978-1-4244-2820-5/08/$25.00 ©2008 IEEE

Layout Decomposition for Double Patterning Lithography-

Andrew B. Kahng'*, Chul-Hong Park?, Xu Xu*, and Hailong Yao*

fCSE and *ECE Departments, UC San Diego, La Jolla, CA
+Blaze DFM, Inc., Sunnyvale, CA

abk@cs.ucsd.edu, chpark@uvlsicad.ucsd.edu, xuxu®@blaze-dfm.com, hailong@cs.ucsd.edu

ABSTRACT

In double patterning lithography (DPL) layout decomposi-
tion for 45nm and below process nodes, two features must
be assigned opposite colors (corresponding to different expo-
sures) if their spacing is less than the minimum coloring spac-
ing [11, 9, 5]. However, there exist pattern configurations for
which pattern features separated by less than the minimum
color spacing cannot be assigned different colors. In such
cases, DPL requires that a layout feature be split into two
parts. We address this problem using a layout decomposition
algorithm that includes graph construction, conflict cycle de-
tection, and node splitting processes. We evaluate our tech-
nique on both real-world and artificially generated testcases
in 45nm technology. Experimental results show that our pro-
posed layout decomposition method effectively decomposes
given layouts to satisfy the key goals of minimized line-ends
and maximized overlap margin. There are no design rule
violations in the final decomposed layout.

1. INTRODUCTION

As Moore’s law continues to drive performance and inte-
gration with smaller circuit features, lithography is pushed to
new extremes. For 32nm node patterning, prospects for new
lithography techniques such as extreme ultraviolet (EUV)
and immersion ArF (IArF) are unclear. An EUV imaging
system is composed of mirrors coated with multilayer struc-
tures designed to have high reflectivity at 13.5nm wavelength.
There are significant technical hurdles to implementation of
EUV lithography in terms of mask-blank fabrication, high
output power source, resist material, etc. Challenges to pro-
duction use of IArF include very high-refractive index fluids
(to enable NA = 1.55 ~ 1.6), and accompanying advances in
high-index resists and optical materials. Double Patterning
Lithography (DPL) involves the partitioning of dense circuit
patterns into two separate exposures, whereby decreased pat-
tern density in each exposure improves resolution and depth
of focus (DOF). DPL is likely to play an even more impor-
tant role than previously anticipated, since the EUV adoption

*Research at UCSD was supported in part by the Semicon-
ductor Technology Academic Research Center (STARC).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICCAD’08, November 10-13, 2008, San Jose, CA

Copyright 2008 ACM 1-59593-389-1/06/0011 ...$5.00.

465

timeline has been delayed [6, 11]. However, DPL increases
manufacturing cost in two fundamental ways: (1) complex
process flows due to double exposure patterning, and (2) tight
overlay control between the two patterning exposures.

There are distinct approaches to DPL, notably the LELE
(litho-etch-litho-etch) and self-aligned approaches. In the
LELE approach [11], the first etch step is necessary to trans-
fer the pattern of the first resist layer into an underlying
hardmask [12, 16] which is not removed during the second
exposure. Photoresist is re-coated on the surface of the first
process for a second exposure. The second mask, having pat-
terns separated from the first mask, is exposed and then the
flow finishes up with the hardmask and resist of second ex-
posure. In self-aligned DPL [14, 17], the patterns for the
first layer are transferred into the hardmask and then nitride
spacers are formed on the sidewall of the patterns. A spacer
is formed by deposition or reaction of the film on the pat-
tern, followed by etching to remove all the film material but
leave only the material on the sidewalls. Then, film materi-
als between spacers produce the patterns for the second layer
[15, 18]. The major concern of DPL is overlay control, which
leads to requirements for more accurate overlay metrology,
more representative sampling, reduction in model residuals,
and improved overlay correction [10]. According to the ITRS
[4], DPL requires overlay control of between 9nm and 6nm,
which is a major hurdle for production deployment.

A key issue in DPL from the design point of view is the
decomposition of the layout for multiple exposure steps [9].
This recalls strong Alt-PSM (Alternating-Phase Shift Mask)
coloring issues and automatic phase conflict detection and
resolution methods [7]. DPL layout decomposition must sat-
isfy the following requirement: two features must be assigned
opposite colors (corresponding to mask exposures) if their
spacing is less than the minimum coloring spacing. However,
there exist pattern configurations for which features within
this minimum coloring spacing cannot all be assigned differ-
ent colors [5, 19]. In such cases, at least one feature must be
split into two or more parts. The pattern splitting increases
manufacturing cost and complexity due to (1) generation of
excessive line-ends, which causes yield loss due to overlay er-
ror in double-exposure, as well as line-end shortening under
defocus; and (2) resulting requirements for tight overlay con-
trol, possibly beyond currently envisioned capabilities. Other
risks include line edge (CD) errors due to overlay error, and
interference mismatch between different masks. Therefore,
a key optimization goal is to reduce the total cost of layout
decomposition, considering the above-mentioned aspects.

Unlike previous works on Alt-PSM, which adopt graph
bipartization algorithms, we formulate the optimization of
DPL layout decomposition using integer linear programming
(ILP). A pre-processing step fractures layout features into

small pieces according to vertex coordinates of neighboring
features. From the fractured polygon pieces, we optimize
polygon splitting with a process-aware cost function that
avoids small jogging line-ends, maximizes overlap at divid-
ing points of polygons, and preferentially makes splits at
landing pads, junctions and long runs [9]. A layout parti-
tioning heuristic helps achieve scalability for large layouts.
We achieve an overall layout decomposition method for DPL
which includes graph construction, conflict cycle detection,
and node splitting processes. Our contributions are as fol-
lows.

e Our conflict cycle detection algorithm efficiently finds
patterns with unresolvable color assignment during the
pattern splitting process. Because such patterns can-
not be manufactured by DPL even with availability of
layout decomposition and two mask exposures, this de-
tection step enables fast feedback to the designer to
modify the layout pattern.

e Our node splitting method determines mask features
with maximum overlap length after decomposition, so
that the pre-specified overlay margin can be observed.

e Our integer linear programming (ILP) based color as-
signment algorithm minimizes the number of line-ends
and avoids design rule violations.

e Our layout partitioning technique improves scalability
of the ILP-based coloring solution, whose runtime would
otherwise increase unmanageably with layout size.

The remainder of this paper is organized as follows. Sec-
tion II gives the overall flow of our layout decomposition sys-
tem. Section III formally states the DPL color assignment
problem and gives details of the node splitting and color as-
signment techniques. Section IV describes testcases, experi-
mental setup and experimental results. Section V concludes
with ongoing research directions.

2. DPL LAYOUT DECOMPOSITION FLOW

Node splitting

Graph update

Figure 1: Overall DPL layout decomposition flow.

Figure 1 shows the overall flow for DPL layout decomposi-
tion. Given a layout, the polygonal layout features are first
fractured into a set of non-overlapping rectangles using the
minimum-sliver fracturing algorithm of [13]. The minimum-
sliver fracturing minimizes the number of small rectangles
and helps simplify downstream operations. Next, a conflict
graph is constructed over the rectangular features according
to the given minimum coloring spacing, t. Each node in the
graph represents a rectangular feature; an edge exists between
two nodes if the corresponding features are not touching each
other, and the distance between the features is less than t¢.

466

We cast DPL layout decomposition as a problem of modify-
ing the conflict graph by decomposing selected layout feature
nodes (i.e., thus adding new nodes and inducing new edges)
so that the graph can be properly 2-colored. To this end,
the key is the removal of conflict cycles (CCs), which are the
odd-length - and hence not 2-colorable - cycles in the conflict
graph. We use a breadth first search (BFS) based conflict
cycle detection algorithm to find the conflict cycles in the
graph.! When a conflict cycle is found, node splitting is ap-
plied to find the best layout feature to split, considering the
maximization of overlap lengths. If the maximum possible
overlap length is less than a given required overlap margin,
then the layout has an unresolvable conflict cycle (uCC) which
must be flagged to the designer for layout modification. Oth-
erwise, the layout feature will be split into smaller features
to remove the conflict cycle. (Note that the node splitting
process is required to remove a conflict cycle while generat-
ing line-ends having overlap length greater than the required
overlap margin; there is no other option to remove a con-
flict cycle other than costly layout modification.) The graph
is then updated, and the conflict cycle detection and node
splitting processes are iterated until no conflict cycle remains
in the graph.

After the iterative conflict cycle detection and node split-
ting process, we perform ILP-based coloring on the final con-
flict cycle-free graph to find an optimal coloring solution, con-
sidering minimization of the number of cuts (or line-ends)
and design rule violations. Post-processing functions include
analysis of minimum overlap lengths for all pairs of touching
features (= adjacent split parts of an original layout feature,
which have been assigned different mask colors), and design
rule checking in the final mask solution.

Figure 2 illustrates DPL-based coloring according to our
layout decomposition flow. Polygonal layout features in (a)
are fractured into rectangles, over which the conflict graph is
constructed and conflict cycles detected as shown in (b). To
remove the conflict cycles in the conflict graph, the node split-
ting process is carried out along the dividing points denoted
by the dashed lines in (b). After the node splitting process
for conflict cycle removal, the conflict graph is updated with
newly generated nodes and updated edges as in (c). Finally,
ILP-based coloring is carried out to obtain the final coloring
solution on the 2-colorable conflict graph (d).

3. DPL COLOR ASSIGNMENT PROBLEM

3.1 Problem Formulation

Fracturing and DPL Color Assignment Problem
Given: Layout L, and maximum distance between two fea-
tures (i.e., polygons), ¢, at which the color assignment is con-
strained.
Find: A fracturing of L and a color assignment of fractured
features to minimize total cost.
Subject to: (i) Two non-touching fractured features cor-
responding to nodes n; and n; with 0 < d;; < t must be
assigned different colors. (ii) Two touching features with
d;,; = 0, if assigned different colors, incur a cost ¢;,;.

Figure 3 illustrates the color assignment problem. Fea-
ture na (respectively, n3) is assigned a different color from n4

'Depth first search (DFS) based cycle detection may also be
used. The BFS-based conflict cycle detection is more efficient
for conflict cycles with fewer edges (< 10), whereas DFS-
based detection is more efficient for conflict cycles with more
edges (> 10). Since most conflict cycles in the layouts we
have studied have fewer than 7 edges, we adopt BFS-based
conflict cycle detection.

B

(b)

(@)

(c) (d)

Figure 2: An example of the graph and layout color-
ing according to the DPL flow: (a) input layout, (b)
fractured layout and conflict graph, (c) conflict cycle
removal, and (d) ILP-based DPL coloring.

dip,di3>t dyy dys<t

Figure 3: Example of color assignment problem: fea-
ture n3 is assigned a different color from n, and ns
because d24 <t and ds5 < t.

(resp. ms), because dz.4 < t (resp. dss < t). Since di1,2 >t
and dy 3 > t, there is no need for the pairs of features n;
and n2, and n1 and ns, to be assigned different colors. Note
that when two touching fractured features, e.g., n2 and ns
in the figure, are assigned different colors, the two features
raise the manufacturing cost (that is, risk) due to overlay er-
ror. We should maximize the overlap between the respective
mask layouts of n2 and ng in this case, as we now discuss.

Just as with Alt-PSM and SRAF (Sub-Resolution Assist
Feature) techniques, a major barrier to widespread deploy-
ment of double patterning in random logic circuits is the
lack of design compliance with layout decomposition and pat-
terning requirements. There exist pattern configurations for
which features within the minimum coloring spacing cannot
all be assigned different colors. In such cases, we must split
at least one feature into two parts — but this causes pinch-
ing under worst process conditions of defocus, exposure dose
variation and misalignment. Thus, two line-ends at a divid-
ing point (DP) must be sufficiently overlapped. Moreover,
in Figure 4 below, the extended features (E'F) that address
the overlap requirement must still satisfy DPL design rules:
the spacing between patterns at the dividing point must be
greater than the minimum coloring spacing. Figure 4 shows
how two dividing points lead to different minimum spacings
after layout decomposition. In the figure, each layout de-
composition can remove the conflict cycle. However, when
extending patterns for overlay margin, the dividing point in
Figure 4(a) causes violation of the minimum coloring spacing,
t. The dividing point in Figure 4(b) maintains the minimum
coloring spacing even with line-end extension for overlay mar-
gin.

Our layout decomposition solution includes conflict graph
construction, conflict cycle detection, node splitting, and min-
imum cost color assignment. We give details of each step in
the following subsections.

467

+

Figure 4: Two examples of dividing points. (a) Ex-
tended features at the dividing point cause coloring
violation. (b) Extended features at the dividing point
still satisfy the minimum coloring spacing rule.

3.2 Fracturing and Conflict Graph Construc-
tion

Given a layout L, a rectangular layout Lp is obtained by
fracturing layout polygons into rectangles. We fracture into
rectangles [13] so that distance computation and other fea-
ture operations (e.g., feature splitting) become easier. Our
layout decomposition process begins with construction of a
conflict graph based on the fractured layout. As illustrated
in Figure 5, given a (post-fracturing) rectangular layout Lg,
the layout graph G = (V, E) is constructed by: (1) represent-
ing each feature (i.e., rectangle) by a node n; (2) for any two
non-touching features within distance ¢, connecting the two
corresponding nodes with an edge e.

If two non-touching features are adjacent in the graph, ei-
ther they belong to different original polygonal layout fea-
tures, or there do not exist any other features between them
(i.e., no features entirely block the two non-touching fea-
tures). In Figure 5, we see edge set {F1,3, Es,5, E5,6}. There
is no edge between n2 and n4 since node ns blocks these two
nodes.

Figure 5: Example of conflict graph construction: ev-
ery (rectangle) feature is represented by a node, and
no feature entirely blocks two non-touching features
that are adjacent in the graph.

3.3 Conflict Cycle Detection

To detect pattern configurations in which non-touching fea-
tures cannot be assigned different colors, we find odd-length
cycles in the conflict graph.

Definition 1: A conflict cycle is a cycle in the conflict
graph which contains an odd number of edges.

Given a conflict graph as in Figure 2(b), we apply a breadth
first search (BFS) technique, given in Algorithm 1 and 2, to
detect conflict cycles. Time complexity of the conflict cycle
detection algorithm is O(V + E), where V and E are respec-
tively the number of nodes and edges in the conflict graph
G.

Conlflict cycle detection and conflict cycle removal (cf. the
node splitting process in Section 3.4) processes are carried
out in an iterative manner. Each time a conflict cycle is de-
tected, the conflict cycle removal process is invoked to remove
the conflict cycle. Further rounds of detection and removal
are performed until the graph G is conflict cycle-free. As
described in the experimental results below, total runtime
for the whole process, including the conflict cycle detection,

conflict cycle removal and min-cost color assignment, is rea-
sonable: less than 12 minutes for layouts of more than 545K
features (2.1M rectangles after fracturing).?

Algorithm 1 Conflict cycle detection algorithm.

Input: Conflict graph G.
Output: Report the nodes in one conflict cycle if there are any conflict
cycles.

1. Set distance d; «+ —oo for each node n; € G;

2. Make a queue @ and enqueue node ng € G into Q;
3. Set distance dg <« 0 for ng;

4. while @ is not empty do

5. Dequeue the first node nj; in Q;

6. for all nodes ny adjacent to n; do

7. if dj; > 0 then

8. if dx = d; then

9. Report a conflict cycle as given in Algorithm 2;
10. return;
11. end if
12. else
13. Set dy «— dj + 1;
14. Enqueue ng into Q;
15. end if

16. end for
17. end while

Algorithm 2 Conflict cycle reporting algorithm.

Input: Conflict graph G with marked distances and nodes n; and ny
in the detected conflict cycle in Algorithm 1.

Output: Report the nodes in the detected conflict cycle in a double-
linked list, where edges exist between adjacent nodes in the list.

1. Make a map F' to store the father node for each node;
2. Set F(nj;) < NULL, F(nj) < NULL;
3. Make a queue Q' and enqueue nodes n; and ny into Q’;
4. while Q’ is not empty do

5. Dequeue the first node n, in Q’;

6. for all nodes n, adjacent to n, do
7. if ds + 1 = d, then

8. if ng is visited then

9. Make a double-linked list L;
10. Push ng into L;

11. Push n, to the back of L;
12. Set ny «— F(n,);

13. while ny # NULL do

14. Push ny to the back of L;
15. Set ny «— F(ny);

16. end while

17. Set ny «— F(ns);

18. while ny # NULL do

19. Push ny to the front of L;
20. Set ny «— F(ny);
21. end while
22. return L;
23. end if
24. Set F(ns) < ng;
25. Mark ns as visited;
26. Enqueue ng into Q’;
27. end if

28. end for
29. end while

3.4 Node Splitting

Node splitting is applied to nodes in conflict cycles so that
we may eventually obtain a graph without any conflict cy-
cles. Each time a conflict cycle is detected, we compute the
overlap lengths over all possible node splits that remove the
conflict cycle (recall Figure 4). For each node with achiev-
able overlap length greater than the required overlap margin,
the node splitting process is carried out to split the node
into two nodes and eliminate the conflict cycle. We apply an

2This runtime includes all stages: layout partitioning, all
rounds of conflict cycle detection and removal, ILP-based
color assignment, etc. The total runtime of BFS-based con-
flict cycle detection (Algorithm 1 and 2) across all conflict
cycle detection rounds is less than 0.42 seconds.

468

ILP-based coloring algorithm (Section 3.6 below) to decide
which nodes to split in the final decomposition result hav-
ing a minimized number of cuttings and maximized overlap
lengths. The conflict graph is then updated with newly gen-
erated nodes and updated edges, and another iteration with
BFS-based conflict cycle detection begins. The time com-
plexity of node splitting is O(C'), where C is the number of
nodes in the conflict cycle.

Definition 2: The node projection P;; from node n; to
node n; is a set of points on n; that have distance to node
n; less than ¢.

Fact 1: In the conflict graph, node projections between each
pair of nodes that are adjacent in the conflict graph are non-
empty.

(a) m; is aligned to n;. (b) n; is not aligned to n;.

Figure 6: Node projection examples.

Figure 6 shows two examples of node projections. We now
give a more precise description of node splitting.
Definition 3: A horizontal (vertical) merged projection
mp(P) (my(P)) for a given projection P on node n is the
union of P and all the projections on n that horizontally
(vertically) overlap with P.

Definition 4: Node projections are separable if they are
disjoint.

Definition 5: The overlap length of a newly generated
node for the corresponding dividing point is the length that
the node can be extended across the dividing point without
introducing new edges in the conflict graph.

Rule-based node splitting: Given a conflict cycle and a
node n; in the cycle, if (i) the horizontal (vertical) merged
projections mp(Pj,;) (mo(Pj,:)) and mp(Pr i) (my(Py,i)) cor-
responding to adjacent nodes n; and ny are separable, (ii) the
resulting overlap lengths of the horizontal (vertical) splitting
are not less than the given overlap margin, and (iii) there are
no design rule violations after splitting, then node n; can be
horizontally (vertically) split into two nodes to remove the
conflict cycle. The dividing point may be chosen in between
the merged projections such that no merged projections are
cut, and no violations of overlap margin or design rules occur.

dividing
point

Figure 7: Example of rule-based node splitting: o; j,
0i,rx and o;; are overlap lengths.

Figure 7 shows an example of rule-based node splitting. In
the figure, assume there is a conflict cycle between nodes n;,
n; and ny, and the horizontal merged projections mp(Pj,;) =
Pj; U P, ; and mp(Px;) = Px; on node n; corresponding to
nodes n; and ng are separable with overlap lengths not less

than the given overlap margin. Hence, node n; can be split
into two new nodes n, and n, at the dividing point, with
corresponding overlap lengths of 0,4 and o4,,. The dividing
point is in between the lower point of P;; and the upper point
of Pk.f. Generally, the position of the dividing point is chosen
S0 as to maximize the smaller overlap length. A more detailed
illustration of overlap length is given in Figure 8, where the
two touching features n4 and ns are assigned different colors,
and thus the overlap between ns4 and ns is required to be
larger than the given overlap margin to guarantee successful
manufacturing. The overlap lengths of the touching features
n4 and ns are denoted as 04,5 and 05,4, respectively. When
computing overlap length, two features of the same color can-
not be extended such that the distance between them is less
than the minimum coloring spacing ¢ (e.g., in the figure, ng4
cannot be extended to touch the projection of feature nr).

projection
Figure 8: Example of overlap length calculation: o045

and o5 4 are the overlap lengths for n4 and ns, respec-
tively.

No dividing point
Lt

Figure 9: Example of unresolvable conflict cycle
(uCC): (a) uCC with zero overlap length and (b) uCC
with non-zero overlap length (less than the overlap
margin).

Of course, not all conflict cycles can be eliminated by the
node splitting method. DPL layout decomposition fails when
pattern features within the color spacing lower bound cannot
be assigned different colors. Such a failure, which we call
an unresolvable conflict cycle (uCC), consists of two cases:
(a) there is no dividing point to remove the conflict cycle
among all of rectangles which have nonzero overlap length,
and (b) the overlap length is less than the overlap margin,
even if there is a dividing point to remove the conflict cycle.
Figure 9 illustrates these two types of uCC. If we divide the

3 After merging the projections P;; and P, ; horizontally, the
lower point of the merged projection is the same as that of
projection P ;. Since there is no projections that horizontally
overlap with projection Py ;, the horizontal merged projection
of Py, is equal to Py ;

469

rectangle in the center as shown in Figure 9(a), the size of the
rectangle violates the minimum design rule (CD). Removal
of the conflict cycle may be achieved by layout perturbation
which increases the spacing to neighboring patterns to be
> ¢ (as shown in orange color). In Figure 9(b), the overlap
length at the dividing point is less than the required overlap
margin. A fix by layout perturbation is similarly available.
We observe that the space required to increase overlap length
is less than that required to remove the conflict cycle, i.e., the
pattern can be split after a smaller perturbation.

In summary, node splitting handles conflict cycles in two
ways: (i) splitting a node in the conflict cycle, or (ii) re-
porting an unresolvable conflict cycle for layout optimization
to eliminate. Whenever a conflict cycle is detected in the
conflict graph, it is eliminated using one of these ways. By
construction, the rule-based node splitting does not cause any
violation of design rules or overlap margin for the newly gen-
erated nodes. On the other hand, if any feature split in the
conflict cycle will result in a violation, then an unresolvable
conflict cycle is reported. Hence, the iterative conflict cycle
detection and node splitting process will terminate without
any conflict cycle in the graph, and we have:

Fact 2: The iterative conflict cycle detection and node split-
ting method obtains a conflict graph which is 2-colorable.

3.5 Layout Partitioning

In most placements, the conflict graph between cells is sparse,
i.e., due to the required poly-to-cell boundary and whitespace
between cells, there are not many edges between the cells. As
a result, many “slands” can be found in the conflict graph.
At the same time, the runtime of ILP-based coloring algo-
rithm increases dramatically when the number of nodes in
the graph is large and the runtime for solving the coloring
problem in the whole conflict graph is not endurable. There-
fore, we merge the nodes into small clusters according to the
connectivity information, with no edges or nodes of a given
polygon occurring in multiple clusters. Each cluster has its
separate conflict graph, and the ILP-based coloring algorithm
is carried out on each cluster in sequence. Because there are
no edges between clusters, and no polygon has nodes in more
than one cluster, the solution is obtained as the union of
solutions for all the small clusters. Our layout partitioning
algorithm is given in Algorithm 3. The time complexity of
Steps 2—4 is O(E), the complexity of Steps 5-8 is O(V' +E'),
and the complexity of Steps 9-11 is O(C’ + V), where V is
the total number of nodes, F is the total number of edges
between nodes, V' is the total number of polygons, E’ is the
total number of edges between polygons, and C’ is the total
number of clusters on polygonal layout features.

Algorithm 3 Layout partitioning algorithm.

Input: Conflict graph G and the mapping information from nodes to
polygons.
Output: A set of clusters of nodes where no edges or nodes of the
same polygon exist in between any pair of clusters.
1. Make a new graph G’ on polygons with each node n’ representing
a polygon;
. for all e = (u,v) € G do
Set edge ¢’ «— (u’,v") € G’, where v’ and v’ corresponds to the
polygons in which rectangles of u and v are respectively located;
end for
. while there is an unvisited node ni € G’ do
Make a new cluster ¢ containing n/;
Perform breadth first search from n/ and add all visited nodes
into c};
. end while
. for all clusters c,/i do
Make cluster ¢; on the nodes of the polygons in c/;
11. end for

Nooks wbh

—
o ©

3.6 Min-Cost Color Assignment Problem For-
mulation

Finally, we have:

Min-Cost Color Assignment Problem

Given: A list of rectangles R which is color assignable, and
maximum distance between two features, ¢, at which the color
assignment is constrained.

Find: A color assignment of rectangles to minimize the total
cost.

Subject to: For any two non-touching rectangles with 0 <
d(i,7) < tij, assign different colors.

For any two touching rectangles with d(i,j) = 0, if they
are assigned different colors, there is a corresponding cost
cij. Cij is the cost for assigning nodes n; and n; different
colors. We cast this as an integer linear program (ILP):

Minimize: E Cij X Yij

Subject to:
i +zj=1 (1)
Ti —Tj < Y 2)
T — i < Yi 3)

where x; and z; are binary variables (0/1) for the colors of
rectangles r; and r;, and y;,; is a binary variable for any pair
of touching rectangles r; and r;. Constraint (1) specifies that
non-touching rectangles r; and r; within distance ¢ should be
assigned different colors. Constraints (2) and (3) are used for
evaluating the cost when touching rectangles r; and r; are
assigned different colors. The cost for touching rectangles is
defined as follows.

cij = a- f(wi)/(f(l:) - f(l;)) + B +~/min(oij,05:) (4)

where w;,; is width of the rectangle edge between rectangle
r; and rj, l; and [; are lengths of the rectangle edges of r;
and r; which are opposite to the touching edge, 0;,; and o0;,;
are the minimum possible overlap lengths of nodes n; and n;,
respectively,* and o, 8 and v are user-defined parameters for
scaling the three items for different optimization objectives.
Function f is defined as follows.

f@) = { VG i 5)

where F'Sp,in is minimum feature size, i.e., the threshold on
the features, below which a design rule violation will occur.
Our ILP problem formulation seeks to minimize design rule
violations, the number of cuts on the layout polygons and
maximize the overlap lengths between touching features of
different colors.

Minimizing design rule violations: During the layout
fracturing process, small rectangles may be generated due
to specific polygonal layout features (e.g., ns and ng in Fig-
ure 10). According to Equation (4), it is easy to understand
that higher costs will be assigned to pairs of touching rect-
angles of smaller sizes. By minimizing the total cost, the
ILP-based problem formulation aims to minimize the design
rule violations in the final layout.

Minimizing the number of cuts: The cuts on the layout
features will introduce more line-ends, which is undesirable
due to line-end shortening effects. Therefore, the number
of cuts should be minimized to improve the quality of the

4The minimum possible overlap length of two touching fea-
tures is computed based on all the projections from their non-
touching adjacent features. By shifting the dividing points
between two touching features, the minimum overlap length
can be improved, especially for those touching features split
during the layout fracturing process.

470

decomposed layouts. In Equation (4), by setting the second
term (3) to be greater than the first term, cut minimization
can be given higher priority relative to consideration of design
rules.

Maximizing the overlap length: Maximum overlap length
satisfying the required overlap margin is also desirable. In
Equation (4), a larger « value corresponds to more emphysis
on the overlap length optimization.

Figure 10: Example of cost function: I5 < lg < F'Spin,
cas = afls + B+ v/min(oas,054), cs6 = & FSmin/(ls -
le) + B+ v/min(os,6,06,5), min(oas,05.4) > min(os6,06,5),
C5,6 > C4,5.

Figure 10 illustrates the cost function computation, where:
(1) 15 <lo < FSmin; (2) cas = o f(was)/(f(la)+ f(l5))+8+
v/min(o4,5,05.4)= a/ls + B+ v/min(oa5,054); (3) c56 = -
f(ws,6)/(f(Is)+f(l6))+B+7/min(os,6,06,5) = o FSmin /(I5-
le)+0B+~/min(os,6,06,5); (4) min(os,s,05,.4) > min(os,6,06,5);
and (5) ¢s,6 > c4,5. From this computation, we get ¢5.6 > ca,5.
Given such costs on the touching rectangles, the ILP solver
can output the color assignment results as illustrated in Fig-
ure 10. Since the length of rectangle ns, Is, is less than the
minimum feature size F Snin, the design rule will be violated
if ns is assigned a different color from that of ng. In this
way, the cost function supports the minimization of design
rule violations.

4. EXPERIMENTAL RESULTS

We empirically test our approach on one real-world design
and three artificial designs. We evaluate our DPL solutions
with respect to (1) solution quality, (2) scalability, and (3)
correctness.

4.1 Experimental Setup

Table 1: Testcase parameters. Minimum spacing
(140nm) and minimum line width (100nm) are scaled
by 0.4x to 56nm and 40nm, respectively.

Design | #Cells | #Polygons #Rects
AES 17304 90394 362380
TOP-A 30400 275650 1043950
TOP-B 60800 545000 2066800
TOP-C | 305000 2725000 10334000

Our layout decomposition system is implemented in C++.
We use one real-world design (AES) implemented using Arti-
san 90nm libraries using Synopsys Design Compiler v2003.06-
SP1 [2]. Because real-world synthesized netlists do not use
all of the available standard-cell masters, we also run ex-
periments with three artificial designs (TOP-A, TOP-B and

5Note that by setting the dividing point between n4 and ns,
the minimum overlap length between n4 and ns is much larger
than that between ns and ng, and hence the overlap length
cost between ns and ng is larger than that between ns4 and
ns.

TOP-C) that instantiate more than 600 different types of
cell masters from the same library. The testcases are placed
with row utilizations of 70% and 90% using Cadence First
Encounter v3.3 [3]. Table 1 shows key parameters of the
testcases. In the original 90nm layouts, minimum spacing be-
tween features is 140nm, and minimum feature size is 100nm.
To reflect future nodes with smaller feature sizes, we scale
GDS layout of all testcases by a factor of 0.4x, which results
in 56nm minimum spacing and 40nm minimum feature size.

4.2 Experimental Results

Solution quality. We sweep the color spacing lower bound
as well as placement utilization, and evaluate solution qual-
ity according to various metrics, including number of conflict
cycles, number of unresolvable conflict cycles, and minimum,
average and standard deviation of overlap lengths. Table 2
shows the experimental results of our layout decomposition
system. In Table 2, ¢ is the minimum coloring spacing, CC's is
the number of detected conflict cycles, uCC's is the number of
unresolvable conflict cycles, and Cuts is the number of touch-
ing rectangle pairs with different colors. (Note that we do not
consider the cuts on unresolvable conflict cycles. Thus, as the
number of unresolvable conflict cycles increases, the reported
total number of cuts may decrease.) The minimum, average
and the standard deviation of the overlap length values for
all the cuts in the final decomposed layout are also reported.
We furthermore verify that there are no design rule violations
in the final decomposed layout.

Lt |

471

Our ongoing research is in the following directions.

e The two mask exposures in DPL can result in distinct
CD populations with different statistical distributions,
which may increase guardbanding compared to the guard-
band of a single-exposure process. We are investigating
optimal timing/power model guardbanding under the
bimodal CD distribution in DPL.

e We are introducing variability-awareness in the DPL
layout decomposition cost function. Examples are (i)
minimizing the difference between the pitch distribu-
tions of two masks, and (ii) minimizing the number of
distinct DPL layout solutions across all instances of a
given master cell (to reduce variability between the in-
stances).

e We are also investigating the possibility of integrating
all key optimization objectives, including the number
of unresolvable conflict cycles, the number of line-ends,
the overlap lengths between touching rectangles, etc.,
into a unified ILP problem formulation.

e Besides the ILP-based approach, we are also investi-
gating combinatorial frameworks, including node- and
edge-deletion based graph bipartizations, that offer po-
tentially attractive runtime-quality tradeoffs.

6. REFERENCES

[1] Calibre User’s Manual. http://www.mentor.com/.

[2] Design Compiler User’s Manual.
http://www.synopsys.com/.

[3] SOC Encounter User’s Manual.
http://www.cadence.com/.

[4] International Technology Roadmap for Semiconductors.
http://public.itrs.net/.

[5] G. E. Bailey et al., “Double Pattern EDA Solutions for
32nm HP and Beyond”, Proc. SPIE Conf. on Design
for Manufacturability Through Design-Process
Integration, 2007, pp. 656211K-1 - 65211K-12.

[6] G. Capetti et al., “Sub k1 = 0.25 Lithography with
Double Patterning Technique for 45nm Technology
Node Flash Memory Devices at 193nm”, Proc. SPIE
Conf. on Optical Microlithography, 2007, pp. 65202K-1
- 65202K-12.

[7] C. Chiang, A. B. Kahng, S. Sinha, X. Xu, and A.
Zelikovsky, “Bright-Field AAPSM Conflict Detection
and Correction”, Proc. DATE, 2005, pp. 908-913.

[8] C. Chiang, A. B. Kahng, S. Sinha and X. Xu, “Fast
and Efficient Phase Conflict Detection and Correction
in Standard-Cell Layouts”, Proc. ICCAD, 2005, pp.
149-156.

[9] M. Drapeau, V. Wiaux, E. Hendrickx, S. Verhaegen
and T. Machida, “Double Patterning Design Split
Implementation and Validation for the 32nm Node”,
Proc. SPIE Conf. on Design for Manufacturability
Through Design-Process Integration, 2007, 652109-1 -
652109-15.

[10] M. Dusa et al., “Pitch Doubling Through
Dual-Patterning Lithography Challenges in Integration
and Litho Budgets”, Proc. SPIE Conf. on Optical
Microlithography, 2007, pp. 65200G-1 - 65200G-10.

[11] J. Finders, M. Dusa and S. Hsu, “Double Patterning
Lithography: The Bridge Between Low k1 ArF and
EUV”, Microlithography World, Feb. 2008.

[12] http://en.wikipedia.org/wiki/Hardmask.

[13] A. B. Kahng, X. Xu and A. Zelikovsky, “Fast
Yield-Driven Fracture for Variable Shaped-Beam Mask
Writing”, Proc. SPIE Conf. on Photomask and
Next-Generation Lithography Mask Technology, 2006,
pp. 62832R-1 - 62832R-9.

472

Table 2: Experimental results of layout decomposi-
tion system (four testcases, 70% and 90% utilization).
t: minimum coloring spacing (nm). CCs: number of
conflict cycles detected. uCC's: number of unresolv-
able conflict cycles. Cuts: number of touching rectan-
gle pairs with different colors. (min., mean,o): statis-
tics of overlap lengths (nm) over all chosen splitting
points. CPU: total runtime (s).

‘ Design | t | CCs | uCCs | Cuts | min. | mean | o | CPU |
58 0 0 29 44 | 237.7 | 149.2 | 17.6
59 0 0 33 56 | 111.5 | 58.6 | 19.1
AES
60 0 0 33 56 | 110.6 | 58.6 | 18.0
(70%) | 61 53 1 132 18 55.6 | 48.7 | 19.9
58 | 326 0 6261 11 | 145.2 | 81.1 | 136.7

59 | 503 150 8013 9 [140.4] 77.8 [145.8
TOP-A | 60 | 503 400 7884 22 |143.1 | 75.9 | 149.7
(70%) |61] 7704 | 3230 | 25818 | 11 | 95.8 | 75.9 [224.4
58 | 654 0 12502 | 11 | 145.0 | 81.0 | 488.5
59 | 1004 | 300 | 15997 9 [134.0] 77.7 [494.4
TOP-B [60 | 1004 | 800 | 15752 | 22 | 142.9 | 75.7 | 450.1
(70%) |61] 15175 | 6356 | 51040 | 11 | 96.3 | 76.0 | 716.9
58 | 4040 0 63212 | 13 | 139.1| 77.5 | 4611
59 | 5536 | 1500 | 80472 9 [128.7] 69.9 | 4566
TOP-C {60 | 5536 | 4000 | 78720 | 22 [131.2 | 68.0 | 4535

(70%) | 61 | 78696 | 31677 | 243853 | 11 | 94.6 | 75.6 | 5097
58 0 0 29 44 | 184.8 [146.7 | 17.8
50 0 0 33 56 | 130.3 | 53.9 | 17.7
AES |60 0 0 33 56 | 129.4 | 53.8 | 17.8
(90%) |61 57 1 132 18 | 59.7 | 52.7 | 20.6
58 | 325 0 6291 11 | 145.1 | 80.9 | 135.1

59 | 503 150 8025 9 |140.9 | 77.7 | 143.7
TOP-A [60 | 503 400 7903 22 | 1435 | 75.5 | 155.0

(90%) |61] 7709 | 3243 | 25825 | 11 | 95.7 | 75.8 [227.5
58 | 648 0 12502 | 11 | 145.2 | 81.1 | 444.7
59 | 999 300 | 15990 9 |134.0 | 77.8 | 441.9
TOP-B [60 | 999 800 | 15755 | 22 [142.9 | 75.9 | 500.2

(90%) | 61| 15170 | 6356 | 51054 | 11 | 96.3 | 76.0 | 601.4
58 | 3994 0 63219 | 13 | 139.0 | 77.6 | 4328
59 | 5501 | 1500 | 80440 9 [128.8] 70.2 | 4562
TOP-C {60 | 5501 | 4000 | 78709 | 22 [131.3] 68.3 | 4655

(90%) | 61 | 78754 | 31743 | 243695 | 11 | 94.5 | 75.7 | 4623

[14] S.-M. Kim et al., “Issues and Challenges of Double
Patterning Lithography in DRAM”, Proc. SPIE Conf.
on Optical Microlithography, 2006, pp. 65200H-1 -
65200H-7.

[15] C. Lim et al., “Positive and Negative Tone Double
Patterning Lithography for 50nm Flash Memory”,
Proc. SPIE Conf. on Optical Microlithography, 2006,
pp. 615410-1 - 615410-8.

[16] C. Mack, Fundamental Principles of Optical
Lithography: The Science of Microfabrication, Wiley,
2007.

[17] M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen,
and M. Van Hove, “Double Patterning Scheme for
Sub-0.25 k1 Single Damascene Structures at NA=0.75,
A=193nm”, Proc. SPIE Conf. on Optical
Microlithography, 2005, pp. 1508-1518.

[18] W.-Y. Jung et al., “Patterning With Spacer for
Expanding the Resolution Limit of Current
Lithography Tool”, Proc. SPIE Conf. on Design and
Process Integration for Microelectronic Manufacturing,
vol. 6125 pp. 61561J-1 - 61561J-9, 2006.

[19] J. Rubinstein and A. R. Neureuther,
“Post-Decomposition Assessment of Double Patterning
Layout”, Proc. SPIE Conf. on Optical
Microlithography, 2008, pp. 692400-1 - 692400-12.

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

