
Performance Estimation and Slack Matching for
Pipelined Asynchronous Architectures with Choice

Gennette Gill, Vishal Gupta, and Montek Singh
Dept. of Computer Science

Univ. of North Carolina, Chapel Hill, NC 27599, USA
{gillg,vishal,montek}@cs.unc.edu

Abstract— This paper presents a fast analytical method for estimating
the throughput of pipelined asynchronous systems, and then applies that
method to develop a fast solution to the problem of pipelining “slack
matching.” The approach targets systems with hierarchical topologies,
which typically result when high-level (block structured) language speci-
fications are compiled into data-driven circuit implementations. A signif-
icant contribution is that our approach is the first to efficiently handle
architectures with choice (i.e., the presence of conditional computation
constructs such if-then-else and conditional loops).

The key idea behind the fast speed of our analysis method is to exploit
information about the hierarchy of a given block-structured system,
thereby yielding a runtime that is linear in the number of pipeline stages.
In contrast, existing approaches typically represent an entire system as a
single Petri net or marked graph, and then apply Markov chain analysis
or other state enumeration methods with costly runtimes.

Building upon our analysis approach, we introduce a novel solution
to the problem of slack matching, i.e., determining optimal insertion of
FIFO stages into a pipelined design to improve performance. We present
both an optimal solution using an MILP formulation, and a fast heuristic
algorithm that yielded optimal results for all of our examples.

I. INTRODUCTION

This paper presents an approach for estimating the throughput of
pipelined asynchronous systems with choice, and then applies this
method to develop a fast solution to the problem of slack matching.
The focus is on a special class of systems that typically result when
high-level block-structured language specifications are compiled into
data-driven circuit implementations. In particular, we target architec-
tures that are hierarchical compositions of basic pipeline stages using
sequential, parallel, conditional, and iterative operators. By restricting
our focus to this special but useful class of systems, we are able to
exploit information about their hierarchy to yield fast runtimes, which
allows our tools to be used for repeated analysis and optimization in
a typical design flow.

Analysis and optimization of asynchronous systems involves chal-
lenges distinct from those of synchronous design. In the absence
of globally clocked registers, determining the cycle time of an
asynchronous system is quite challenging due to the complex, elastic
and highly-concurrent interactions between many locally synchro-
nized (i.e., handshaking) components. The higher concurrency of
an asynchronous system also creates new challenges: an otherwise
correctly pipelined system may perform poorly because of mis-
matched latencies along reconvergent branches (“slack mismatch”).
Slack matching refers to insertion of FIFO stages into a pipelined
system to improve performance. It is somewhat related to the problem
of retiming in synchronous designs [1] in that both approaches aim to
improve throughput through latch placement. However, there is a key
difference: in retiming, the number of latches along any cycle must
not be changed; in slack matching, extra FIFO stages are deliberately
added to certain paths and/or cycles to mitigate mismatched latencies.

Our analysis approach builds upon and significantly extends and
generalizes prior work in pipeline performance analysis by Williams
et al. [2], Greenstreet et al. [3], and Lines [4]. The past work

had shown that the performance of certain asynchronous pipeline
constructs—rings (“infinite loops”), fork/join constructs, and sequen-
tially composed stages—can be characterized by a “canopy graph,”
a convex graph that describes throughput as a function of the
pipeline’s occupancy (i.e., the number of distinct data tokens that
the pipeline operates on concurrently). Our approach extends this
analysis to handle conditional computation (“if-then-else”), as well as
conditional iteration (“for” and “while” loops), thereby significantly
extending the class of systems handled.

This fast analysis method leads to a solution for the slack matching
problem. Slack matching requires determining the fewest number
of buffer stages that can be added to achieve a target throughput.
A straightforward formulation of the slack matching problem is as
a mixed-integer linear programming (MILP) problem. Because this
formulation is NP-hard, a heuristic method for adding buffer stages
provides considerable speed benefits. While not being provably opti-
mal, it still gives the same solution as the optimal MILP formulation
for several examples.

Our approaches were validated through experiments on a number
of examples. Results indicate that our analysis tool’s throughput
estimates agreed with Verilog simulations, with an average error
of only 1% (max error of 3.7%). The runtime of the tool was
practically negligible (less than 10 ms), even for examples with as
many as 166 pipeline stages. To the best of our knowledge, no
other method has been previously reported to successfully analyze
systems of such complexity. In addition, we have applied our slack
matching approaches (both the optimal MILP-based approach and
the heuristic approach) to several examples. Although the heuristic
method could theoretically return different results than the optimal
MILP formulation, in all of our examples the two approaches returned
the same optimal solution.

The remainder of this paper is organized as follows. Section II
discusses previous work in performance analysis and slack matching,
and Section III reviews background on asynchronous pipelines and
canopy graph analysis. Section IV presents our new hierarchical anal-
ysis method, and Section V introduces our slack matching method.
Experimental results for both methods are presented in Section VI,
and Section VII gives conclusions.

II. PREVIOUS WORK

Performance Analysis. Although many approaches on asyn-
chronous timing analysis have been reported, none adequately ad-
dresses the challenge of efficiently analyzing large pipelined systems
with choice. Although simulation-based methods [5]–[7] and Markov
analysis methods [8]–[10] could potentially handle the full set of
pipelined architectures that our analysis approach targets, these meth-
ods require running times that are quite long even more moderately-
sized circuits. Previous analytic methods [2]–[4], [11], while fast,
handle only a limited set of architectures (e.g., rings, meshes, linear
and simple fork-join pipelines). Other methods do not handle choice

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 449

Fig. 1. A simple self-timed pipeline

[12]–[14]; this prevents these methods from being used on systems
with conditionals and data-dependent loops.

Slack Matching. The slack matching methods presented by Beerel
[15] and Prakash [16] give provably optimal solutions, both in terms
of fewest buffer stages added and maximum throughput attained.
However, since these methods are based on MILP formulations, they
can be slow for large examples. Moreover, neither of these methods
handles architectures with conditional computation.

The work by Venkataramani [17] does handle conditional execution
in the form of conditional Petri nets. The method is simulation-based
and requires a gate level circuit as input. The strategy is to simulate
repeatedly to find bottlenecks, adding buffer stages each time. It is
not proven to find the optimal solution, either in terms of fewest
buffer stages or maximum throughput attained.

III. BACKGROUND: ANALYSIS METHODS

A. Asynchronous Pipelines
Figure 1 shows the basic structure of a bundled-data self-timed

pipeline. Each pipeline stage consists of a controller, a storage
element (“data latch”), and processing logic. Without a system-wide
clock, stages achieve synchronization locally through handshaking.

Three metrics characterize the performance of a self-timed
pipeline: forward latency, reverse latency, and cycle time. The for-
ward latency is simply the time it takes one data item to flow through
an initially empty pipeline. Thus, if the latency of Stagei is LStagei

,
then the latency of the entire pipeline is LPipeline =

∑

i
LStagei

.
Similarly, the reverse latency characterizes the speed at which

empty stages or “holes” flow backward through an initially full
pipeline. The reverse latency of the entire pipeline is simply the sum
of the stage reverse latencies: RPipeline =

∑

i
RStagei

.
The cycle time of a stage, denoted by T Stagei

, is the minimum time
elapsed between two successive data items leaving that stage. Cycle
time depends on the forward and reverse latencies in the system and
on the type of pipeline handshake used. Typically, a complete cycle
consists of one forward and one reverse delay, so the cycle time is
the sum of the two delays: T Stagei

= LStagei
+ RStagei

.

B. Pipeline Ring Analysis
The classic work on analyzing asynchronous pipelines by Williams

and Horowitz [2] introduces the “canopy graph” to characterize the
performance of a pipelined ring. The performance of the ring is
highly dependent on its occupancy, i.e., the number of data items
revolving inside it. When the number of data items is small, the
ring performance is low because the stages are underutilized, and the
pipeline is said to be “data limited.” On the other hand, when nearly
every stage of the pipeline is filled with data items, the performance is
limited because holes are needed to allow data items to flow through
the pipeline, and the pipeline is said to be “hole limited.”

Data Limited Operation. If there are k data items in the ring, then
in the time a particular data item completes one revolution around
the ring (i.e.,

∑

i
LStagei

), all k items would have crossed each ring
stage. Let the ring throughput (tptRing) be defined as the number
of data items passing through a particular stage per second. Then
the maximum ring throughput attainable is proportional to the ring
occupancy: tptRing ≤ k/

∑

i
LStagei

.

1 2 N-2 N-10

Data
limited
region

Hole
limited
region

Max ideal throughput
= 1/(L+R)

Limited by a
slow stage

Sl
op

e
=

 1
/Σ

L Slope =
 1/Σ

R

Ring Occupancy, k

R
in

g
 T

h
ro

u
g
h

p
u
t

N

Fig. 2. The upper bounds on the maximum ring frequency: shaded area is
the operating region

Fig. 3. Parallel composition: a) structure, b) canopy graphs [4]

Hole Limited Operation. If the ring is filled with data items in
nearly all stages, then the ring throughput is limited by the number
of holes in the ring. If there are h holes in the ring, then in the
time a particular hole completes one revolution around the ring (i.e.,
∑

i
RStagei

), all h holes would have crossed the each stage, travelling
in a direction opposite to data. Thus, if N is the number of stages in
the ring, then h = N − k, and we have the following bound on the
performance: tptRing ≤ (N − k)/

∑

i
RStagei

.
Figure 2 shows a plot of the ring frequency versus its occupancy.

The rising portion of the graph represents the data limited region,
where performance rises linearly with the number of data items. The
falling portion, similarly, represents the hole limited region, where
performance drops linearly with a decrease in the number of holes.

Limitations Due to a Slow Stage. The ring throughput is also lim-
ited by the cycle time of the slowest stage. In the figure, the horizontal
line represents the maximum operating rate that can be sustained by
the slowest stage in the ring [18]: tptRing ≤ 1/maxi(T Stagei

).

C. Parallel and Sequential Composition
As presented by Lines [4], canopy graph analysis can also be

applied to linear pipelines, and their parallel and sequential composi-
tions. Given the pipeline structure of Figure 3a), the throughput can
be predicted using the canopy graphs of each branch. The combined
throughput is given by the intersection of the canopy graphs of each
branch because the two branches are constrained to have the same
throughput and to contain the same number of data items at all times,
as shown in Figure 3b).

Two pipelines composed sequentially, as shown in Figure 4a),
have a combined canopy graph in which the occupancies of the two
pipelines are added for any given throughput. As seen in Figure 4b),
the boundary lines of the combined canopy graph fall at occupancies
that are the sum of the two original canopy graphs.

IV. ANALYSIS METHOD

A. Conditional Constructs
Canopy graph analysis can also estimate the throughput of

pipelined conditionals that are implemented with choice. Such con-
ditionals implement if/then/else blocks by waiting for the Boolean

450

Fig. 4. Sequential composition: a) structure, b) canopy graphs [4]

split merge

…

then

else

…

… fork

boolean

data
in

data
out

Fig. 5. A pipelined choice construct

decision value to be ready before beginning computation on one of
two paths. Figure 5 shows an example of a pipelined conditional.
Both the split and merge stages receive the Boolean input, to ensure
that ordering is preserved as items exit.

For clarity of presentation, Section IV-A.1 uses two simplifying
assumptions that will be relaxed in subsequent sections: 1) the
pipeline is slack matched, and 2) the values of the Boolean data
are not clustered (i.e., at a probability is 0.5, the Boolean values
arrive in this regular pattern: 0, 1, 0, 1...). Sections IV-A.2 and IV-
A.3 relax these restrictions and handle slack mismatch and clustering,
respectively.

1) Canopy Graph Method: Let us first develop a relation between
the throughputs and occupancies of the two branches of a conditional.
Consider a conditional that has probability p0 of branch0 being
chosen and p1 of branch1 being chosen. For every item that enters
(or leaves) branch0, p1

p0

items enter (or leave) branch1. For example,
at a probability of p0 = 0.2, for every data item that enters branch0,
4 items enter branch1. Further, the data items must preserve their
original order upon leaving the conditional. Therefore, under steady-
state operation, the occupancies of the two branches, k0 and k1,
must be proportional to their respective branch probabilities: k0

p0
=

k1

p1

. Similarly, the branch throughputs are proportional to branch
probabilities: tpt0

p0

= tpt1
p1

.
These equations tell us that the steady-state behaviors of the two

branches are constrained such that their occupancies and throughputs,
when divided by their respective branch probabilities, are equal. This
result suggests that the canopy graph of the combined system can
be computed by intersecting the canopy graphs of the two branches
after appropriate scaling. Specifically, the canopy graph for each
branch is scaled so both its axes are divided by the respective branch
probability. The area underneath the intersection of the two scaled
canopy graphs represents the feasible throughput of the conditional
construct.

Figure 6 is an example of a conditional found within the cyclic
redundancy check (CRC) algorithm. Suppose it is given that, for this
conditional, p0 = 0.7 and p1 = 0.3. Figure 7 show the canopy graphs
for branch0 and branch1 scaled by 1

0.7
and 1

0.3
, respectively. The

intersection of the two scaled graphs shows that the conditional has an
overall maximum throughput of 0.36 and a maximum occupancy of
23. Interestingly, these throughput and occupancy values are higher
than either of the branches on its own, because the two branches
operate on distinct data sets in parallel. Figure 7 also shows data
points from a Verilog simulation, which agree with the results of our
analysis.

In general, the throughput of a conditional is dependent on the
branch probabilities. The maximum throughput of each scaled canopy

1/1 5/1 5/1 1/1

1/1 3/1 2/1 1/1 1/1 1/1
split merge

1/1…10 stages 3/1

…9 stages

branch0

branch1
Fig. 6. A conditional from CRC

0 5 10 15 20 25 30 35
0.0

0.1

0.2

0.3

0.4

0.5

Occupancy

Th
ro

ug
ht

pu
t

branch0

branch1

combined

Predicted
Simulated

Fig. 7. Canopy graph for CRC at p1 = 0.3

graph limits the throughput of the overall system, as given by:

tptmax = min

(

tpt0
p0

,
tpt1
p1

)

(1)

Applying this equation to the example from Figure 6 yields the
graph in Figure 8, which shows the maximum throughput versus the
probability of choosing branch1. Data points from Verilog simulation
are also shown on this graph, as a validation of Equation 1.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Probability of choosing branch1

Th
ro

ug
hp

ut

Fig. 8. Throughput depends on probability

2) The Effects of Slack Mismatch: Slack mismatch occurs in
conditionals when one branch has too few buffer stages, which
causes it to become full and cause stalls. The amount of decrease in
throughput due to slack mismatch depends on the probability of each
branch being chosen. In particular, as the probability of choosing a
branch increases, the frequency of data entering that branch increases,
thereby increasing the likelihood that it will become full and cause
stalls.

A slack mismatch between the two branches of a conditional
can be readily determined by inspecting their canopy graphs. As an
illustration, let us return to the example of Figure 6, with the last four
stages removed from branch0, thereby decreasing its total number
of stages to 12. Scaling the canopy graphs based on the probabilities
p0 = 0.7 and p1 = 0.3 results in the graph of Figure 9. The
maximum throughput at which the two graphs intersect is actually
lower than the throughput of the slower branch, which indicates that
slack mismatch is introducing stalling in the system. In particular,
stalling occurs when branch0 becomes full and prevents data from
entering branch1. The graph also shows data points from simulation,
thereby demonstrating that the throughput decreases according to our
predictions.

Figure 10 shows the overall throughput of the slack mismatched
version of the pipeline of Figure 6 (i.e., four stages removed from
branch0) as a function of the branch probability. For comparison,
refer to Figure 8 again for the throughput for the slack matched

451

0 5 10 15 20 25 30 35
0.0

0.1

0.2

0.3

0.4

0.5

Occupancy

Th
ro

ug
ht

pu
t

branch0

branch1

combined

Predicted
Simulated

Fig. 9. Canopy graph for CRC at p1 = 0.3 with slack mismatch

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Probability of choosing branch1

Th
ro

ug
ht

pu
t

Fig. 10. Slack mismatch leads to throughput degradation

version. The comparison shows that, as expected, throughput degra-
dation occurs when branch0 is likely to be chosen, and no throughput
degradation occurs when branch1 is likely to be chosen.1

3) Clustering of Boolean Values: We now introduce a more
powerful modeling of choice that considers correlation between
successive Boolean outcomes, which is captured in a metric termed
the “cluster factor”. Intuitively, the clustering factor quantifies the
average run lengths of 1’s and 0’s in a sequence, normalized with
respect to the base case given in Section IV-A.1 This quantity
effectively models correlation between successive Boolean outcomes.
A clustering factor of 1 indicates a negative correlation, which is the
simple case considered in the previous sections. A high cluster factor
indicates a positive correlation, in which long runs of 1’s and 0’s may
occur. For zero correlation (i.e., independent outcomes) the clustering
factor is related to the probability. Specifically, the expected run
length of ones for random, uncorrelated data is E(run1) = 1/p0.2

During circuit operation, clustering prevents throughput from
reaching the maximum value predicted using the canopy graph
method described in Section IV-A.1. The effective maximum occu-
pancy also decreases, since clustered Boolean values lead to uneven
filling of the two branches. However, the slopes of the canopy graph
lines, which are determined by the forward and reverse latencies of
the pipelines, do not change due to clustering.

The reduced maximum throughput can be written as a modified
version of maximum throughput Equation 1, with the cluster factor
now included. This equation as written considers the situation in
which the throughput of branch0 is higher. In this Equation, run is
the run length based on probability and cluster is an estimate for
the clustering factor, based on knowledge of typical input data sets.

tptmax =
cluster · (run0 + 1)

cluster · run0 · 1

tpt0
+ cluster − 1 · 1

tpt1

(2)

Applying this equation to the example of Figure 6 and assuming
random, uncorrelated Boolean values, the solid line in Figure 11
shows how the maximum throughput varies with the probability of
choosing branch1. For comparison, it also shows the maximum

1Notice that in the neighborhood of p1 = 0 our analysis deviates slightly
from the simulation results; in this region, the steady-state assumption does
not hold.

2Expected value is found by summing this infinite geometric series
∑

∞

n=0
pn
1

=
1

1−p1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Probability of choosing branch1

Th
ro

ug
ht

pu
t

Predicted
Simulated
c.f. = 1 Th

ro
ug

hp
ut

Fig. 11. Clustering decreases throughput

0 5 10 15 20
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Occupancy

Th
ro

ug
ht

pu
t

Fig. 12. Clustering decreases max throughput

throughput with a clustering factor of one (i.e., completely anti-
correlated Boolean values). In addition, the figure shows data from
Verilog simulation, which is close to our predicted curve.

Clustering also affects the average maximum occupancy of the
pipeline. Simple statistical methods determine the expected maximum
occupancy of a pipeline with clustering—the expected value is found
by summing the probability of each occupancy occurring multiplied
by that occupancy.

To show how the canopy graph is affected by clustering, we use the
example of Figure 6 once again. If p1 = 0.3 and the Boolean values
are random and uncorrelated, Equation 2 predicts that clustering will
reduce the throughput to 0.30. Figure 12 shows how the canopy
graph will be cut off at the value 0.30. In this example, the expected
maximum occupancy due to clustering is 22.75, which is only slightly
lower than the non-clustered maximum occupancy. Notice that the
slopes of the boundary lines remain the same, although the throughput
is limited by the predicted value of 0.30.

B. Iterative Constructs
Loops in high level code are implemented as rings in hardware.

Although the classic work by Williams [2] studied the performance
of rings, it finds the throughput within the ring whereas our technique
finds the throughput of items leaving a ring based on some condition.

Traditional hardware design methods typically allow only a single
token inside a ring. This limits the performance, but avoids the
complications of allowing multiple data tokens within the ring.
Recent work by Gill [19] presents an approach to implementing
for and while loops that operate on multiple tokens concurrently.
This loop pipelining technique handles the flow of control and data
dependency challenges created by allowing multiple tokens in the
ring by including a special ring interface and duplicating data values
within the ring. A monitor in the interface prevents overfilling of the
loop by limiting its occupancy to some optimal value, k.

We estimate the performance of both the traditional single occu-
pancy rings and pipelined loops using a canopy graph based method.
We start with the a canopy graph for the body of the loop. For
traditionally implemented loops that contain only one token, we cut
the canopy graph off at occupancy 1. Similarly, for a pipelined loop
with a maximum occupancy of k, we cut the canopy graph off at
k. Since we are interested in the loop’s throughput (i.e., the rate at
which tokens leave the ring) the canopy graph is simply scaled down
by the number of iterations each token undergoes. If the iteration

452

5/1 5/1 5/1 5/1 5/1

5/1 5/1 5/1 5/1 5/1

5/1 5/1 5/1 5/1 5/1

fork join

branch0

branch1

Boolean

forkLoop
interface

Fig. 13. Pipelined GCD loop

0 2 4 6 8
0.00

0.05

0.10

0.15

Occupancy

Th
ro

ug
ht

pu
t Loop body

Loop
Simulated

Fig. 14. Canopy graph analysis for GCD

count is variable or data-dependent, our approach approximates the
throughput using the expected number of iterations. The model for
expected occupancy is that a weighted coin-toss takes place at the
beginning of each iteration.

As an example, Figure 13 shows a pipeline ring that implements
an iterative algorithm for finding the greatest common divisor of two
numbers. For this analysis, we assume that the ring interface allows
8 data items into the ring concurrently and that the average iteration
count is 3.33. First, we find canopy graph of the loop body using the
process given in Section III-C, to produce the canopy graph shown in
Figure 14. Next, we scale the graph down by the expected iteration
count, 3.33, and cut it off at the max occupancy, 8. Figure 14 shows
the resulting canopy graph. The figure also shows data from Verilog
simulation, which follow closely with our predicted canopy graph.

C. Analysis Algorithm

CanopyGraph analyze(tree t)
if(currentNode == parallel)

return parallel(analyze(t.leftchild), analyze(t.rightchild))
if(currentNode == if)

return conditional(analyze(t.leftchild), analyze(t.rightchild))
if(currentNode == loop)

return loopize(analyze(t.leftchild), analyze(t.rightchild))
if(currentNode == sequence)

return sequence(analyze(t.leftchild), analyze(t.rightchild))
if(currentNode == leafnode)

return CanopyGraph(Lf, Lr)

Fig. 15. Our analysis algorithm

A complete analysis algorithm uses the composition functions for
conditional constructs described in Section IV as well as those given
in Section III. Figure 15 the shows pseudocode for the algorithm,
which generates the canopy graph for the whole system by traversing
the hierarchy.

The algorithm takes as input the description of a pipelined system
in the form of an AST annotated with stage delays. The algo-
rithm must also have access to the branching probability for each
if/then/else construct and while loop conditional. It then proceeds
much like expression evaluation: in each step, two throughput ex-
pressions (i.e., canopy graphs) are combined based on their parent
operator.

Diffeq(x, y, dx, u, a)
1 while (x ¡ a)
2 (x1 := x+dx;
3 t1 := u*x;
4 t2 := t1 + y)
||
5 (t3 := 3*dx;
6 t5 := u*dx;
7 y1 := y+5)
8 t4 := t2*t3;
9 u1 := u - t4
<x1, u1, y1> = <x, u, y>

Fig. 16. Differential equation solver

;
;

s1

s8

||
s9;;

;s2 ;s5

s4s3 s7s6

while

Fig. 17. Abstract syntax tree

As an example, Figure 16 shows the high-level code for an iterative
differential equation solver, which has been parallelized. Figure 17
shows an abstract syntax tree representation, and Figure 18 shows
one possible pipelined architecture.

The algorithm traverses the tree; when it encounters the parallel
operator, it finds the two canopy graphs of the two branches {s2, s3,
s4} and {s5, s6, s7}, as shown in Figure 19. As explained in Section
III-C, the parallel operator creates a new canopy graph that is the
intersection of these two. This graph is then composed in sequence
with the remaining stages, thereby giving the graph shown in Figure
20. Finally, the method for finding the canopy graph of a loop, given
in Section IV-B, produces the canopy graph shown in Figure 20. In
this way, our algorithm can handle any system with arbitrary levels
of nesting, by working from the bottom up.

V. SLACK MATCHING METHOD

Slack matching is the problem of determining the number and
positioning of additional pipeline buffers in a pipelined design in
order to reach some performance goal. We offer both a mixed integer
linear programming solution, which is NP-hard but optimal, and a
heuristic algorithm, which is faster but not provably optimal.

A. MILP Formulation
Slack matching usng canopy graph analysis seems to lend itself

quite naturally to a linear programming solution. The formulation of
a linear programming problem requires a function to minimize: in
this case, the total number of buffer stages added (i.e. s1 + s2 +
s3 ... + sn). A linear programming formulation also requires a set
of constraints to satisfy, in the form of inequalities. In the case of
slack matching the throughput is limited to be beneath the lines of
the canopy graphs.

4/1 1/1

4/1

10/1 10/1 4/1

1/1
4/110/1

10/1 4/1while
s1

s2 s3 s4

s5 s6 s7

s8 s9

branch0

branch1

Fig. 18. Pipelined implementation of Diffeq

453

Predicted
Simulated

branch0

branch1
Th

ro
ug

hp
ut

Occupancy

0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 19. Parallel composition of branch0 and branch1

Th
ro

ug
hp

ut

Occupancy
0.00

0.02

0.04

0.06

0 1 2 3 4 5 6 7

Loop body
Loop
Simulated

Fig. 20. Canopy graph for loop body

While Sections III and IV gave an intuitive understanding of each
composition function used in our analysis algorithm, this section
formalizes the work. In particular, we represent canopy graphs as sets
of inequalities, and formalize the composition functions that operate
the canopy graphs. These representations explicitly include the effects
of slack matching buffers.

Although equations for calculating the sequential and parallel
dynamic slack are given in the previous work by [4], we reformulate
them here to do all of the following: (i) represent non-trapezoidal
canopy graphs, (ii) explicitly include the effects of slack matching
stages, and (iii) cast them in a form suitable for an MILP solver.

1) Canopy Graph Equations: Inequalities of the following form
can represent any canopy graph, cgi. In particular, each canopy graph
representation consists of one inequality in the form of 3 that forms
the horizontal cutoff line, one in the form of 4 that forms the positive
sloped forward line, and one or more in the form of 5 that represent
the negative sloped reverse lines.

tpti ≤
1

Ti

(3)

tpti ≤
k

Fi + si · fs

(4)

tpti ≤
−k

R + si · rs

+
Ni + si

Ri + si · rs

(5)

where Ti is the highest local cycle time of the stages in cdi, Fi is
the sum of the forward latencies of stages in cgi, Ri is the sum of
the reverse latencies of stages in cgi, Ni is the number of stages in
the pipeline, si is the number of slack stages to add to cgi, and fs

and fr are the forward and reverse delays of a slack stage.
2) Composition Functions: Canopy graph composition functions

operate on the inequalities that represent the canopy graphs. The con-
ditional and loop transforms consist of scaling and line intersection.
Parallel composition consists of line intersection while sequential
composition is equivalent to adding the inverse of two line functions.
The following gives composition functions in terms of forward and
reverse delays, number of stages, and number of slack stages added.

Conditional Composition. Conditional composition consists of
scaling two canopy graphs based on their probabilities, as discussed
in Section IV-A. In order to represent canopy graph cg3 that is formed
by composing two canopy graphs, cg1 and cg2, in a conditional
construct scale the canopy graph inequalities for cg1 and cg2 by
dividing the right side of the inqualities of Eq. 3–5 by the probability
of each branch being chosen.

In addition, if clustering is present, as discussed in Section IV-
A.3 further modifications are needed: a new maximum throughput
is added and the effective occupancy changes based on the expected
occupancy. In particular, the new maximum throughput is determined
using the probabilities of each branch being chosen along with
the current maximum throughput of the two branches, as given in
Eq. 2. Also, the effect that new slack stages have on the increase in
occupancy will be changed based on the expected occupancy. That
is, inequalities of the form 5 should be re-written as follows to take
into account the expected occupancy equation.

tpti ≤
−k

R + si · rs

+
expected(pi, Ni + si))

Ri + ri · rs

(6)

Note that while the effective occupancy increase caused by adding
slack stages decreases based on the expected occupancy, the effect on
the reverse latency remains the same. The modified inequalities can
be used in further hierarchical composition steps in the same way as
the original equations.

Loop Composition. Loop composition, discussed in Section IV-
B, is accomplished by scaling the canopy graph, cg1, of the loop
body and applying a cutoff token capacity. To scale the canopy
graph inequalities, simply divide the right side of the inequalities that
represent canopy graph cg1, as shown in the inequalities of Eq. 3–5,
by the expected number of loop iterations. In addition, a cutoff line
indicating the limited occupancy, based on the designer specified loop
capacity, must be added.

Ni ≤ Ki (7)

where Ki is the maximum occupancy of the loop represented by
canopy graph i.

Parallel Composition. As shown in Section III-C two pipelines
structures in parallel have a combined canopy graph that in the area
under both canopy graphs. In order to represent canopy graph cg3 that
is formed by composing two canopy graphs, cg1 and cg2, in parallel,
it is sufficient to simply retain all of the inequalities of Eq. 3–5 and
7 of both cg1 and cg2.

Sequential Composition. As discussed in Section III-C, putting
two pipelined structures in series causes the total number of tokens
at each throughput to be added. The following inequalities—Eq. 8,
9, and 10—represent part of the canopy graph, cg3, that is formed
by composing two canopy graphs, cg1 and cg2, in sequence. The are
formed using the canopy graph inequalities of Eq. 3–5 respectively.

tpt3 ≤
1

max(T1, T2)
(8)

tpt3 ≤
k

F1 + s1 · fs + F2 + s2 · fs

(9)

tpt3 ≤
k

R1 + s1 · rs + R2 + s2 · rs
+

N1

R1

+
N2

R2

(10)

Note that any occupancy cutoff line of form 7 introduced through
loop composition can actually be handled using inequality 10. In
particular, the cutoff line has no reverse latency R and is not affected
by the number of slack stages s, so both of those terms are zero
within the inequality. To find all of the inequalities that represent
canopy graph cg3, it is necessary to perform these operations for
each set of inequalities that represent cg1 and cg2.

B. Heuristic Algorithm
Our heuristic algorithm performs slack matching by starting at

the lowest level of the hierarchy and then moving on to successive
levels. At each level, it determines which of two branches needs
additional stages and then adds stages somewhere along that path,
possibly descending down the hierarchy. Because the algorithm uses

454

patho path1
path1

patho

patho

patho path1

path1

a) b)

c) d)

stages added to path0 stages added to path0

stages added to path0
stages added to path0

Fig. 21. Key canopy graph intersections

no backtracking or exhaustive search, it is faster than our MILP
solution and other past slack matching algorithms [15], [16].

Heuristic. In order to understand our heuristic for adding stages,
note that the area under a canopy graph represents a set of conditions
under which the circuit can operate. Any buffer stage addition that
expands the area under the canopy graph—such that the resulting
canopy graph is a superset of the previous canopy graph—will never
be detrimental to the performance of the system. Our heuristic for
the placement of a buffer stage, therefore, is to compare choices for
stage placement based on which will expand the canopy graph most.

Four types of intersection calculations are important in determining
the number of stages to add and finding which stage placement
will expand the canopy graph most. To describe these intersection
scenarios throughout this section, the terms “forward” and “reverse”
generically refer to the boundary lines of the canopy graphs in the
data limited and hole limited regions respectively.

The first interesting canopy graph intersection point is at the min-
imum number of buffer stages needed to achieve a goal throughput
for two paths, path0 and path1. Figure 21(a) shows how adding
slack stages to path0 creates an intersection between the two canopy
graphs at the desired throughput level. To find this number of stages,
use the reverse line of path0, the forward line of path1 and solve
for the number of stages, s0, to add to path0.

At some point, however, placing additional stages on path0 will
cause the throughput to degrade. Figure 21(b) shows the point at
which placing additional buffer stages will decrease throughput.
Finding the number of stages is identical similar to the previous
intersection point, except the forward line of path0 and the reverse
line of path1 are used.

At some number of added slack stages, which we call the forward
degradation point, the slopes of the two forward lines will be
identical, as illustrated in Figure 21(c). To find this number of stages,
set the two forward lines equal to each other and solve for the number
of stages to add to path0. Note that adding further slack stages will
cause the combined canopy graph to have a forward line with a
shallower slope, thereby reducing the maximum throughput possible
at some occupancies. This condition will lead us to avoid placing
stages along this path, if possible, because it will cause the canopy
graph to get smaller, which goes against the stage placement heuristic.

Finally, Figure 21(d) shows that adding stages can cause the
effective occupancies of the two canopy graphs to be identical. At
this point, which we call the reverse degradation point, adding further
stages does not increase the maximum occupancy of the resulting
canopy graph. This condition will lead us to avoid placing stages
along this path, if possible, because it will not expand the canopy
graph.

Algorithm. Our slack matching algorithm uses the canopy graph
expansion heuristic to decide on slack stage placement. Pseudocode

for this algorithm is shown in Figure 22. At each level the algorithm
calculates and stores the minimum and maximum number of stages
for one of the branches.

When placing stages at each level, it first descends down to the
lowest level along that path. It will add stages at that level in order
to slack match unless adding a stage will cause it to reach the
maximum number of stages, the forward degradation point, or the
reverse degradation point. It repeats this at each level, up to the
current level, until the minimum number of stages has been added.

For each level of the hierarchy
Calculate min and max for current level
Descend to lowest level of hierarchy
While min is not yet reached

Add stages till reaching max or degradation points
Move up to next level

Store max stages and degrad point for current level

Fig. 22. Our slack matching algorithm

VI. RESULTS

Analysis Method. The analysis algorithm of Section IV-C was
implemented in Java and run on a Pentium 4 2.4GHz CPU machine.
The tool was used to analyze the performance of six examples, which
cover all of the different hierarchical compositions: 1) CORDIC:
parallel and sequential 2) CRC: conditional and sequential 3) GCD:
nested parallel and loop 4) DIFFEQ: parallel, sequential, and loop 5)
MULT: parallel, and 6) Raytracing: conditional with nested loop. For
validation, each example was also specified in behavioral Verilog and
simulated for 1000 randomly generated data items. Stage latencies
were chosen such that a FIFO stage has a forward and reverse
latency of 1 ns (i.e., a cycle time of 2 ns); more complex stages
had correspondingly longer latencies.

Table I compares the throughput found through Verilog simulation
to the throughput computed by our analysis method and reports the
percent error. For two examples, CRC and CORDIC, experiments
were performed both on the inner conditional construct (“cond”)
which formed the core of the algorithm, as well as on the full
implementation (“full”). Where applicable, results for both the slack
matched (“match”) and non-matched (“mis”) versions of some ex-
amples are reported separately. In addition, the results for the inner
conditional of the CRC algorithm (“CRC cond”) are provided both
for unclustered inputs and for inputs with clustering (“cluster”).

Results show that the performance estimates produced by our
analysis method are within 3.7% of the results obtained by simulation
(average 1% error). Most notably, our method accurately predicts the
maximum throughput of the large, complex raytracing kernel example
(“raytracing match,” with 166 pipeline stages) with negligible error.
The results also confirm the speed of the algorithm: for all examples,
the runtime was approximately 10 ms or less. Therefore, our analysis
method is fast and accurate enough to be used for repeated analysis
and optimization as part of a design flow.

Table II compares our analysis tool’s runtime on linear FIFOs
of varying lengths with that of one previous approach [9]. The
results show that while the runtime of our tool is negligible, the
previous approach becomes quite slow as the FIFO length increases
to 11 stages and beyond. A more detailed comparison with other
prior approaches has not yet been possible without access to those
tools and examples. However, prior approaches are typically either
based on Markov analysis or other state enumeration methods [8]–
[10], or based on stochastic simulation [5]–[7], and therefore all
exhibit a steep increase in runtime with design size. Further, many

455

TABLE I
RESULTS OF THE PERFORMANCE ANALYSIS METHOD: VALIDATION

AGAINST SIMULATION

Size Throughput (MHz) Error Runtime
Example (stages) Simulated Predicted (%) (ms)

CORDIC cond 31 167 167 ∼0 ∼10
CORDIC cond mis 23 90.9 90.9 ∼0 ∼10

CORDIC full 44 83.3 83.3 ∼0 ∼10
CRC cond 27 352 357 1.4 ∼10

CRC cond cluster 27 305 300 1.6 ∼10
CRC cond mis 23 292 286 2.0 ∼10

CRC full 67 333 333 ∼0 ∼10
DIFFEQ 10 18.3 18.2 0.5 ∼0

GCD 21 49.0 50.0 2.0 ∼10
raytracing mis 21 161 167 3.7 ∼10

raytracing match 166 222 222 ∼0 ∼10
MULT mis 13 38.7 38.4 1.9 ∼0

MULT match 21 167 167 ∼0 ∼0

TABLE II
COMPARISON OF RUN TIME WITH A PREVIOUS APPROACH [9]

Size Runtime
(stages) McGee [9] Ours

3 0.003 s ∼ 0 ms
5 0.031 s ∼ 0 ms
7 0.986 s ∼ 0 ms
9 29.835 s ∼ 0 ms
11 4686.126 s ∼ 0 ms

previous methods do not handle systems with choice [2]–[4], [11]–
[14]. In contrast, our approach does not require state enumeration
or simulation; it leverages the hierarchy information to provide a
dramatically fast runtime, and can handle architectures with choice.

Slack Matching. Table III shows experimental results for our slack
matching approach. Each example was slack matched using both
the MILP-based approach and the heuristic approach. The number
of FIFO stages added by each of the two approaches is reported
in the table. For all examples, the heuristic algorithm placed stages
optimally (identical to the MILP approach), even though the examples
were chosen to represent a wide range of architectures, including
nestings of parallel and sequential constructs, and conditionals and
loops. This result indicates that the heuristic approach will often
lead to an optimal solution. The table also shows the throughput
determined via Verilog simulation for each example, both before and
after slack matching was performed, and the speedup obtained (up
to 332%).

Note that three out of the seven examples did not require the
insertion of any slack stages. These examples are actually quite
interesting, because they highlight the fact that the heuristic algorithm
will successfully avoid adding unnecessary stages. For example,
the inner conditional of the CORDIC algorithm, when analyzed
individually, requires 8 slack stages to operate at its maximum
speed. However, when this conditional is nested within the rest
of the CORDIC system, our approach chooses not to insert any
stages. It successfully determines that parts of the system outside the
conditional act as a bottleneck, and that inserting stages anywhere
will not improve performance.

VII. CONCLUSIONS

This paper introduced methods for performance analysis and slack
matching for asynchronous pipelined systems. These methods are fast
because they are able to take advantage of the hierarchical structure of
the systems they target. The analysis method correctly estimated the
throughput of several complex examples, with negligible runtimes.

TABLE III
RESULTS FOR THE SLACK MATCHING METHOD: BUFFER STAGES ADDED

AND SPEEDUP OBTAINED

Stages Added Throughput (MHz) Speedup
Example MILP Heuristic before after (%)

CORDIC cond 8 8 90.9 167 84%
CORDIC 0 0 83.0 n/a n/a

CRC 3 3 292 352 21%
DIFFEQ 0 0 18.3 n/a n/a

GCD 0 0 49.0 n/a n/a
raytracing 145 145 161 222 38%

MULT 8 8 38.7 167 332%

For slack matching, both an optimal MILP-based method, and a faster
heuristic method are introduced. The heuristic method gives the same
solution as the optimal MILP formulation for all of our examples.

Future work in this area includes extending the delay model
to include min/max delays or delay distributions, and a study of
the sensitivity of the slack matching algorithm to changes in the
probability of conditionals.

REFERENCES

[1] N. Shenoy, “Retiming: theory and practice,” Integr. VLSI J., vol. 22, no.
1-2, pp. 1–21, 1997.

[2] T. E. Williams, M. Horowitz, R. L. Alverson, and T. S. Yang, “A self-
timed chip for division,” in Advanced Research in VLSI, P. Losleben,
Ed. MIT Press, 1987, pp. 75–95.

[3] M. R. Greenstreet and K. Steiglitz, “Bubbles can make self-timed
pipelines fast,” Journal of VLSI Signal Processing, vol. 2, no. 3, pp.
139–148, Nov. 1990.

[4] A. M. Lines, “Pipelined asynchronous circuits,” Master’s thesis, Cali-
fornia Institute of Technology, 1998.

[5] S. M. Burns, “Performance analysis and optimization of asynchronous
circuits,” Ph.D. dissertation, California Institute of Technology, 1991.

[6] E. G. Mercer and C. J. Myers, “Stochastic cycle period analysis in timed
circuits,” in Proc. Int. Symp. on Circuits and Systems, 2000, pp. 172–175.

[7] A. Xie and P. A. Beerel, “Performance analysis of asynchronous circuits
and systems using stochastic timed Petri nets,” in Hardware Design and
Petri Nets, A. Yakovlev, L. Gomes, and L. Lavagno, Eds. Kluwer
Academic Publishers, Mar. 2000, pp. 239–268.

[8] P. Kudva, G. Gopalakrishnan, and E. Brunvand, “Performance analysis
and optimization for asynchronous circuits,” in Proc. Int. Conf. Computer
Design (ICCD). IEEE Computer Society Press, Oct. 1994.

[9] P. B. McGee, S. M. Nowick, and E. G. Coffman, “Efficient performance
analysis of asynchronous systems based on periodicity,” in Proc. of the
3rd IEEE/ACM/IFIP Intl. Conf. on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2005, pp. 225–230.

[10] A. Xie and P. A. Beerel, “Symbolic techniques for performance analysis
of timed systems based on average time separation of events,” in Proc.
Int. Symp. on Advanced Research in Asynchronous Circuits and Systems,
Apr. 1997, pp. 64–75.

[11] P. Pang and M. Greenstreet, “Self-timed meshes are faster than syn-
chronous,” in Proc. Int. Symp. on Advanced Research in Asynchronous
Circuits and Systems, Apr. 1997, pp. 30–39.

[12] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello, “An algorithm for
exact bounds on the time separation of events in concurrent systems,”
IEEE Trans. on Computers, vol. 44, no. 11, pp. 1306–1317, Nov. 1995.

[13] S. Chakraborty, K. Yun, and D. Dill, “Timing analysis of asynchronous
systems using time separation of events,” IEEE Trans. on Computer-
Aided Design, vol. 18, no. 8, pp. 1061–1076, Aug. 1999.

[14] P. B. McGee and S. M. Nowick, “An efficient algorithm for time separa-
tion of events in concurrent systems,” in Proc. Int. Conf. Computer-Aided
Design (ICCAD), 2007.

[15] P. A. Beerel, N.-H. Kim, A. Lines, and M. Davies, “Slack matching
asynchronous designs,” in Proc. Int. Symp. on Asynchronous Circuits
and Systems, 2006.

[16] P. Prakash and A. J. Martin, “Slack matching quasi delay-insensitive
circuits,” in Proc. Int. Symp. on Asynchronous Circuits and Systems,
2006.

[17] G. Venkataramani and S. C. Goldstein, “Leveraging protocol knowledge
in slack matching,” in Proc. Int. Conf. Computer-Aided Design (ICCAD),
2006, pp. 724–729.

[18] T. E. Williams, “Self-timed rings and their application to division,” Ph.D.
dissertation, Stanford University, June 1991.

[19] G. Gill, J. Hansen, and M. Singh, “Loop pipelining for high-
throughput stream computation using self-timed rings,” in Proc. Int.
Conf. Computer-Aided Design (ICCAD), Nov. 2006.

456

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

