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Abstract—We present in this paper a fast and stable global router
called NTHU-Route 2.0 that improves the solution quality and runtime of
a state-of-the-art router, NTHU-Route, by the following enhancements:
(1) a new history based cost function, (2) new ordering methods for
congested region identification and rip-up and reroute, and (3) two
implementation techniques. The experimental results show that NTHU-
Router 2.0 solves all ISPD98 benchmarks with very good quality.
Moreover, it routes 7 of 8 ISPD07 benchmarks without any overflow.
In particular, for one of the ISPD07 benchmarks which are thought to
be difficult cases previously, NTHU-Route 2.0 can completely eliminate its
total overflow. NTHU-Route 2.0 also successfully solves 12 of 16 ISPD08
benchmarks without causing any overflow.

I. INTRODUCTION

As feature size in VLSI design continues to shrink, the wire
resistance and the interconnect delay keeps increasing. Furthermore,
the interconnect delay has replaced transistor delay as the main
determinant of chip performance and makes every stage of the
design cycle target for minimizing wirelength to reduce circuit delay.
Therefore the routing problem, the last stage of the design cycle,
becomes more critical in modern VLSI design.

Typically, the routing problem can be divided into global routing
and detailed routing due to the problem complexity. During global
routing, a design is often modeled as a two-dimensional (2D) coarse-
grain grid graph and then a global route for each net is determined
from the graph. After that, a layer assignment process is applied for
a multi-layer design, and finally detailed routing is solved by taking
the solution from global routing as the input. The quality of global
routing influences the timing, power and density of a chip, and thus
global routing is a very crucial stage in the design cycle.

One of the most commonly used techniques for global routing is
rip-up and reroute. This technique starts by routing each net without
considering congestion. After routing all nets, a congestion map can
be obtained and nets passing through congested regions will be ripped
up and rerouted for finding alternative routes with less costs. The
process is a sequential one because only one net will be rerouted at a
time. Therefore the order of rip-up and reroute influences the solution
quality significantly. Chi Dispersion [1] and Labyrinth [2] are global
routers which utilize this routing technique earlier. After them, two
efficient global routers, DpRouter [3] and FastRoute [4][5], and an
ILP-based global router, BoxRouter [6], are proposed and all of them
can achieve high-quality solutions.

Recently, the International Symposium on Physical Design (ISPD)
announced two global routing contests in 2007 [7] and 2008 [8],
respectively for boosting the research and development of new
global routing techniques. Contributed by the spirited competi-
tion, BoxRouter [9], Archer [10], FGR [11], MaizeRouter [12],
and NTHU-Route [13] were developed, and most of them applied
the negotiation-based routing technique which was introduced in
PathFinder [14]. In these worldwide contests, the adopted global rout-
ing techniques can be categorized into two classes: full 3-dimensional
(3D) routing and 2D routing followed by layer assignment. In full
3D routing, FGR solves the routing problem directly by using full

3D maze routing. Due to the complexity of modern designs, full 3D
routing normally takes longer time than the other method; therefore,
FGR also adopted the other routing method. The method of 2D
routing followed by layer assignment [9][10][11][12][13] projects the
routing instance onto a plane, routes the new 2D problem instance,
and then maps the solution from the projected plane to the original
multiple layers by a layer assignment method.

In this paper, we present a fast and stable global router called
NTHU-Route 2.0 that improves the solution quality and runtime of
NTHU-Route [13] by the following enhancements:

1) a new history based cost function,
2) new ordering methods for congested region identification and

rip-up and reroute, and
3) two implementation techniques.

The experimental results show that NTHU-Route 2.0 solves all
ISPD98 benchmarks [15] with very good quality. Moreover, it
successfully routes 7 of 8 ISPD07 benchmarks1 [7] without any
overflow. In particular, for one of the ISPD07 benchmarks which
are thought to be difficult cases previously, NTHU-Route 2.0 can
completely eliminate its total overflow. NTHU-Route 2.0 is also
capable of solving 12 of 16 ISPD08 benchmarks [8] without causing
any overflow.

The rest of the paper is organized as follows. In section II we give
the problem formulation of global routing and a review of NTHU-
Route. In section III we describe the enhancements in detail. In
section IV we provide the experimental results and we conclude the
paper in section V.

II. PRELIMINARIES

A. Problem Formulation

The global routing problem can be modeled as follows. There is a
grid graph G(V, E). As illustrated by the three-layer (denoted by M1,
M2, and M3) example shown in Fig. 1, each vertex in V corresponds
to a global bin and each edge in E corresponds to a global edge which
is a boundary between two adjacent global bins. There is also a set
of nets, where each net is composed of a set of pins, and each pin
corresponds to a vertex. The routing problem for a net is to find a
route connecting all the pins of the net using the edges of G.

The capacity cg of an edge g represents the number of available
routing tracks. The demand dg represents the number of nets that pass
through edge g. The overflow of an edge is defined to be the amount
of demand that exceeds the capacity of the edge. We also define the
congestion of edge g as the ratio of the demand to the capacity, i.e.,
dg

cg
. The major objective of the global routing problem is to minimize

the sum of the overflows among all edges (total overflow), while the
second objective is to minimize the wirelength. In multi-layer designs,
wirelength calculation also involves vias.

1The remaining case has been proved unroutable (i.e., no overflow-free
solution exists) before.
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(a) (b)
Fig. 1. (a) Decomposition of global bins (b) Grid graph for routing

Fig. 2. Flow of NTHU-Route

B. Previous Work: NTHU-Route

In this section, we give a review of NTHU-Route [13]. The flow
of NTHU-Route for multi-layer designs is illustrated in Fig. 2. There
are 4 stages in NTHU-Route: initial stage, main stage, refinement
stage, and layer assignment stage.

In the initial stage, an initial global routing solution is generated as
follows. NTHU-Route first projects a multi-layer design on a plane,
and then uses FLUTE [16] to decompose each multi-pin net into a
set of two-pin nets. After that, NTHU-Route routes every two-pin net
with two probabilistic L-shaped patterns, i.e., it adds the half demand
(0.5) to each edge along a probabilistic L-shape route or the full
demand (1) to each edge along a straight route. Next, NTHU-Route
modifies the topology of every multi-pin net by the edge shifting
technique [4] and then reroutes every two-pin net with the L-shaped
pattern with least cost (note that in these two steps, NTHU-Route
applies the cost function presented in [4] to formulate the edge cost).

In the main stage, NTHU-Route improves the initial solution by
iteratively ripping up and rerouting every congested two-pin net based
on congested region identification. A two-pin net is congested if it
passes one or more overflowed edges along its path. The concept
of congested region identification works as follows: First of all,
NTHU-Route calculates the congestion of every edge. Because only
edges with overflow are to be considered, it defines an interval
between the maximum congestion value and 1. Then it partitions
the interval into m sub-intervals {I1, I2, ..., Im}. For example, when
the maximum congestion is 2 and m = 10, the sub-intervals are
[2, 1.9), [1.9, 1.8), ..., [1.1, 1). After that, it sequentially picks
every edge g whose congestion value is within I1 (starting from
the most congested one) as the center and expands a region rg from
the edge until the average congestion of this region is smaller than
the lower bound of I1. Then it marks every congested two-pin net
which has both pins located in rg , and begins to rip up and reroute
the marked two-pin nets one at a time by the non-decreasing order
of bounding box size (note that a marked two-pin net needs to be
rerouted only when it remains congested after the nets prior to it
have been processed). Every ripped-up two-pin net is rerouted by
monotonic routing [4] first; if the monotonic routing method fails to

find an overflow-free path, then an adaptive multi-source multi-sink
maze routing method is applied. After I1 is processed, NTHU-Route
continues to apply the same congested region identification strategy
to each of the remaining subintervals and rip up and reroute marked
two-pin nets. The rip-up and reroute process is kept repeating until
the total overflow is no more than a pre-defined threshold or a pre-
defined number of iterations is reached.

The history based cost function used in the main stage for
calculating the cost of an edge g is defined as follows:

costg = bg + hg × pg + vcg (1)

where bg is the base cost of using edge g and is set to 1 ( which
means one unit of wirelength), hg×pg is the congestion cost of edge
g, and vcg is the via cost when using edge g. The historical term hg

is updated in the following way during subsequent iterations:

hi+1
g =

{
hi

g + 1 if g has overflow
hi

g otherwise.
(2)

where i is the iteration count and h1
g = 1. The penalty term pg is

defined as follows:

pg =

(
dg + 1

cg

)k1

(3)

where k1 is a user-defined parameter and is set to 5. The vcg is
defined in the following way:

vcg =

{
1 if passing g makes a bend
0 otherwise

(4)

The refinement stage mainly focuses on finding an overflow-free
path for every congested two-pin net and is modified from the main
stage as follows. First, the congested region identification is not
applied and every congested two-pin net is ripped up and rerouted
in the non-increasing order of the number of overflowed edges a net
passes through. Second, the cost of an edge is set to 1 if the edge
has overflow; otherwise it is set to 0.

For multi-layer designs, the method in [17] is applied in the layer
assignment stage to map the solution from the projected plane to the
original multiple layers.

III. ENHANCEMENTS FOR NTHU-ROUTE

In this section, we propose three enhancements for NTHU-Route
to get NTHU-Route 2.0, and the details are described in the following
three sub-sections.

A. New History Based Cost Function

The first enhancement is a new history based cost function to be
used in the main stage. It is divided into 3 sub-cost functions: base
cost function, congestion cost function, and via cost function.

1) Adaptive base cost function: We first discuss the base cost
function. Take Fig. 3 for example, where the darkest area is a region
which contains overflowed edges, and the second darkest area is
a region which contains edges that are nearly overflowed. For the
given two-pin net, A is the path found by a global router without
considering the impact of wirelength, and it occupies more routing
resources than the other two paths B and C, and may cause other
two-pin nets to have overflow in subsequent steps. B is the path
found by a global router which takes the impact of wirelength too
seriously, and it may pass through a highly congested area because
of shortest wirelength. C is a better solution than the other two paths
for now, because it occupies less routing resources than A and passes
through a less congested region than B.
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Fig. 3. Different paths found by different base costs.

Actually, all of the aforementioned paths are needed at different
time during the whole routing process. In the beginning of a routing
process (i.e., without any net routed), we tend to find paths like B
because we do not want a two-pin net to occupy too many routing
resources and cause other two-pin nets to have overflow in subsequent
steps. Then we find paths like C in order to reduce total overflow.
Finally, we have to make a compromise between wirelength and
overflow again, and begin to find paths like A to further reduce total
overflow. Since paths like A do not consider the impact of wirelength,
they can pass through regions which are located in farther area from
pins but with lower congestion.

Therefore, we propose an adaptive base cost function and it is
defined for each edge g as follows:

bg = 1− e−βe−γi

(5)

where β and γ are user-defined parameters, and i is the current
iteration count. In NTHU-Route 2.0, β is set to 5 and γ is set to
0.1. As a result, bg will be bounded between 1 and 0.

This base cost function is based on a Gompertz curve [18][19],
which has the slowest growth rate at the start and the end of a
time period. The curve of the base cost function we use in NTHU-
Route 2.0 is shown in Fig. 4(a). As the iteration count increases, the
base cost will be reduced and hence encourages NTHU-Route 2.0
to obtain paths with less overflow rather than paths with shorter
wirelength.

2) Congestion cost function with overflow prediction: We next
discuss the congestion cost function. From our empirical observa-
tion, the congestion cost function applied in NTHU-Route dose not
perform well when the maximum overflow among all edges is close to
one. Therefore, we propose a congestion cost function with overflow
prediction to overcome this problem. The congestion cost function,
like the original one, is still a compound of the historical term and
penalty term, but we replace the penalty term with

pg =

(
dg + 1

cg
× f(hg, i)

)k1

(6)

where i is current iteration count, hg is the historical term used in
NTHU-Route, and f(hg, i) amplifies congestion.

Before describing f(hg, i), we provide a simplified version of
f(hg, i), which is defined as follows:

fsimple(hg, i) =

(
i× k2

i× k2 − (hg − 1)

)
(7)

where k2 is a user-defined parameter and controls the maximum value
of fsimple(hg, i). Since hg in the first iteration is 1, we get the
overflow count of edge g in the past by hg minus 1. As the iteration
count reaches i, the possible highest value of hg among all edges g’s
is i, so we set k2 to 1.5 to make the maximum value of fsimple(hg, i)
close to 3. From our empirical observation, the value 3 achieves a
good balance between the reduction rate of the total overflow and
the increase rate of wirelength. For example, assume that NTHU-
Route 2.0 is running the ith iteration of the main stage. From
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Fig. 4. (a) The curve of adaptive base cost function bg . (b) Curves of the
penalty terms utilized in NTHU-Route and NTHU-Route 2.0.

fsimple(hg, i), we can get
(

i×k2
i×k2−(i−1)

)
≤

(
i×k2

i×k2−i

)
= k2

k2−1
.

Since the historical term of an edge g is always no more than the
current iteration count, the value of k2

k2−1
is the upper bound of

fsimple(hg, i).
As i is small in the first several iterations of the main stage,

the penalty terms of overflowed edges are amplified by values that
are close to the maximum value of fsimple(hg, i), and hence those
edges will push ripped-up two-pin nets away from them eagerly. As
a result, the ripped-up two-pin nets will consume too many routing
resources for finding paths which avoid using these overflowed edges
and may cause other two-pin nets to have overflow in subsequent
steps. To overcome this problem, we add an adjustment term adj(i)
to fsimple(hg, i). We now have f(hg, i) defined as follows:

f(hg, i) =

(
i× (k2 + adj(i))

i× (k2 + adj(i))− (hg − 1)

)
(8)

where adj(i) is defined below:

adj(i) = k3 × (1− e−βe−γi

) (9)

The k3 of adj(i) is a user-defined parameter and is set to 3 by default.
The values of β and γ of adj(i) are the same as those in (5). With
this adjustment term, f(hg, i) will not over amplify the penalty term
in the first several iterations.

Now NTHU-Route 2.0 not only drastically increases the penalty
term of an edge when the edge has overflow, but also drastically
increases the penalty term before it has overflow if the edge has high
frequency to have overflow in the past iterations. This fact can be
seem from Fig. 4(b) which shows the curves of the penalty terms of
NTHU-Route (crossed curve) and NTHU-Route 2.0 (squared curves).
Here the two squared curves are derived when i = 16, hg = 5 and
i = 16, hg = 15, respectively.

3) Via cost function for multi-layer designs: The via cost function
defined in NTHU-Route may not reflect the real situation of a design
with more than 2 layers, because a bend of a wire on a plane may
become one or more vias after mapping it back to a multi-layer
design. As a result, we redefine the via cost function as follows:

vcg =

{
vg × cg × bg if passing g makes a bend,
0 otherwise

(10)

where vg is the expected amount of vias for a bend, cg is the cost of
a via (typically measured by units of wirelength), and bg is the same
as the one defined in (5). Taking a six-layer design with preferred
directions for example, a bend corresponds to d 1×5+3×3+5×1

9
e = 3

expected vias. Furthermore, if a via equals three units of wirelength,
then vcg will be set to 3× 3× bg .
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(a) (b) (c)
Fig. 5. (a) A routing solution obtained from a previous iteration. (b) A
routing solution obtained by NTHU-Route. (c) A routing solution obtained
by NTHU-Route with the new ordering method for rip-up and reroute.

B. New Ordering Methods for Rip-up and Reroute and Congested
Region Identification

The next enhancement is new ordering methods for rip-up and
reroute, and congested region identification. These ordering methods
will be used in the main stage.

1) New ordering method for rip-up and reroute: Every time
when a set of congested two-pin nets are identified and marked,
NTHU-Route begins to rip up a congested two-pin net with smallest
bounding box in the set, and then reroutes it immediately. After
that, it processes the next two-pin net in the set which still remains
congested. It will keep doing this until all congested two-pin nets
are processed. Take Fig. 5 for example, where Fig. 5(a) shows a
routing solution obtained from a previous iteration. The red-bolded
edges are overflowed edges. All two-pin nets in this figure are marked
for rerouting. NTHU-Route first rips up and reroutes N1, and then
N2 and N3. N4 will not be ripped up for rerouting because it is no
longer congested after N1, N2, and N3 are rerouted (see Fig. 5(b)). In
Fig. 5(b), we can also see that N1 has to detour because N4 occupies
the routing resources inside the bounding box of N1.

If we reverse the ordering of the rip-up and reroute process (i.e.,
starting from the net with largest bounding box), we can make N4

avoid passing through overflowed edges without trouble because it
has more routing choices than N1, N2, and N3 (see Fig. 5(c)).
Moreover, N1, N2, and N3 can even leave untouched because they
are no longer congested after N4 is ripped up and rerouted. Although
the solutions in Fig. 5(b) and Fig. 5(c) both have no overflow, the
one in Fig. 5(c) has shorter wirelength.

As motivated by the example in Fig. 5, in NTHU-Route 2.0 we
reverse the rip-up and reroute ordering of NTHU-Route.

2) New ordering method for congested region identification: From
our empirical observations on the routing results obtained by NTHU-
Route, congestions are often radially distributed (see Fig. 6(a)). In
Fig. 6(a), the regions rm, rn, and ro have overflowed edges and
the region rp has no overflowed edges, where a region with darker
color is more congested. NTHU-Route rips up and reroutes the set
of congested two-pin nets which are located in rm, say netsm, first.
Since the routing resources located in rn and ro are not released yet,
the nets in netsm may pass through rn and ro for finding paths with
less cost. Hence the nets in netsm may obtain paths with longer
wirelength, and these paths may increase the congestion of outer
region rn, ro, or rp (see Fig. 6(b)). After the nets in netsm are
processed, NTHU-Route rips up and reroutes the set of congested
two-pin nets located in rn, say netsn. Again, the nets in netsn may
pass through ro for finding paths which have less cost but have longer
wirelength and may increase the congestion of outer region ro or rp.

In NTHU-Route 2.0, we reverse the ordering for congested region
identification. For the example in Fig. 6(a), NTHU-Route 2.0 will rip
up and reroute the set of congested two-pin nets which are located in
the region ro, says netso, first. The nets in netso are likely rerouted
to outer region(s) for avoiding the edges with higher costs in rn and

(a) (b) (c)
Fig. 6. (a) Congestions are often radially distributed. (b) NTHU-Route first
rips up and reroutes the congested two-pin nets located in rm. (c) NTHU-
Route 2.0 first rips up and reroutes the congested two-pin nets located in ro

and some routing resources in ro are likely released before the congested
two-pin nets located in rm and rn are ripped up and rerouted.

rm; therefore some routing resources in ro are likely released (see
Fig. 6(c)). After then, the nets in netsn can use the released routing
resources, and therefore they may reduce the usage of some routing
resources in rp and also reduce wirelength.

C. Two Techniques for Runtime Reduction

In NTHU-Route, there are two serious bottlenecks in runtime. One
of them is the need to calculate the costs of edges when searching
paths for congested two-pin nets. The other is to determine if a part
of a multi-pin net already passes through an edge.

We first discuss the first bottleneck. Since NTHU-Route only stores
the demand and capacity for each routing edge, it has to calculate the
costg of an edge g on the fly whenever costg is needed. Even worse,
our new history based cost function consumes more time to calculate
than the one in NTHU-Route. As a result, pre-computing and storing
edge costs are needed badly. Accordingly, in NTHU-Route 2.0, we
also compute and store the sum of the base cost and the congestion
cost for every single edge and update them when necessary. Doing
this makes NTHU-Route 2.0 obtain each costg faster.

Next we discuss the second bottleneck. In NTHU-Route, every
edge has a lookup table to store which two-pin net passes through
it. This lookup table is used frequently in NTHU-Route, and it is
implemented by a balanced search tree. In NTHU-Route 2.0, we
implement the lookup table by a hash table, which makes NTHU-
Route 2.0 not only work more efficiently but also consume less
memory than NTHU-Route.

IV. EXPERIMENTAL RESULTS

In this section we present the experimental results of NTHU-
Route 2.0. NTHU-Route 2.0 was implemented in C++ and executed
on a Linux Workstation with an AMD Opteron 2.2Ghz CPU and 8GB
memory. Three sets of benchmarks from ISPD98 [15], ISPD07 [7],
and ISPD08 [8] were used in our experiments.

A. Results on ISPD98 Benchmarks

We used ISPD98 benchmarks to compare NTHU-Route 2.0 with
several recently published global routers, including Archer [10],
BoxRouter 2.0 [9], FastRoute 2.0 [5], FGR [11], and NTHU-
Route [13]. TABLE I shows the performance of each router on
ISPD98 benchmarks. We compare the results in terms of total
overflow (TOF) and wirelength (WL). BoxRouter 2.0 was tuned for
runtime or quality, and therefore two sets of results (represented as
(r) and (q)) are reported.

For each benchmark, NTHU-Route 2.0, like the other routers
except FastRoute 2.0, obtained the solution without any overflow.
For the benchmarks without overflow, NTHU-Route 2.0 averagely
achieved 0.92%, 4.37%, 0.36%, 2.81%, 0.05%, and 0.4% shorter
wirelength than Archer, BoxRoute 2.0(r), BoxRoute 2.0(q), Fas-
tRoute 2.0, FGR, and NTHU-Route, respectively. Note that as we
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TABLE I
THE RESULTS OF FIVE STATE-OF-THE-ART GLOBAL ROUTERS AND NTHU-ROUTE 2.0 ON ISPD98 BENCHMARKS. THE RUNTIMES FOR EACH ROUTER
ARE GIVEN IN SECONDS. THE AVERAGE WIRELENGTH IMPROVEMENT RATE OVER FASTROUTE 2.0 DOSE NOT INCLUDE THE BENCHMARKS ON WHICH

FASTROUTE 2.0 FAILED TO GENERAT OVERFLOW-FREE SOLUTIONS.

Benchmark Archer BoxRouter 2.0(r) BoxRouter 2.0(q) FastRoute 2.0 FGR NTHU-Route NTHU-Route 2.0
TOF WL cpu TOF WL cpu TOF WL cpu TOF WL cpu TOF WL cpu TOF WL cpu TOF WL cpu

ibm01 0 64389 11 0 66529 3.5 0 62659 32.8 31 68489 0.72 0 63332 10 0 63321 4.2 0 62498 2.4
ibm02 0 171805 25 0 180053 4.6 0 171110 35.9 0 178868 0.93 0 168918 13 0 170531 7.4 0 169881 3.3
ibm03 0 146770 10 0 151185 3.5 0 146634 17.6 0 150393 0.6 0 146412 5 0 146551 5.9 0 146458 2.5
ibm04 0 169977 24 0 176765 27.4 0 167275 115.9 64 175037 1.88 0 167101 29 0 168262 13.6 0 166452 5.9
ibm06 0 278841 23 0 288420 8.4 0 277913 47.4 0 284935 1.36 0 277608 18 0 278617 12.8 0 277696 5.5
ibm07 0 370143 25 0 377072 14.4 0 365790 85.9 0 375185 1.6 0 366180 20 0 366288 15.9 0 366133 6.4
ibm08 0 404530 42 0 418285 17.1 0 405634 90.1 0 411703 2.36 0 404714 18 0 405169 13.2 0 404976 5.9
ibm09 0 414223 37 0 431298 17.1 0 413862 273.1 3 424949 1.92 0 413053 20 0 415464 11.6 0 414738 5.7
ibm10 0 583805 45 0 610680 17.2 0 590141 352.4 0 595622 2.79 0 578795 92 0 580793 33.7 0 579870 12.3

avg. improv. 0.92% 5.07 4.37% 2.22 0.36% 18.34 2.81% -3.57 0.05% 3.94 0.40% 2.3

did not execute every router on our own machine, the runtime of
each router is quoted from [10], [9], [5], [11], and [13], respectively.
TABLE II shows the list of machines used by each router. Although
all the other routers except NTHU-Route were not run on the same
platform as NTHU-Route 2.0, the experimental results still show that
NTHU-Route 2.0 was at least 5.07×, 2.22×, 18.34×, 3.94×, and
2.30× faster than Archer, BoxRouter(r), BoxRouter(q), FGR, and
NTHU-Route, respectively, because NTHU-Route 2.0 was executed
on a slowest platform. FastRoute 2.0 was faster than the other routers;
however, it still left 3 cases with overflow.

B. Results on ISPD07 Benchmarks

The ISPD07 benchmarks provide multi-layer designs for 2-layer
and 6-layer versions. We report the results of five state-of-the-
art global routers, Archer, BoxRouter 2.0, FGR 1.1 [20], Maize-
Router [12], and NTHU-Route, and compare them with ours in
TABLE III by total overflow (TOF) and wirelength (WL). The
wirelength is composed of the total length of wire segments plus
3 times the amount of vias.

As can be seen from TABLE III, NTHU-Route 2.0 was able
to generate a solution with the same or smaller total overflow for
each benchmark, as compared with the other routers. On average,
NTHU-Route 2.0 achieved 1.05%, 2.19%, 4.03%, and 1.42% shorter
wirelength than Archer, BoxRouter 2.0, MaizeRouter, and NTHU-
Route, respectively, on 2-layer benchmarks, and 19.38%, 2.51%,
6.46%, and 1.59%, respectively, on 6-layer benchmarks. Although
FGR 1.1 obtained better solutions than NTHU-Route 2.0 in terms
of wirelength for most benchmarks which have no overflow, NTHU-
Route 2.0 achieved an overflow-free solution for newblue1 and a
solution with lower overflow for newblue3.

TABLE III also shows the runtimes of FGR 1.1, NTHU-Route,
and NTHU-Route 2.0. NTHU-Route 2.0 was 28.38× and 24.06×
faster than FGR 1.1 on 2-layer and 6-layer benchmarks, respectively,
even though NTHU-Route 2.0 was executed on a slower platform.
Furthermore, NTHU-Route 2.0 was 6.79× and 6.44× faster than
NTHU-Route on 2-layer and 6-layer benchmarks, respectively.

C. Results on ISPD08 Benchmarks

The ISPD08 benchmarks provide 6-layer and 8-layer designs (half
of them are from the ISPD07 6-layer benchmarks). We report the
results of NTHU-Route 2.0 and compare them with those of NTHU-
Route in TABLE IV by total overflow (TOF) and wirelength (WL).
The wirelength is the total length of wire segments plus the amount
of vias. NTHU-Route left 5 benchmarks with overflow and failed
to generate solutions for 3 benchmarks because of out of memory,
whereas NTHU-Route 2.0 produced overflow-free solutions for 12

TABLE II
LIST OF MACHINES USED BY OTHER ROUTERS

Router CPU
Archer Intel Xeon 3.6Ghz

BoxRouter 2.0 Intel Pentium 4 2.8Ghz
FastRoute 2.0 Intel Pentium 4 3.0Ghz

FGR AMD Opteron 2.4Ghz
NTHU-Route AMD Opteron 2.2Ghz

benchmarks. On average, NTHU-Route 2.0 achieved 0.94% shorter
wirelength than NTHU-Route for the benchmarks which have no
overflow. TABLE IV also shows the runtimes of both routers. NTHU-
Route 2.0 was averagely 8.17× faster than NTHU-Route.

It is worthy noting that an earlier version of NTHU-Route 2.0
won the first place of ISPD 2008 Global Routing Contest [8]. In
the contest, our router generated the best solutions for 11 of 16
benchmarks. To save space, we do not report the contest results here.

V. CONCLUSION

In this paper, we have incorporated several enhancements into
NTHU-Route to get NTHU-Route 2.0. Experimental results show
that NTHU-Route 2.0 outperforms most state-of-the-art global routers
in overflow, wirelength and runtime on ISPD98 and ISPD07 bench-
marks. NTHU-Route 2.0 also solved 12 of 16 ISPD08 benchmark
without causing overflow. A future work is to enhance our router to
see if the remaining 3 ISPD08 benchmarks (excluding the unroutable
newblue3) can be routed without any overflow.
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