
FBT: Filled Buffer Technique to Reduce Code Size
for VLIW Processors

Talal Bonny and Jörg Henkel
University of Karlsruhe, Chair for Embedded Systems, Karlsruhe, Germany

{bonny, henkel}@informatik.uni-karlsruhe.de

Abstract— VLIW processors provide higher performance and
better efficiency etc. than RISC processors in specific domains
like multimedia applications etc. A disadvantage is the bloated
code size of the compiled application code. Therefore, reducing the
application code size is a design key issue for VLIW processors.
In this paper we adapt a hardware-supported approach called
“Deflate” [12] which has been used before in data compression.
It can significantly reduce the code size compared to state-of-the-
art approaches for VLIW processors as we will show within this
work. In fact, we enhance the “Deflate” algorithm by using a new
technique called Filled Buffer Technique which can be applied to
any Lempel-Ziv family algorithms to improve compression ratio
in average by more than 13% compared to the sole “Deflate”
algorithm. Using our Filled Buffer Technique in conjunction with
“V2F” [15] improves the compression ratio by 10%. We have
conducted evaluations using a representative set of benchmarks
(from Mediabench and Mibench) and have applied our scheme
to two VLIW processors, namely TMS320C62x and TMS320C64x.
We achieved allover compression ratios as low as 44% using the
“Deflate” algorithm (61% and 56% in average for TMS320C62x
and TMS320C64x, respectively).

I. INTRODUCTION AND RELATED WORK

An important issue in embedded system design is the
size of the program memory of an embedded application
since it may occupy up to 3-7 times of the silicon footprint
of an embedded processor [6]. VLIW processors provide
higher performance than RISC processors for a broad range
of applications because of their ability to exploit fine-grain,
instruction-level parallelism. However, the drawback of an
VLIW architecture is the bloated code size of the compiled
applications in comparison to RISC processors. Fig. 1 shows
the relative average code size of several benchmarks (from
Mibench) on different processor architectures. It is obvious
that code compression is of paramount importance when it
comes to VLIW architectures.
Code compression differs from data compression in the size
of the text that is to be compressed/decompressed. In data
compression, the data is compressed and decompressed as a
whole (i.e. as one block) while in code compression small
segments or blocks of code (called compression blocks) are
compressed and decompressed individually/independently
to ensure Random Access in decompression. For that, data
compression typically results in higher compression ratio than
code compression. Data compression algorithms from the
Lempel-Ziv family use the “sliding window” method to match
a series of bits in a so-called look-ahead buffer to bits already
in the search buffer. At the beginning of compressing each
compression block, the search buffer is empty. Hence, the
first series of bits in the look-ahead buffer will find no match
in the search buffer and remain without any compression.
This will negatively impact the final compression ratio when
it comes to small text size.
We therefore explicitly reduce the size of compressed

Fig. 1. Relative average code size through different benchmarks of Mibench
on different processor architectures

instructions by using our novel technique (called FBT: Filled
Buffer Technique) which can be applied in conjunction with
any algorithm from the Lempel-Ziv family. As we will show
later on in detail, our Filled Buffer Technique fills in the
search buffer with a series of bit patterns at the beginning
of compressing of any compression block. This technique
improves the compression ratio (in average) by more than
13% compared to algorithms that do not use our technique
(discussed later in the experimental results). To show the
orthogonality of our Filled Buffer Technique (FBT), we apply
it to another algorithm from the Lempel-Ziv family which is
called “LZMA”. We also compare our compression results
with the results of state-of-the-art previous work like“V2F”
[15] (as this method achieves very high decoding throughput)
and show the optained improvements.

In Related Work, various compression techniques have
been studied for VLIW processors. In [15] and [16], the
authors use variable to fixed code compression schemes based
on range encoding for VLIW processors. The most important
advantage of their scheme is the ability of parallel decoding.
In [9] the authors divide instructions into 11 groups. Within
a group, they partitioned the instruction into two 2-byte
segments and created tables for each group leading to an
average compression ratio of 70% with 3 bytes decompression
each clock cycle. Ros and Sutton ([10] and [11]) developed a
dictionary compression technique based on victor Hamming
distances for the complete 32-bit instructions. The authors
achieve compression ratios of 72.1% to 80.3% while targeting
TMS320C6x VLIW processor. Lin et al. [8] proposed a
variable-size code compression method based on LZW for
VLIW processors. Their method generates adaptive coding
tables on-the-fly during compression and decompression to
avoid storing. They achieved an average compression ratio of
75.2% targeting the TMS320C6x VLIW processor.
The rest of the paper is organized as follows. In Section II we
give an overview of the VLIW processors. Our compression

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 549

Fig. 2. Example for exploring the Extended Blocks (EB) from “Fetch
Packets” (FP) for compression

scheme is presented in Section III. In Section VI, the hardware
implementation for our scheme is presented whereas experi-
mental results are presented in Section V. We conclude this
paper with Section VI.

II. VLIW PROCESSORS

We apply our compression technique targeting two VLIW
DSPs from Texas Instruments, namely the TMS320C62x [13]
and TMS320C64x [14] (we refer to them in this work as C62x
and C64x), though our technique can be applied to any other
VLIW processor as well.
The instruction word in the C62x comprises eight 32-bit
instructions and is called a “Fetch Packet”. The instructions
in the same “Fetch Packet” may be executed in one or
more clock cycles (due to data dependencies). The “Execution
Packet” contains only the instructions which may be executed
in parallel (in one clock cycle). Each instruction has a bit
which indicates whether the next instruction is part of the
same “Execution Packet”. The “Fetch Packet” is not restricted
with the boundary of the Basic Blocks, i.e. the branch target
instruction may emerge in the middle of the “Fetch Packet”.
The C64x is a developed version of the C62x and is a part
of the DaVinci multimedia processor by Texas instruments.
The number of 32-bit registers is extended to 64 and the
“Execution Packet” is developed to include instructions from
another “Fetch Packet” (i.e. cross the “Fetch Packet”). These
changes decreases the number of NOPs and consequently
reduces the size of compiled program code in comparison to
the C62x (See Fig. 7).

III. OUR CODE COMPRESSION APPROACH

In code compression, the compression algorithm is ap-
plied to small segments or code blocks (called “compression
blocks”) to ensure random access. The first step in any
code compression approach is to determine the size of these
compression blocks. Selecting Basic Blocks as compression
blocks diminishes the possible compression due to their small
text size. Extending the size of a compression block to include
more instructions than in the Basic Blocks will improve
the final compression ratio as explained later. In a VLIW
processor, if a branch target instruction appears in the middle
of the “Fetch Packet”, only the instructions which follow the
branch target will be executed. Hence, we may extend the
compression blocks to include more instructions than the Basic
Blocks and call them Extended Blocks which are defined as
follows:
(1) The Extended Block may contain one or more complete
“Fetch Packets”. (2) The branch target instruction should only
exist in the first “Fetch Packet” of the Extended Block.
Fig. 2 shows an example for exploring the Extended Blocks.
In this figure there are 8 “Fetch Packets” (FP1 - FP8). The

Fig. 3. Example for compressing an Extended Block using LZSS

dashed area refers to a branch target instruction. The number
of Basic Blocks (BB) is 6 (because of the 6 branch target
instructions). The first Extended Block (EB1) contains only
one “Fetch Packet” (FP1) because the next branch target
instruction appears directly in the next “Fetch Packet” (FP2).
The second Extended Block (EB2) contains 3 “Fetch Packets”
(FP2 to FP4) and so on. The number of Extended Blocks in
this example is reduced to 5.

A. Deflate Compression Algorithm

‘Deflate” [12] is a data compression algorithm that has
originally been used in the Zip and Gzip software to compress
data files. It is based on an optimized version of LZ77 (which
is called LZSS) combined with Huffman codes.

The basic idea behind the LZSS method (Algorithm 1) is to
use part of the previously-seen input stream as the dictionary.
The encoder then shifts the input in that window from right
to left as strings of bits (i.e. patterns) are being encoded
(line 2). Thus, the method is based on a sliding window. The
window (see Fig. 3) is divided into two parts. The part on
the left is the search buffer. This buffer includes patterns of
consecutive bits that have recently been input and encoded
(each symbol denotes 8-bit pattern of instruction). The part on
the right is the look-ahead buffer, containing patterns yet to
be encoded. The algorithm 1 adds the flag ’0’ to the “length”
(line 6) and the flag ’1’ to “literal” to distinguish between
the uncompressed and compressed ones. Finally the algorithm
returns the compressed stream (line 10) which contains the
uncompressed patterns (“literals”) and the compressed ones
(pair of(“offsets”,“lengths”)).
Fig. 3 shows an example for compressing an Extended Block
which contains 4 instructions using the LZSS algorithm. These
instructions compose the string of symbols “ABEABCABCD-
BCAAAA” (each symbol denotes a pattern which correspond
to 8 bit of the instruction). The encoder in this example
outputs the compressed stream “ABE(3,2)C(3,3)D(6,3)(1,3)”.
The encoder adds a 1-bit flag at the beginning of each
compressed- uncompressed pattern.
In the next step of “Deflate”, we encode the compressed stream
using three different models of Huffman Coding:
Static-Static Huffman Tables: This is the standard model
in the“Deflate” algorithm in which two static code tables
are prepared for encoding: one to encode the “literals” and
“lengths” and the other to encode the “offsets”. The encoder
replaces the codes that are written on the compressed stream
along with the new codes of the tables.
Dynamic-Static Huffman Tables: In this model, we create
a Huffman table for the “literals” and “lengths” only. For the

550

Algorithm 1 : LZSS Compression Algorithm

/* pat: pattern which is consecutive bits of instruction (pat is 8-bit long) */
/* LB: Look-ahead Buffer */
/* SB: Search Buffer */

1: Function LZSS (pat) {
2: pat >> LB {shift patterns in the Look-ahead Buffer}
3: if pat in SB match pat in LB then {pattern is compressed}
4: find offset and length
5: pat ⇒ (offset,length) {pat is compressed as (offset,length)}
6: length + ’0’ {add ’0’ as flag for uncompressed}
7: else {pattern is not compressed}
8: pat + ’1’ ⇒ literal {uncompressed pat and flag is called literal}
9: end if

10: return (literal,offset,length) {return compressed stream}
11: }

“offsets”, we use the prepared static table.
Dynamic-Dynamic Huffman Tables: In this model, we create
two Huffman tables, one for “literals” and “lengths” and the
other for the “offsets”. Depending on their repetition fre-
quency, shorter code words are assigned to the most frequent
patterns and vice versa.

B. Our Filled Buffer Technique (FBT)

Our main goal here is to adapt the “Deflate” algorithm
such that it works efficiently in code compression. As the
search buffer is empty at the beginning of each encoding
of an Extended Block, the first patterns in the look-ahead
buffer will naturally not find any match in the search buffer
and therefore they remain without any compression. In data
compression, these non-matching patterns occur only one time
(in the beginning of compressing the whole data stream).
However, in code compression that occurs for every Extended
Block. For that, the number of non-matching patterns (i.e.
uncompressed patterns) in code compression will be more than
data compression and negatively impact the compression ratio
as each uncompressed pattern will have one extra bit flag to
be distinguished from the compressed one.

To overcome this deficiency, we use a novel and efficient
technique (that we call Filled Buffer Technique (FBT)) before
we apply the actual compression algorithm. Hence, the en-
coder fills in the empty search buffer (off-line) with selected
patterns in the beginning of encoding each Extended Block.
Therefore, the patterns in the look-ahead buffer may match
those filled patterns in the search buffer and then they may be
compressed with a pair of (offset, length).
To find those patterns, we use Algorithm 2 which consists of
three steps. In the first step, we compress the whole application
as one block (i.e. in a data compression manner) using the
LZSS algorithm (lines 1-4) and compute the compression ratio
for each pattern of all instructions (lines 5-7). In the second
step, we compress each Extended Block of the application
separately (i.e. in code compression manner) using the LZSS
algorithm (lines 1-5) and compute the compression ratio of
each pattern in the Extended Block (line 7). In the third step,
we compute the difference in compression ratios of patterns
(lines 1-3). Then, we sort the patterns by their difference in
compression ratios in descending order (line 4). As the size of
the search buffer is 1024 Byte, we just need to select the first
1024 sorted patterns to fill in the search buffer at the beginning
of compressing each Extended Block.
To compress the Extended Blocks using “Deflate” in conjunc-
tion with our Filled Buffer Technique, we use Algorithm 3. In
this algorithm, and before we compress each Extended Block,

Algorithm 2 FBT: Filled Buffer Technique (three steps)

/* i: 32-bit instruction */
/* EB: Extended Block */
/* CR1: Compression ratio in case data compression*/
/* CR2: Compression ratio in case code compression*/
/* diff: Difference in Compression ratio between CR1 and CR2 */
/* Compress whole application as one Block (data compression) */

1: for all instructions i in the application do {partitioning}
2: partition i into 4 pat {each pattern is 8-bit long}
3: end for
4: Call LZSS (pat) {call function LZSS in Algorithm 1}
5: for all patterns pat in application do {compute CR1 for each pat}
6: CR1 = compressed pattern size(in bits)/8

7: end for

/* Compress each EB in application separately (code compression)*/

1: for all Extended Blocks EB in the application do
2: for all instructions i in the EB do {partitioning}
3: partition i into 4 pat
4: end for
5: Call LZSS (pat) {call function LZSS in Algorithm 1}
6: for all patterns pat in EB do {compute CR2 for each pat}
7: CR2 = compressed pattern size(in bits)/8

8: end for
9: end for

/* Compute the difference in compression ratios for each pattern */

1: for all patterns pat in application do {compute diff}
2: diff= CR2 − CR1 {Compute the difference for each pattern}
3: end for
4: sort patterns pat by diff descendingly
5: select the first 1024 sorted patterns to fill in the SB

Algorithm 3 Deflate with Filled Buffer Technique

1: for all Extended Blocks EB in the application do
2: SB ⇐ sorted pat {fill in Search Buffer with first 1024 sorted patterns}
3: Call LZSS (pat) {call function LZSS in Algorithm 1}
4: end for
5: Compress the compressed stream using Huffman Coding

we fill in the search buffer with the first 1024 sorted patterns
(from Alg. 2). Then, we compress the patterns using LZSS
(Alg. 1) in line 3 and Huffman coding (line 5).

Fig. 4 shows an example for the Filled Buffer Technique
(FBT). Assuming that we have three Extended Blocks, we want
to find the patterns which are required to fill in the search
buffer before compressing each Extended Block. According to
Alg. 2, we first compress the three blocks together using the
LZSS as data compression technique. As the search buffer
is empty at the beginning of the compression, the patterns
“ABCDEF” in EB1 will be left without compression but the
patterns “ABCD” in EB2 and ‘ABCDEF” in EB3 will find
a match in the search buffer and will be compressed using
the pair (offset, length). Then, we compress each Extended
Block using LZSS, separately. As the search buffer is empty
in the beginning of compressing each Extended Block, the
patterns in each Extended Block will find no match and will
be left without compression. Each uncompressed pattern will
have one extra flag bit to indicate that it is not compressed.
Considering that each pattern has 8 bit and that the “offset” is
encoded in 10 bit, the compression ratio for any uncompressed
pattern will be 112% (which is bad). However, for each
pattern in EB2 and in EB3 is 59% and 39%, respectively.
The differences in compression ratios between each pattern in
EB1, EB2 and EB3 will be 0%, 53% and 73%, respectively.
As the patterns in the EB3 achieve the highest difference in
compression ratios, we select its patterns to fill in the search
buffer at the beginning of compressing each Extended Block.

551

Fig. 4. Example to compress 3 Extended Blocks using the “Deflate” algorithm in conjunction to the Filled Buffer Technique (FBT)

Fig. 5. Hardware Decoder

Compressing the Extended Blocks after applying our FBT will
improve the compression ratio for the Extended Blocks (EB2
and EB3) to be 59% an 39%, respectively.

IV. DECOMPRESSION ARCHITECTURE DESIGN

To decode the compressed instructions using the “Deflate”
algorithm, we use two sequential decoders (Fig. 5) which is a
Huffman Decoder and an LZSS decoder

A. Huffman Hardware Decoder

The Huffman Coding Algorithm generates a large decoding
Look-up Table which is used to decode the compressed
instructions with a hardware decoder. An efficient way to store
the Huffman Tables is to use Canonical Huffman Tables [7].
Each table stores the codes of the same length contiguously.
To decode these tables we derived the hardware decoder
from [2] and optimized it to improve its throughput. The
hardware architecture is illustrated in Fig. 5. It consists of
four components: shift register, comparators unit, Look-Up
Table for each code length and multiplexer. We optimized
the comparators unit and Look-Up Tables to be integrated
in one pipeline stage. The optimized decoder decodes the
Huffman codes in three phases (three pipeline stages). In the
first phase, the shift register receives a 32-bit compressed
Huffman code and shifts its contents by the amount of length
of previous decompressed code (in bits). The shift register
outputs k-bit equal to the longest Huffman code in the Look-
up Tables. In the second phase, the k-bit output of the shift

Fig. 6. State diagram of the LZSS decoder

register is transferred to the comparator unit and to the Look-
up Tables simultaneously. The number of comparators and
Look-up Tables is equal to the number of different code
lengths. The incoming k-bit is compared in each comparator
to the maximum code of its length and the outputs of these
comparators control the multiplexer output in the third phase.
In parallel to the comparators unit, the incoming k-bit is also
transferred as indices to the Look-up Tables (according to the
length of each table). As Huffman codes are prefix free, the
output of only one Look-up Table will be considered. In the
third phase, the multiplexer chooses one output of the Look-
up Tables according to the control signal which is received
from the comparator unit. The Huffman decoder outputs a 10-
bit code which may be a “literal” (9-bit), “length” (9-bit) or
“offset” (10-bit). For that, the main task for the LZSS decoder
is to decode the content of the 10-bit output of the Huffman
decoder (“literal”, “length” or “offset”) and then to build the
buffer to retrieve the original instructions.

B. LZSS Hardware Decoder

The LZSS decoder (Fig. 5) consists of a special multiplexer
and shift register. The input of the multiplexer is connected to
the output of the Huffman decoder. LZSS Decoder decodes the
instructions in three phases. In the first phase, The multiplexer
receives the 10-bit code from the hardware decoder. Its main
task is to analyze the incoming code to decode its content, i.e.
“literal”, “length” or “offset”. The “literal” and “length” are 8-
bit long each (from bit 0 to bit 7). In each of them, the bit 8 is
a flag bit and the bit 9 is not used. The “offset” is 10-bit long.
Fig. 6 shows the state diagram of the LZSS decoder to decode
the incoming 10-bit code from the Huffman decoder. When a
new 10-bit code arrives, the Bit number 8 is checked. If it
is ’0’, that means the code is a “literal” and the multiplexer

552

Fig. 7. Number of original instructions, Basic and Extended Blocks for
benchmarks compiled for C62x and C64x processors

Fig. 8. Compression Ratios for different Benchmarks compressed using
LZSS and for 4-bit, 5-bit and 8-bit pattern length

transfers the 8-bit directly to the shift register (in the second
phase). If bit 8 is ’1’, then the code is “length” and the next
10-bit code will be “offset”. In this case the multiplexer keeps
the 8-bit “length” and waits for the next 10-bit “offset”. When
it receives the “offset”, it transfer the pair (offset, length) to
the shift register. In the third phase, the shift register builds
the look-ahead buffer and generates the original instructions.
We designed both of the decoders in VHDL and implemented
them using Xilinx ISE9.2 on the FPGA platform ”Platinum”
from Pro-Design. An average access time of 3ns was achieved
and around 800 slices were need for the decoder [1].

V. EXPERIMENTS AND RESULTS

We conducted experiments for two VLIW processors (Texas
Instruments), namely C62x and C64x. For both architectures,
all benchmarks from MediaBench [4] and MiBench [5] served
as a representative set of applications. We compiled and linked
the applications using the Code-Composer-Studio (CCS) from
Texas Instruments and used the simulator “c6xsim” [3] to
obtain performance results. Experimental results are shown in
figures 7 - 12 and are explained in the following sections.
The bar labeled ”Average” shows the average across all
benchmarks in each chart.

A. Statistics of the Benchmarks

Fig. 7 shows the number of total code instructions, Basic
and Extended Blocks for different benchmarks compiled for
C62x and C64x processors. This figure shows that the average
number of instructions for the processor C64x is 16% less
compared to the C62x. This is because the C64x processor is
a further developed version of the C62x. The Fig. 7 shows
also that the average number of Extended Blocks is 43% and
65% less than the number of Basic Blocks for C62x and
C64x processors, respectively. This shows the importance of
applying the “Deflate” compression technique on Extended
Blocks other than Basic Blocks.

Fig. 9. Compression ratios using three different models of the “Deflate” for
C62x VLIW processor

Fig. 10. Compression ratios using three different models of the “Deflate”
for C64x VLIW processor

B. Compression ratio

Figures 8 shows the compression ratio using LZSS and
for 4-bit, 5-bit and 8-bit pattern length. The pattern of 8-bit
gives (in average) better compression ratio than other patterns
length (82.78%, 82.11% and 81.61% for 4-bit, 5-bit and 8-bit,
respectively). For that, we selected an 8-bit length pattern to be
compressed as one symbol in “Deflate”. Figures 9 and 10 show
the compression ratios for different benchmarks using the three
models of the “Deflate” algorithm for the C62x and C64x
processors respectively. The first bar of each benchmark in
these figures shows the compression ratio when the first model
of “Deflate” algorithm (Static-Static Huffman Tables) is used
as a data compression technique. The second, third and fourth
bars show the compression ratios for the first model (Static-
Static Huffman Tables), the second model (Dynamic-Static
Huffman Tables) and the third model (Dynamic-Dynamic
Huffman Tables) of “Deflate” algorithm, respectively. In each
of theses bars, the bottom part shows the results by using our
Filled Buffer Technique in that model. The whole bar presents
the results without using our technique. We can observe that
the data compression ratio is improved when the size of the
benchmark is increased. The average data compression ratios
for both processors are 56% and 58%. The difference between
the first and second bars of each benchmark in figures 9
and 10 shows the overhead incurring when applying code
compression in comparison to data compression. The overhead
(in average) is 27% for C62x and 13% for C64x. The final
compression ratios (using our FBT) for both processors are
in Average 71% and 62% in the first model, 62% and 56%
in the second model and 61% and 56% in the third model,
respectively. We can conclude from the Figures 9 and 10
that the “Dynamic-Static Huffman Tables” model gives better
compression ratio results for the small size benchmarks such
that fft and Basicmath (which have less than 20000 instruction

553

Fig. 11. Compression ratios using “LZMA” algorithm for C62x and C64x
VLIW processors

Fig. 12. Compression ratios using our Filled Buffer technique combined with
the V2F [15] for the C62x VLIW processor

word). For the largest benchmarks (which have more than
20000 instruction word), the “Dynamic-Dynamic Huffman
Tables” model is the best choice for compression from the
perspective of compression ratio. To show the orthogonality of
our Filled Buffer Technique we applied it to another data com-
pression algorithm of the (Lempel-Ziv) family Which is called
the “LZMA”. “LZMA” (Lempel-Ziv-Markov chain-Algorithm)
[12] is a data compression algorithm which is based on the
LZSS algorithm combined with Range Coding. The Extended
Blocks are compressed using the algorithm LZSS (as explained
in Sec. III-A) and then the compressed stream is encoded
using the Range Coding. Fig. 11 shows the compression ratio
results both processors. Using the Filled Buffer Technique at
the top of “LZMA” improved the compression ratios in average
by 13% and 7% for both processors and final compression
ratio of 67% and 68% were achieved. Comparing the results
of “Deflate” and “LZMA” algorithms, the later one gives
better data compression ratios, but the former one gives better
compression ratios. As the hardware decoder of the work of
Xie et al. [15] decodes one “Fetch Packet” in each clock cycle
(parallel decoding), we selected their compression scheme
(V2F) to apply our compression technique on it and to improve
their final compression ratio (which was 82%). For that, we
compressed the Extended Blocks using LZSS algorithm and
then encoded the compressed stream with the V2F scheme
(which is used in [15]). Fig. 12 shows the compression ratio
results without using the Filled Buffer Technique (first bar)
and after using it (second bar) for the C62x processor. Using
the Filled Buffer Technique improved the average compression
ratio from 82% to 72% (10% compression ratio improvment).

C. Performance

Fig. 13 shows the performance of hardware decoder for
C62x and C64x processors, respectively. In this figure, we
can observe that the performance is better for the largest size
of benchmarks like “jpegtran” and “ansi2kr” (4.27 Byte/Cycle

Fig. 13. Performance of the “Deflate” hardware decoder for C62x and C64x
processors

for C62x and 5.34 Byte/Cycle for C64x). This is because the
Extended Blocks in the large benchmarks contain more number
of instructions than the small one and consequently, they have
more compressed “Fetch Packets” which are decompressed
with less number of clock cycles. In average, the performance
of 4 and 4.8 Byte/Cycle was achieved for C62x and C64x,
respectively. The performance may be improved by improving
the decoder to decode the compressed instruction in parallel.

VI. CONCLUSION

We have presented a new approach for embedded system
code compression. We have showed that the compression
ratio of the sliding window compression algorithms may be
improved by using our Filled Buffer Technique. Our approach
can be used with any previous work which belongs to the
Lempel-Ziv family algorithms to improve its compression
results. We achieved an average compression ratios of 61%
and 56% and performances of 4 and 4.8 Byte/Cycle for the
TMS320C62x and TMS320C64x, respectively.

REFERENCES

[1] Virtex-II platform FPGA user guide. http://www.xilinx.com/support/.
[2] T. Bonny and J. Henkel. Efficient Code Density Through Look-up

Table Compression. Design Automation and Test in Europe Conference
(DATE07), pp. 809-814, 2007.

[3] V. Cuppu. Cycle Accurate Simulator for TMS320C62x,
http://www.cs.cmu.edu/afs/cs/academic/class/15745-s07/www/c6xref.

[4] J. Fritts. MediaBench Project. http://euler.slu.edu/ fritts/mediabench/.
[5] M. Guthaus and J. R. et al. MiBench: a free, commercially representative

embedded benchmark suite. IEEE 4th Annual Workshop on Workload
Characterization, Dec. 2002.

[6] T. M. Kemp, R. K. Montoye, D. J. Auerbach, J. D. Harper, and J. D.
Palmer. A De-compression Core for PowerPC. IBM Journal of Research
and Development, VOL. 42, NO. 6,, Sep., 1998.

[7] S. Klein. Space- and Time-Efficient Decoding with Canonical Huffman
Trees. Proceedings of the 8th Annual Sym. on Combinatorial Pattern
Matching, 1997.

[8] C. Lin, Y. Xie, and W. Wolf. LZW-Based Code Compression for VLIW
Embedded Systems. Proc. of the Design, Automation and Test in Europe
conf.(DATE04), 2004.

[9] S. K. Menon and P. Shankar. Space/time Tradeoffs in Code Compression
for the TMS320C62x Processor. Technical Report IISc-CSA-TR-2004-4,
Indian Institute of Science,, 2004.

[10] M. Ros and P. Sutton. A hamming distance based VLIW/EPIC code
compression technique. Proc. of the 2004 inter. conf. on Compilers,
architecture and synthesis for embedded systems,, pp. 132-139, 2004.

[11] M. Ros and P. Sutton. A post-compilation register reassignment
technique for improving hamming distance code compression. Proc.
of the 2005 inter. conf. on Compilers, architecture and synthesis for
embedded systems,, pp. 97-104, 2005.

[12] D. Salomon. Data compression: The complete reference. 2007.
[13] TMS320C62x DSP CPU and Instruction Set Reference Guide.
[14] TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide.
[15] Y. Xie, W. Wolf, and H. Lekatsas. Code Compression Using Variable-

to-fixed Coding Based on Arithmetic Coding. Proceedings of the
Conference on Data Compression, pp. 382-391, 2003.

[16] Y. Xie, W. Wolf, and H. Lekatsas. Code compression for VLIW
processors using variable-to-fixed coding. IEEE Trans. on Very Large
Scale Integrated System,, pp. 525-536, 2006.

554

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

