basis paths b is far less than the total
number of source-sink paths in the CFG. (We are able to
efficiently count the number of paths as the CFG is a DAG.)
We also indicate the number of lines of code for each task;
however, note that this is an imprecise metric as it includes

declarations, comment lines, and blank lines – the CFG size
is a more accurate representation of size.

Name LOC Size of CFG Total Num. Num. of basis
n m of paths paths b

altitude 12 12 16 11 6
stabilisation 48 31 39 216 10

climb control 43 40 56 657 18
statemate 916 290 471 7×1016 183

TABLE I
Characteristics of Benchmarks. “LOC” indicates number of lines of C

code for the task. The Control-Flow Graph (CFG) is constructed using the
CIL front end, n is the number of nodes, m is the number of edges.

C. Comparison using SimpleScalar Simulations
We performed experiments to compare GAMETIME against

Chronos [6] as well as against testing the programs on
randomly-generated inputs. WCET estimates are output in
terms of the number of CPU cycles taken by the task to
complete in the worst-case.

Chronos is currently the only publicly available WCET
estimation tool that also participated in the WCET Challenge
2006 [18]. Chronos is built upon SimpleScalar [20], a widely-
used tool for processor simulation and performance analysis.
Chronos extracts a CFG from the binary of the program (com-
piled for MIPS using modified SimpleScalar tools), and uses
a combination of dataflow analysis, integer programming, and
manually constructed processor behavior models to estimate
the WCET of the task.

To compare GAMETIME against Chronos, we used Sim-
pleScalar to simulate, for each task, each of the extracted basis
paths. We used the same SimpleScalar processor configuration
as we did for Chronos (which is Chronos’ default configura-
tion), specified below:

-cache:il1 il1:16:32:2:l -mem:lat 30 2 -bpred 2lev
-bpred:2lev 1 128 2 1 -decode:width 1 -issue:width
1 -commit:width 1 -fetch:ifqsize 4 -ruu:size 8

Since SimpleScalar’s execution is deterministic for a fixed
processor configuration, we did not run Algorithm 2 in its
entirety. Instead, we simulated each of the basis paths exactly
once (factoring out the time for initialization code) and then
predicted the longest path as described in Section IV. The pre-
dicted longest path was then simulated once and its execution
time is reported as GAMETIME’s WCET estimate.

The random testing was done by generating initial values
for each program input variable uniformly at random from its
domain. For each benchmark, we generated 500 such random
initializations; note that GAMETIME performs significantly
fewer simulations (only as many as there are basis paths, for
a maximum of 183 for the statemate benchmark).

Our results are reported in Table II. We note that the
estimate of GAMETIME Tg is lower than the WCET Tc
reported by Chronos for three out of the four benchmarks.
Interestingly, Tg > Tc for the stabilisation benchmark; on closer
inspection, we found that this occurred mainly because the
number of misses in the instruction cache was significantly
underestimated by Chronos. The over-estimation by Chronos
for statemate is very large, much larger than for altitude
and climb control. This appears to arise from the fact that
the number of branch mis-predictions estimated by Chronos
is significantly larger than that actually occurring: 106 by
Chronos versus 19 mis-predictions on the longest path sim-
ulated by GAMETIME in SimpleScalar. In fact, the number

581

Name of Chronos Random GAMETIME Tc−Tg Basis path
Benchmark WCET testing estimate Tg times

Tc Tr Tg (%) Max Min

altitude 567 175 348 62.9 343 167
stabilisation 1379 1435 1513 −8.9 1513 1271

climb control 1254 646 952 31.7 945 167
statemate 8584 4249 4252 101.9 3735 3235

TABLE II
Comparison with Chronos and random testing. Execution time estimates
are in number of cycles reported by SimpleScalar. For random testing, the

maximum cycle count over 500 runs is reported. The fifth column indicates
the percentage over-estimation by Chronos over GAMETIME, and the last
two columns indicate the maximum and minimum cycle counts for basis

paths generated by GAMETIME.

of branches performed in a single loop of the statemate code
is bounded by approximately 40. (Similar overestimation by
Chronos was also observed for this benchmark in the WCET
Tools Challenge [18].)

We also note that GAMETIME’s estimates can be sig-
nificantly higher than those generated by random testing.
Moreover, GAMETIME’s predicted WCET is higher than the
execution time of any of the basis paths, indicating that
the basis paths taken together provide more longest path
information than available from them individually.

D. Discussion
A good WCET estimation tool generates estimates that are

upper bounds on the true worst-case time with low over-
estimation. Evaluating the over-estimation by tools is difficult
with uniform random testing, because inputs that trigger
the worst-case path can easily be missed. In this context,
GAMETIME offers a better alternative to bound the over-
estimation by a WCET computation tool such as Chronos, as
demonstrated above. We observe that GAMETIME can also be
used to find timing-related bugs in real-time programs.

Importantly, GAMETIME avoids imprecisions from proces-
sor behavior analysis, sometimes generating larger times than
the WCET bound generated by conservative techniques that
rely on such analyses (as shown for the stabilisation bench-
mark). Under certain assumptions formalized in Section IV,
GAMETIME is guaranteed to converge to the longest path.

A major strength of the GAMETIME approach is in its ease
of applicability to a wide range of platforms. We have already
applied GAMETIME on an x86-based platform (a 2.8 GHz
Intel Xeon processor running Redhat Enterprise Linux) and
also on the PRET processor [14]; for lack of space, we defer
a discussion of these results to the full paper. Importantly, our
applications of GAMETIME to these complex platforms has
been done with no manual architectural modeling.

VI. CONCLUSIONS

In summary, we have presented a new, game-theoretic ap-
proach to estimating the worst-case execution (WCET) time of
a software task. Our tool, GAMETIME, is measurement-based,
making it easy to use on many different platforms without
the need for tedious processor behavior analysis. We have
presented theoretical and empirical evidence for the utility of
the GAMETIME approach to timing estimation.

For future work, we note the the possibility of combining
GAMETIME with traditional static techniques for WCET
estimation, with the goal of improving scalability and

precision. We also note that our algorithm and results of
Section IV are general, in that they apply to estimating
longest paths in DAGs in an unpredictable environment, not
just to WCET estimation for embedded software. This raises
the intruiging possibility of the relevance of our algorithm
to timing analysis of combinational circuits under variability.
Moreover, the “longest path” need not only refer to execution
time — it could also refer to other quantitative system
parameters, such as power consumption. These directions
appear to be worth investigating.

Acknowledgments. We are grateful to S. Arunkumar, R. Karp,
E. Lee, and P. Varaiya for valuable discussions and feedback.
We thank B. Seshadri, S. Juvekar, S. Jha, and the anonymous
reviewers for their inputs. The first author was supported in
part by NSF CAREER grant CNS-0644436, and the second
author by DARPA grant FA8750-05-2-0249.

REFERENCES
[1] G. Butazzo, Hard real-time computing systems, predictable scheduling

algorithms and applications. Kluwer Academic Publishers, 1997.
[2] Y.-T. S. Li and S. Malik, Performance Analysis of Real-Time Embedded

Software. Kluwer Academic Publishers, 1999.
[3] Reinhard Wilhelm et al., “The Determination of Worst-Case Execution

Times—Overview of the Methods and Survey of Tools,” ACM Trans-
actions on Embedded Computing Systems (TECS), 2007.

[4] E. A. Lee, “Computing foundations and practice for cyber-physical
systems: A preliminary report,” University of California at Berkeley,
Tech. Rep. UCB/EECS-2007-72, May 2007.

[5] R. Kirner and P. Puschner, “Obstacles in worst-case execution time
analysis,” in ISORC, 2008, pp. 333–339.

[6] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A tim-
ing analyzer for embedded software,” National University of Singa-
pore,” Technical Report, 2005, http://www.comp.nus.edu.sg/∼rpembed/
chronos/chronos tool.pdf.

[7] R. Wilhelm, “Determining Bounds on Execution Times,” in Handbook
on Embedded Systems, R. Zurawski, Ed. CRC Press, 2005.

[8] S. Irani, G. Singh, S. Shukla, and R. Gupta, “An overview of the
competitive and adversarial approaches to designing dynamic power
management strategies,” IEEE Trans. VLSI, vol. 13, no. 12, pp. 1349–
1361, Dec 2005.

[9] H. Robbins, “Some aspects of the sequential design of experiments,”
Bull. Amer. Math. Soc., vol. 58, no. 5, pp. 527–535, 1952.

[10] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge University Press, 2006.

[11] H. B. McMahan and A. Blum, “Online geometric optimization in the
bandit setting against an adaptive adversary,” in COLT’04, pp. 109–123.

[12] A. György, T. Linder, G. Lugosi, and G. Ottucsák, “The on-line shortest
path problem under partial monitoring,” J. Mach. Learn. Res., vol. 8,
pp. 2369–2403, 2007.

[13] B. Awerbuch and R. D. Kleinberg, “Adaptive routing with end-to-end
feedback: distributed learning and geometric approaches,” in STOC ’04:
Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing. New York, NY, USA: ACM, 2004, pp. 45–53.

[14] S. A. Edwards and E. A. Lee, “The case for the precision timed (PRET)
machine,” in Design Automaton Conference (DAC), 2007, pp. 264–265.

[15] F. Nemer, H. Cass, P. Sainrat, J.-P. Bahsoun, and M. D.
Michiel, “Papabench: A free real-time benchmark,” in 6th Intl.
Workshop on Worst-Case Execution Time (WCET) Analysis, 2006.
[Online]. Available: http://www.irit.fr/recherches/ARCHI/MARCH/
rubrique.php3?id rubrique=97

[16] George Necula et al., “CIL - infrastructure for C program analysis and
transformation,” http://manju.cs.berkeley.edu/cil/.

[17] R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and
B. Brady, “Deciding bit-vector arithmetic with abstraction,” in TACAS,
ser. LNCS, vol. 4424, 2007, pp. 358–372.

[18] L. Tan, “The Worst Case Execution Time Tool Challenge
2006: Technical Report for the External Test,” Uni-
DUE, Technical Reports of WCET Tool Challenge 1,
December 2006. [Online]. Available: http://rw4.cs.uni-sb.de/∼lili/papers/
WCETToolChallenge ExternalTestRepo%rt TR.pdf

[19] “The Mälardalen benchmark suite.” [Online]. Available: http://www.
mrtc.mdh.se/projects/wcet/benchmarks.html

[20] Todd Austin et al., “The SimpleScalar tool set.” [Online]. Available:
http://www.simplescalar.com

582

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

