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ABSTRACT 
This paper describes an efficient method to characterize the 
impulse sensitivity function (ISF) of a periodic circuit via periodic 
AC (PAC) analysis. The paper extends the application of ISF 
from oscillators to other periodic circuits including flip-flops, 
latches, clocked comparators, and regenerative amplifiers, in 
order to characterize their important characteristics such as set-up 
and hold times, regeneration gain, metastability probability, and 
sampling aperture/bandwidth. Recognizing that the generalized 
ISF is a subset of a time-varying impulse response, the ISF is 
efficiently computed based on periodic time-varying system 
analysis techniques. Compared to the previous ISF 
characterization method based on transient simulations, a speed-
up of ~5× is achieved. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Simulation 

General Terms 
Design, Algorithms 

Keywords 
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I. INTRODUCTION 
Impulse sensitivity function (ISF) was first used by Hajimiri and 
Lee [1,2] to analyze the phase noise characteristics of oscillators. 
They noted that the clock phase of an oscillator is most 
susceptible to external perturbations when the clock waveform is 
in transition and least susceptible at the peaks. The ISF of an 
oscillator was used to describe such time-dependent sensitivity of 
the oscillator phase to perturbations such as device and supply 
noises. Based on the ISF and time-varying profile of the noise, 
Hajimiri and Lee were able to explain why some oscillators like 
Colpitts oscillators have superior phase noise to ring oscillators. 
They were also able to explain how the 1/f-flicker noise is up-
converted to the oscillation frequency band, based on the 
periodically time-varying nature of the ISF. 

While it was originally intended for oscillators, the concept of ISF 
can also be extended to other periodic circuits such as periodic 
samplers. And the ISFs for those circuits carry as important  

 
implications as it does for oscillators. Figure 1 describes the ISF 
of a periodic sampler. If we define the ISF of the sampler as the 
sensitivity of its final output voltage to the impulse arriving at its 
input at different times, the ISF essentially describes the aperture 
of the sampler. An ideal sampler would have the perfect aperture, 
i.e. sampling the input voltage at exactly one point in time; thus, 
its ISF would be a Dirac delta function, δ(t-ts), where ts is when 
sampling occurs. A realistic sampler would rather capture a 
weighted-average of the input voltage over a certain time window. 
This weighting function is called the sampling aperture and is 
equivalent to the ISF. On the other hand, the Fourier transform of 
the ISF expresses how fast a signal the sampler can track and 
capture, i.e., the sampling bandwidth, as illustrated in Figure 1(b). 
Various sample-and-hold and track-and-hold circuits used in 
analog and data-conversion systems can utilize ISFs to 
characterize their sampling apertures and bandwidths [3]. 

The ISF of a periodic sampler has the broader applications than it 
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FIGURE 1. Impulse sensitivity function (ISF) of a periodic 
sampler (a) and its Fourier transform (b). 
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may seem. Latches and flip-flops in digital systems, sense-
amplifiers in memories, clocked comparators in A/D converters, 
and regenerative amplifiers in high-speed I/O receivers can all be 
classified as periodic samplers since they all essentially sample 
the input voltage at some time points marked by periodic clocks. 
A minor difference with sample-and-hold circuits is that they may 
have additional gains due to regeneration, but these gains can be 
readily expressed by the ISF with its magnitude. In fact, many of 
the important characteristics of the circuits listed above can be 
captured by their ISFs. For example, the ISF for a flip-flop can 
quantify the setup and hold times by the beginning and end of the 
ISF window. The total area under the ISF corresponds to the 
effective regenerative gain of the flip-flop, from which one can 
derive the mean-time-between-failures (MTBF) of a flip-flop-
based synchronizer [5]. 

Recognizing the importance of characterizing ISFs in periodic 
samplers as well as in oscillators, this paper describes an efficient 
method to measure the ISFs of periodic circuits via periodic AC 
(PAC) analysis, which is available from RF circuit simulators 
such as SpectreRF and ADS. 

The only way known to date for characterizing ISFs is to use 
transient analysis as described in [1,2] for oscillators and [5] for 
periodic samplers. For example, Hajimiri and Lee applied pseudo 
impulses to the oscillator at different times and recorded the 
resulting shifts in the oscillator clock phase. In addition to being 
very time consuming, measuring ISFs with transient simulation is 
prone to numerical errors. On one hand, the pseudo impulses must 
be kept sufficiently small in order not to excite the nonlinear 
responses of the circuits, which is not a trivial task when the 
comparator’s regeneration time is long and the effective gain is 
extremely high. On the other hand, simulating the effects of tiny 
impulses on large-signal waveforms is likely to suffer from 
numerical inaccuracies. Demir, et al. [6,7] defined perturbation 
projection vector (PPV) for analyzing phase noise of oscillators.  
Some of its similarities with the ISF have been noted, although 
the originators of the ISF and the PPV seem to disagree [8]. While 
the PPV can be more efficiently simulated via linear periodically 
time-varying analysis [4], it is not obvious how the definition of 
the PPV, being the projection vector corresponding to a Floquet 
multiplier of 1, can be extended to other periodic circuits like 
samplers which are not autonomous and thus do not have a 
Floquet multiplier equal to 1. 

The method proposed in this paper utilizes the efficient periodic 
AC simulation [9-12] and the periodic time-varying analysis 
[13,14] to characterize the ISF, noting that the generalized ISF is 
in fact a subset of a so-called time-varying impulse response. A 
time-varying impulse response h(t, τ) is defined as the circuit 
response at time t responding to an impulse arriving at time τ [13]. 
In general, the ISF can be regarded as the time-varying impulse 
response evaluated at one particular observation time t=t0. For 
example, the ISF for an oscillator is equivalent to hφ(∞, τ), that is, 
the final response in the oscillator phase to the impulse arriving at 
time τ. Similarly, the ISF for a periodic sampler is equal to 
h(t0, τ), where t0 is the time position of the final output value (e.g. 
the output voltage immediately before the sampler resets or starts 
tracking the input again). The proposed method is much more 
efficient than the transient based ISF characterization and far less 
prone to numerical inaccuracies. 

This paper is organized as follows. First, it briefly reviews the 
linear time-varying (LTV) system theory and describes the 
proposed procedures for ISF characterization. Second, the 
proposed method is applied to examples of periodic samplers and 
oscillators and the implications of their simulation results are 
discussed. Finally, the benchmark results against the transient 
simulations are presented. 

II. LINEAR TIME-VARYING SYSTEM THEORY 
This section reviews the linear time-varying (LTV) system theory 
[13,14] and summarizes some key equations governing the input 
and output of an LTV system. 
A linear, time-varying system is a dynamical system for which 
the superposition principle holds but the time-invariant property 
may not. That is, if y1(t) and y2(t) are the responses of the system 
to the input stimuli x1(t) and x2(t), respectively, then the response 
to a linearly combined input a⋅x1(t)+b⋅x2(t) is equal to the linearly 
combined output a⋅y1(t)+b⋅y2(t) where a and b are real numbers. 
However, the response to a time-shifted input x1(t-t0) may not be 
equal to the time-shifted output y1(t-t0). 
For such an LTV system, one can define a time-varying impulse 
response, h(t, τ), which describes the system response at time t to 
an impulse arriving at time τ. Then the system output y(t) is 
related to the input x(t) as: 

 ∫
∞

∞−
ττ⋅τ= d)(x),t(h)t(y , (1) 

Note that in a linear time-invariant (LTI) system, h(t, τ) = h(t-τ) 
and the above equation reduces to a convolution. 
As with LTI systems, an LTV system can be expressed in 
frequency domain. If X(jω) is the Fourier transform of the input 
signal x(t), i.e., 

 ∫
∞

∞−
⋅ω−⋅=ω dt)tjexp()t(x)j(X  and (2) 
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then substituting EQ(2) in EQ(1) yields: 

 

ω⋅⎥
⎦

⎤
⎢
⎣

⎡
τωτ⋅τω

π
=

τ⋅⎥
⎦

⎤
⎢
⎣

⎡
ωωτ⋅ω

π
τ=

∫ ∫

∫ ∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

dd)jexp(),t(h)j(X
2
1

dd)jexp()j(X
2
1),t(h)t(y

.  (4) 

 
FIGURE 2. Linear time-varying system. 
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The time-varying transfer function H(jω; t) is defined as the 
Fourier transform of the time-varying impulse response [13], that 
is: 

 ∫
∞

∞−
τ⋅τ−ω−⋅τ=ω d))t(jexp(),t(h)t;j(H . (5) 

For LTI systems, h(t,τ)=h(t-τ) and the above expression reduces 
to that of the time-invariant transfer function, H(jω). 

Finally, EQ(4) can be rewritten in terms of H(jω; t): 

 ω⋅ω⋅ω⋅ω
π

= ∫
∞

∞−
d)tjexp()t;j(H)j(X

2
1)t(y . (6) 

And it follows that: 

 Y(jω) = H(jω; t) ⋅ X(jω). (7) 

For example, if the input is a single-tone sinusoid, x(t)=exp(jω0t), 
then the output y(t) is H(jω0; t)⋅exp(jω0t). For linear, periodically 
time-varying (LPTV) systems, h(t, τ) = h(t+T, τ+T) and H(jω; t) 
= H(jω; t+T) where T is the period of the time-varying dynamics 
of the system. 

III. CHARACTERIZING IMPULSE SENSITIVITY 
FUNCTION VIA PERIODIC AC ANALYSIS 
As mentioned earlier, the impulse sensitivity function (ISF), 
denoted as Γ(τ), is essentially a time-varying impulse response 
evaluated at one particular time point t=t0. In other words, Γ(τ) = 
h(t0, τ). For oscillators, the ISF expresses the amount of final 
phase shift caused by the impulse arriving at time τ; thus t0 is ∞. 
For periodic samplers, t0 is of finite value because a sampler 
resets its previously sampled value before sampling the next one. 
Hence, the sampler’s output does not accumulate all the past input 
contributions like oscillators. Therefore, the reasonable choice of 
t0 for samplers would be the time immediately before the sampler 
resets when the sampled value takes the full effect at the output. 
The periodic AC analysis from many RF circuit simulators like 
spectreRF computes not just one, but a series of transfer functions 
targeted at various harmonic sidebands.1 It is because in an LPTV 
system, a sinusoidal excitation at a frequency ω can give rise to 
multiple sinusoidal responses at frequencies of m⋅ωc+ω, where m 
is an integer and ωc is the fundamental frequency of the periodic 
system (ωc=2π/T). This is in contrast to LTI systems, where the 
response to a sinusoid is always a sinusoid at the same frequency. 
We will use Hm(jω) to represent the frequency response of the 
system at the m-th harmonic output sideband to a unit jω-
sinusoid. 

These sideband transfer functions Hm(jω) are basically the 
Fourier coefficients of the time-varying transfer function H(jω; t). 
Since H(jω; t) is periodic in T, i.e., H(jω; t) = H(jω; t+T), it can 
be expressed in a Fourier series: 

 )tjmexp()j(H)t;j(H c
m

m ω⋅ω=ω ∑
∞

−∞=

. (8) 

                                                                 
1 It has come to our knowledge that SpectreRF calculates H(jω;t) internally 

first and derives Hm(jω) via Fourier series expansion [15]. While the 
simulator has an option to report H(jω;t) directly (outputperiod), it 
reports only the real values. 

The next step is to derive the time-varying impulse response from 
H(jω; t). However, it is not always feasible to compute the direct 
inverse Fourier transform on H(jω; t) to recover h(t, τ) (e.g. 
consider H(jω)=1/jω). Instead, we compute the response to a 
periodic impulse train, that is: 

 ∑
∞

−∞=

−τ−δ=
n

)nkTt()t(x , (9) 

where δ(⋅) is a Dirac delta function and the period of the impulse 
train is a integer multiple of the system period, kT. The idea is 
that if the impulse response of the system settles to zero long 
before the next impulse arrives, then the system response to this 
impulse train would be approximately equal to the periodic 
repetition of the true impulse response, i.e.: 

 ∑
∞

−∞=

+τ≅
n

)nkT,t(h)t(y , (10) 

and y(t) would be approximately equal to h(t, τ) for τ ≤ t < τ+kT. 
Note that this assumption is not valid for oscillators whose 
impulse response does not return to zero but settles to a finite 
non-zero value. In such cases, one can apply a similar derivation 
for computing the response to the time-derivative of a periodic 
impulse train instead (i.e. jω⋅X(jω)). More details will be 
discussed in Section V. 

   (a)         

   (b)  

FIGURE 3. (a) Circuit schematics of a StrongARM latch and 
(b) the waveforms illustrating its operation. 
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The Fourier transform X(jω) of the kT-periodic impulse train is: 

 ∑
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k
)j(X  (11) 

where ωc is 2π/T. Then from EQ(6), the response y(t) is: 
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Substituting EQ(8) in EQ(12) yields the expression for the 
approximate time-varying impulse response: 

 ∑ ∑
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for τ ≤ t < τ+kT and h(t, τ) = 0 elsewhere. 

Finally, the ISF Γ(τ) is equal to h(t, τ) when t = t0 if t0 > τ: 

∑ ∑
∞

−∞=

∞

−∞=

τ−⋅ω+ω⋅ω≅τΓ
n m

)t(k/jntjm
cm

0c0ce)k/jn(H
kT
1)( . (14) 

In practice, the summations are carried out over finite ranges of n 
and m, for example, -50~50. For each combination of n and m, 
the PAC analysis needs to be performed to compute Hm(jnωc/k), 
the m-th harmonic response to the excitation at nωc/k. 
The next two sections will describe more specific details about 
computing ISFs for periodic samplers and oscillators. 

IV. ISF ANALYSIS OF PERIODIC SAMPLERS 
This section demonstrates the simulation of the ISF for a periodic 
sampler shown in Figure 3(a). This sampler is commonly called a 
StrongARM latch, because this latch circuit followed by an RS-
latch was used as a flip-flop element in the DEC StrongARM 
processor in 1996 [16]. Because of its high sampling bandwidth 
and low static power consumption, the same circuit topology is 
also found in many A/D converters and high-speed I/O receivers 
[17]. 
The waveforms in Figure 3(b) illustrate the operation of the 
StrongARM latch. Initially, when the clock signal clk is low, the 
input pair is deactivated and the output voltages are precharged to 
Vdd. When the clock switches from low to high, the input pair 
starts discharging the internal nodes A and B as a function of the 
input voltages, in+ and in-. Once sufficient amount of voltage 
difference is developed across the nodes A and B, the cross-
coupled inverter pair starts amplifying the voltage difference via 
positive feedback (regeneration). When the clock returns to low, 
the outputs are precharged back to Vdd and the latch prepares 
itself for the next cycle. Hence, the StrongARM latch essentially 
samples the input voltage shortly after the clock rises and 
amplifies it with a large gain. 
The detailed procedure for characterizing the ISF of this sampler 
is outlined as follows. First, apply the proper input voltages that 
place the sampler in a metastable state and perform the periodic 
steady-state (PSS) analysis. Second, perform the PAC analysis. 
Third, based on the simulated PAC response, pick a time point t0 
at which the ISF is to be computed and derive the ISF according 
to EQ(14). 

(a)      

(b)  

FIGURE 4. (a) Time-varying gain and (b) time-varying impulse 
response of the periodic sampler. 

 
FIGURE 5. Simulated ISF of the StrongARM latch. 

 
FIGURE 6. Influence of a preceding low-pass filter on the 
sampler aperture. 
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One possible candidate for the ISF measurement point t0 is the 
time at which the output voltage is amplified to the largest value. 
Figure 4(a) plots the PAC response of the sampler to a small-
signal DC input, that is, the time-varying transfer function 
evaluated at ω=0. This response, H(0; t), can be calculated from 
the sideband transfer functions Hm(0): 

 )tjmexp()0(H)t;0(H c
m

m ω⋅= ∑
∞

−∞=

. (15) 

Figure 4(b) plots the time-varying impulse response of the 
sampler, h(t, τ). This 3-D plot illustrates how the ISF, the cross-
section perpendicular to the t-axis, changes with the selection of 
t0. 
Figure 5 plots the simulated ISF of the StrongARM latch for the 
chosen t0. With respect to the clock edge, the peak of the ISF is 
located 26ps later, which marks the time when the effective 
sampling occurs. The total area under the ISF is the sampling 
gain, which is equal to the time-varying gain in Figure 4(a) 
measured at t0. The width of the ISF pulse corresponds to the 
aperture width. The narrower the aperture width is, the more 
sensitive the sampler is to the fast-changing input signal. For flip-
flops, the width of the ISF corresponds to the setup and hold time 
window of a flip-flop, also referred to as uncertainty window or 
forbidden zone, because the outcome is uncertain if the input 
changes within that time window. 
Samplers are often preceded by additional circuits that may filter 
some frequency contents. For example, there may be a pre-
amplifying stage before a clocked comparator to offer isolation or 
additional gain to drive the input load of the sampler. When the 

preceding stage is a low-pass filter, the effective sampling 
aperture becomes wider. In expressions, the effective ISF Γeff(τ) 
including the preceding linear filter impulse response hfilter(t) is: 

 ∫
∞

∞−
⋅+τ⋅=τ ds)s,t(h)s(h),t(h filtereff , (16) 

 ∫
∞

∞−
⋅+τΓ⋅=τ=τΓ ds)s()s(h),t(h)( filter0effeff . (17) 

Figure 6 plots the simulated effective ISFs of the StrongARM 
sampler preceded by a first-order RC low-pass filter with various 
cut-off frequencies. It is observed that the low-pass filter 
increases the sensitivities at the earlier part of the ISF, thus 
widening the sampling aperture. For flip-flops and latches, one 
can make a similar observation that a high-fanout buffer 
preceding the flip-flop or latch increases the set-up time. On the 
other hand, it can be shown that the loading at the output of the 
regenerative sampler slows down the regeneration and widens the 
sampling aperture at the later part of ISF, or equivalently, 
increasing the hold time. Therefore, based on the shape of the 
ISF, one can tell whether the sampling bandwidth is being limited 
by the input loading or by the output loading of the sampler. 
Hence, the ISF provides many insights as to how to improve the 
circuit performance. 

V. ISF ANALYSIS OF OSCILLATORS 
The ISFs for oscillators are useful guides for circuit designers in 
achieving low phase noise, even when the phase noise itself can 
be simulated more conveniently and accurately with periodic 
NOISE analysis [6]. For example, Hajimiri and Lee [1,2] asserted 
that in order to suppress 1/f-noise up-conversion from a particular 
noise source, the ISF with respect to the noise source must have a 
zero DC value over the period. Also, they claimed that in order to 
achieve low phase noise, the rms value of the ISF must be 
minimized. The ISF offers good design insights, which has led 
designers to invent better oscillator topologies. For example, 
Hajimiri and Lee proposed the differential LC oscillator with both 
nMOS and pMOS active regenerators [18], aiming to make rise 
and fall transitions symmetric and the DC value of the ISF close 
to zero. Shaeffer and Kudszus [19] coupled two oscillators to 
purposely misalign the peak points of the ISF and device noise 
profile so that the effective noise contribution is minimized. 
Figure 7 shows a simple inverter-based ring oscillator to 
demonstrate our proposed method of computing the ISF. A 
current noise source at one of the ring oscillator node is 
considered. 
Procedures for characterizing the ISFs for oscillators are slightly 
different from those described earlier in Section III, because the 
impulse response of the oscillator phase does not return to zero 
and the approximation with the periodic impulse response cannot 
apply. Instead, we can apply a similar approximation to the 
response to the time-derivative of the periodic impulse response 
since the time-derivative of the impulse response does return to 
zero. The time-derivative of the periodic impulse response, y’(t), 
can be expressed as: 

∑ ∑

∫
∞

−∞=

∞

−∞=

τ−ω+ω

∞

∞−

ω

⋅ω⋅
ω

=
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π
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c
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2
1)t('y

 (18) 

 
FIGURE 7. An example inverter-based ring oscillator. The 
current noise injection point is indicated. 

 
FIGURE 8. Simulated ISF of the ring oscillator. The plot shows 
both the results from the proposed PAC analysis and the 
transient analysis. 
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where the sideband transfer function Hm(jnωc/k) is evaluated at a 
small offset ∆ω from nωc/k rather than at nωc/k because Hm(⋅) for 
oscillators may have infinite values at those frequencies. 

The ISF of the oscillator, Γosc(τ), is then computed as: 

∑ ∑

∫
∞

−∞=

∞

−∞=
ω∆

→ω∆

+τ

τ
φ

ω∆+ω⋅=

⋅=τ∞=τΓ

n m
cm,m,n

0

kT
osc

)jk/jn(HK
kT
1lim           

dt)t('y),(h)(

(19) 

where Kn,m,∆ω is: 

[ ]1ee
/k/nm

/k/n
K kT)k/nm(jjm

c

c
,m,n

ccc −⋅
ωω∆++

ωω∆+
= ω∆+ω+ωτω

ω∆ . 

Figure 8 plots the ISFs measured by the described method using 
PAC analysis and the previous method using transient analysis 
[1,2]. They are in good agreement, validating the correctness of 
our methodology. 
Table I summarizes the simulation times for the test cases 
described in this paper. The simulations were run with SpectreRF 
on a 3.6GHz Intel Xeon processor machine with 4GB of main 
memory. For both cases of computing ring oscillator ISF and 
sampler ISF, the proposed method achieved speed-ups of ~5× 
compared to the transient-based method. 

VI. CONCLUSIONS 
This paper extended the use of impulse sensitivity functions to a 
broader application, including that of periodic samplers such as 
flip-flops, latches, and comparators. We demonstrated that the 
ISFs for samplers can characterize many important characteristics 
of the circuits, including the setup and hold times, regenerative 
gain, metastability probability, and sampling aperture/bandwidth. 

The ISF can be efficiently simulated by recognizing that the ISF 
is a subset of time-varying impulse response and utilizing the 
periodic AC simulation and the linear time-varying system 
analysis. This paper demonstrated the validity and efficiency of 
the proposed ISF characterization method with the examples of a 
periodic sampler and an oscillator. 
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