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Abstract— We address post-silicon characterization of the unique
gate delays and their timing distributions on each manufactured IC.
Our proposed approach is based upon the new theory of compressed
sensing. The first step in performing timing measurements is to find the
sensitizable paths by traditional testing methods. Next, we show that
the timing variations are sparse in the wavelet domain. The sparsity
is exploited for estimation of the gate delays using the compressed
sensing theory. This estimation method requires significantly less number
of timing measurements compared to the case where the dependence
between the gate delays is not directly integrated within the estimation
framework. We discuss a number of applications for the new post-silicon
timing characterization method. Experimental results on benchmark
circuits show that using compressed sensing theory can characterize the
post-silicon variations with a mean accurately of 95% in the pertinent
sparse basis.

I. INTRODUCTION

Modern integrated circuits are variable and complex. Continuous

CMOS scaling has made possible integration of billions of gates into

a single multi-layer chip. Scaling to the physical device limitations

and mask imprecisions have created nondeterminism in the chip’s

characteristics. In the new regime, traditional models, design, and

test methods have a limited effectiveness.

Furthermore, with miniaturization of devices beyond 65nm, the

impact of intra-die variation and the spatial correlations are becoming

more prominent [1]. Several key areas have been impacted. For

example, the number of critical paths is increasing with variation,

rendering the traditional test methodologies based on a few critical

paths inexpressive.

In statistical static timing analysis (SSTA), instead of the single

valued delays utilized in traditional models, the delay probability

distributions and their correlations are used [2]. SSTA produces

pre-silicon models and analysis. A post-silicon timing analysis of

the chips was proposed in [3]. The method integrates the SSTA

models with data collected from a few on-chip test points (e.g., via

ring oscillators), to form the chip-specific distribution of the delays.

Post-silicon gate-level leakage characterization by using noninvasive

leakage measurements was recently proposed [4].

Our objective is to perform noninvasive post-silicon timing char-

acterization of each chip. We exploit the theory of compressed
sensing [5], [6] and the set of the sensitizable paths known from

the testing phase to perform post-silicon delay modeling using very

few measurements. We demonstrate how this method can be used

for testing the chips and for efficient estimation of post-silicon the

specific distribution of the individual chip’s timing. Compressed

sensing exploits the sparsity of the delay distribution matrix [2],

to reconstruct the timing information from a few analog timing

measurements. Our contributions are as follows:

• We introduce the first post-silicon timing characterization method

that is based on compressed sensing. Our method keeps the number of

measurements low without adding on-chip test structures or sensors.

We only rely on the external nondestructive tests.

• We create a systematic method for exploiting the sparsity of the

timing variation for post-silicon characterization.

• We present modifications to the original compressed sensing

framework that is based upon regular grid-based sampling, so it can

consider the irregularities of the placement in the spatial correlations

of gate delays.

• We exploit spatial correlation to approximate the timing variation

of the gates that are unobservable and uncontrollable because of their

placement on unsensitizable paths. The key for compressed sensing-

based gate characterization is the delay variation’s sparsity.

The remainder of the paper is as follows. Section II outlines the

preliminaries. We introduce variation estimation by delay measure-

ments in Section III. In Section IV, we use sparsity of the variation in

the wavelet domain to recover variation with a small number of delay

measurements. A number of applications of the proposed method are

outlined in Section V. Evaluation results are presented in Section VI.

We conclude in Section VII.

II. PRELIMINARIES

A. Variation Model and Delay Model

We adapt the Gaussian variation model by Liu [7] where the total

variation, ψtotal
u , in a gate gu is

ψtotal
u = ψinter

u + ψintra
u + Fuβ (1)

ψinter
u and ψintra

u represent inter-die and intra-die variation, respec-

tively. ψintra
u is a multivariate Gaussian random vector. Fuβ models

systematic variation. If (xu, yu) is the location of the gate gu on the

IC, then F = [1, xu, yu]T and β is a 3 × 1 constant vector.

Transition delay is usually modeled as a linear function of transistor

feature size variation [8], [2], [9]. For example, consider a NAND2

gate that one of its inputs is 1 and its other input, at time t = 0,

transits from 0 to 1. Because of propagation delay of the NAND2

gate, its output transits from 1 to 0 at time t = dr . When there are

variation in the transistor feature size, the rising-edge delay, denoted

by dr , varies among the NAND2 gates in the IC, modeled by [8]

dr(ψ
total
u ) = d0

r + ξψtotal
u (2)

where ξ is a constant.

Note that even if the propagation delay is modeled as a quadratic

(or higher order) polynomial [10], one can use a similar approach by

assuming new variables for higher order parameters.
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B. Sensitizable Paths

A path in an IC is defined as a sequence of logic gates from an input

of the IC to one of its output pins. To determine the propagation delay

of a path, one should find an appropriate input vector to the IC. If

such an input vector exists, the path is called sensitizable; otherwise,

it is called unsensitizable. For finding the sensitizable paths we use

the path selection method introduced by Murakami et al. [11].

C. Compressed Sensing

Compressed Sensing is a recently emerging signal acquisition

method that exploits sparse signal models to reduce the signal

acquisition burden [12], [5]. Specifically, we assume that the signal

of interest is a K-sparse vector x in an N -dimensional space,

i.e., that it only has K non-zero components. Using compressed

sensing we can sample and reconstruct this vector by acquiring only

M = O(K log(N/K)) linear measurements:

p = Ax + e, (3)

where A denotes the measurement matrix of dimension M × N , p
denotes the M -dimensional measurement vector, and e denotes the

measurement noise.

Despite the dimensionality reduction and the rank deficiency of

A, one can reconstruct the sparse vector of interest, x from the

measurement vector p using the following convex optimization:

min ||x||1 + λ||p − Ax||22, (4)

in which λ is a parameter chosen according to the noise variance

and ‖x‖p = (
∑N

i=1 |xi|p)
1
p . If the measurement matrix A satisfies

certain conditions, it can be shown that the reconstruction using

Equation 4 is exact [5].

The compressed sensing model is robust even when the acquired

vector x is approximately sparse, often referred to as compressible.

A vector is compressible if it has very few (say K) coefficients with

large magnitude and the remaining coefficients are approximately 0.

Compressible vectors can be approximated very well using the best

K-term approximation, i.e., using the K most significant coefficients

and setting the remaining coefficients to 0.

In most practical applications, such as ours, a vector is not

compressible in the canonical domain. In practice, a sparsity inducing

basis W is typically necessary to expose the sparsity. The theory

accommodates this case using the basis expansion

s = Wx, (5)

in which case W is the sparsity inducing transform, and the basis

expansion vector s is sparse instead of the vector of interest x. In

this case Equation 3 becomes

p = AW−1s + e. (6)

This is the same formulation as Equations 3 and 4, with only a

change of variables. We now aim to recover a sparse representation

s from the measurements y, which are acquired with a measurement

matrix AW−1. The signal is recovered from the transformation using

Equation 5.

III. DELAY ESTIMATION BY �2-NORM MINIMIZATION

In this section, we propose a method for post-silicon gate delay

estimation by measuring the input/output path delays. First, we

measure the signal propagation delays of a number of sensitizable

paths. Then, based on the measured delays, we construct linear

equations with the scaling factors of gate delays (defined in Section

Fig. 1. A sensitizable path from input to the output.

II-A) as the unknown parameters. Finally, we estimate the gate

characteristics by solving those equations for the scaling factors. In

Section IV, we use the variation in spatial correlations to improve

the scaling factor estimation error.

The total path delay is an additive composition of the delays of its

elements. For example, in Figure 1, the delay of path P1 (bold path)

can be written as the summation of the delays in wire w1, gate g1,

wires w5 and w6, gate g3, wire w8, and so on, more formally:

dr(P1) = d(w1) + dr(g1) + d(w5) + d(w6) + df (g3)

+ d(w8) + dr(g4) + d(w10) + df (g6) + d(w12)

+ dr(g7) + d(w13), (7)

where d(wi) is the delay of the wire wi; dr(gi) and df (gi) are the

rising and falling delays of the gate gi, respectively.

For clarity of exposition, in this paper we assume interconnect

delays (wire delays) are zero. The proposed method can be easily

extended to accommodate non-zero interconnect delays. Note that

variation in the interconnects may have a different statistical repre-

sentation compared with the gates. In this case we may consider

compressed sensing methods to address the sum of two distinct

distributions in one framework [12]. Assuming zero interconnect

delays, Equation 7 reduces to:

dr(P1) = dr(g1) + df (g3) + dr(g4) + df (g6) + dr(g7). (8)

As discussed in Section II, because of process variation, the gate

delays deviate from their nominal values [8], i.e.,

dr(gi) = dnominal
r (gi) + ξr,gi lgi , (9)

where dnominal
r (gi) is the nominal delay for rising transition and lgi

is the scaling factor of the variation for the gate gi; and ξr,gi is a

constant coefficient. Similarly for the falling transition,

df (gi) = dnominal
f (gi) + ξf,gi lgi . (10)

Therefore, Equation 8 becomes

dr(P1) = dnominal
r (g1) + ξr,g1 lg1

+ dnominal
f (g3) + ξf,g3 lg3

+ dnominal
r (g4) + ξr,g4 lg4

+ dnominal
f (g6) + ξf,g6 lg6

+ dnominal
f (g7) + ξr,g7 lg7 , (11)

or

ξr,g1 lg1 + ξf,g3 lg3 + ξr,g4 lg4 + ξf,g6 lg6 + ξr,g7 lg7 = bP1

bP1 = dr(P1) − dnominal
r (g1) − dnominal

f (g3)

− dnominal
r (g4) − dnominal

f (g6) − dnominal
f (g7),

where bP1 is a constant. Thus, each sensitizable path in the circuit

leads to a linear relation among the variation elements, lgi . The falling
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and rising coefficients (ξf,gi and ξr,gi ) are known and our goal is to

estimate the variation lgi .

Assume that P1, P2 . . . PM are M sensitizable paths in a general

combinational circuit C with N gates. For each path Pj , if it is

stimulated by a rising transition,

N∑
i=1

αPj (i)ξλr(Pj ,gi),gi
lgi = br

j (12)

where

αPj (i) =

{
1 if gi belongs to the path Pj ;
0 otherwise,

and

λr(Pj , i) =

⎧⎨
⎩

f if gi has a falling transition when path Pj

is stimulated by a rising transition;
r otherwise.

Similarly for a falling transition,

N∑
i=1

αPj (i)ξλf (Pj ,gi),gi
lgi = bf

j (13)

where

λf (Pj , i) =

⎧⎨
⎩

f if gi has a falling transition when path Pj

is stimulated by a falling transition;
r otherwise.

To write Equations 12 and 13 compactly, we define the matrix A,

the measurement vector b and the variation vector l as follows.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αP1(1)ξλr(P1,g1),g1 . . . αP1(N)ξλr(P1,gN ),gN

αP2(1)ξλr(P2,g1),g1 . . . αP2(N)ξλr(P2,gN ),gN

...
...

αPM (1)ξλr(PM ,g1),g1 . . . αPM (N)ξλr(PM ,gN ),gN

αP1(1)ξλf (P1,g1),g1
. . . αP1(N)ξλf (P1,gN ),gN

αP2(1)ξλf (P2,g1),g1
. . . αP2(N)ξλf (P2,gN ),gN

...
...

αPM (1)ξλf (PM ,g1),g1
. . . αPM (N)ξλf (PM ,gN ),gN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

b = (br
1, b

r
2, . . . b

r
M , bf

1 , bf
2 , . . . bf

M )T ,

and

l = (l1, l2 . . . lN )T .

Finally, we estimate the variation in l by solving the following least

squares problem

min ||Al − b||22. (14)

We call this method �2 minimization method.

IV. DELAY ESTIMATION USING COMPRESSED SENSING

This section incorporates sparsity in the wavelet domain as a model

for the spatial correlation of the timing variation. Thus, one can use

compressed sensing theory to measure and estimate the variation.
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Fig. 2. Left: Spatial variation in a typical IC. Right: wavelet transform of
the variation.

A. Sparse Representation of Variation

To capture the spatial correlation in the variation we use wavelet

basis expansions. Wavelet basis expansions have two significant ad-

vantages that make them suitable for the problem at hand [13]. First,

they can be computed efficiently using well-studied fast algorithms.

Second, they are known to be good in sparsely describing smooth

functions, such as in images because of the spatial correlations.

Figure 2 demonstrates the effectiveness of the wavelet transform

in representing spatial variation. The figure on the left is the 2D plot

of the variation in a typical IC, generated using the Gaussian model

in [7]. The spatial correlation is evident in the figure. The figure on

the right side represents the wavelet transform for the left hand side.

Most of the transform coefficients are zero. Only the top-left part of

the figure has a dense amount of significant non-zero elements.

B. Gates on Regular Grids

The derivations in this section assume that all the gates are

located on a regular grid. Section IV-C considers the general case

of nonuniform grids and relaxes this assumption.

For the gates that are located on a regular grid, the two-dimensional

wavelet transform of the variation denoted by s, can be expressed as

the product of the variation vector, l, with the wavelet transform

matrix W :

s = W l, (15)

where s is assumed sparse because of the spatial correlation in the

variation. We enforce the sparsity prior by regularizing Equation 14

using the �1 norm of s, as described in Section II-C:

min ||Al − b||22 + λ‖s‖1 (16)

or, equivalently,

min ||AW−1s − b||22 + λ‖s‖1, (17)

where λ is the regularization coefficient. The sparsity of the vari-

ations’ wavelet transformation s introduces a modeling prior that

improves the reconstruction and resolves ambiguity. This prior is

implemented using the regularization term λ‖s‖1, in Equations 16

and 17. We call this method the �1 regularization method.

C. Gates on Irregular Grids

In practice, gates are not placed on a regular layout grid. Thus, in

this section, we extend our method to irregular grids.

Figure 3 shows an example of an IC in which gates are placed

on an irregular grid. To address the irregular placement, we cover

the IC with a finer regular grid. Then each gate is assigned to a

point on the regular grid using Procedure 1 below. At the first step

of Procedure 1, we label all the regular grid points as unassigned.

This means that none of the regular grid points is assigned to any
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Fig. 3. Gates on irregular grids.

gate. In the second step, for every gate, we find its closest regular

point that is unassigned, assign the gate to this point, and label that

point as assigned to prevent multiple selection.

Thus, after Procedure 1, each gate is assigned to its closest regular

grid that is not assigned to any other gate.

PROCEDURE 1
Mapping from irregular gates to fine regular grids

(1) Set all the regular grid points unassigned;

(2) for all gates, gi

a. p = the closest grid point to the gates that is unassigned;

b. assign gate gi to p;

c. label grid point p as assigned;

Finally, we assign auxiliary variables to all the unassigned points

in the regular grid.
V. APPLICATIONS

The proposed timing characterization method is effective, inexpen-

sive, and fast. A range of technical applications can profit from the

extracted post-silicon delay characteristics, including:

(1) Post-silicon optimization. Fast noninvasive IC characterization,

enables applying chip-specific optimizations [14], [3].

(2) Improving simulations. The post-silicon models can be integrated

within the simulation platforms to enable more accurate simulations.

(3) Improving SSTA methods. The aggregate statistics gathered from

post-silicon characterization can also be used to enhance the quality

of the pre-silicon models, such as SSTA.

(4) Manufacturing process characterization. The processes and tech-

nologies of the state-of-the-art manufacturing are considered classi-

fied information that are not typically available to the users. The new

method can make accurate post-silicon estimation for a number of

important process parameters.

(5) IC identification. Since the variation is unique and unclonable on

each IC, it can be used as the chip’s ID for security [15], [16], [17].

VI. EVALUATION RESULTS

In this section, we evaluate the performance of the proposed

variation estimation methods on the MCNC benchmarks.

Not that it is not possible to find the exact delay characteristics of

all gates. The estimation error is measured in the space of singular

values. The estimation error is the least in the direction of the singular

vector corresponding to the largest singular value and increases in

the direction of the singular vectors corresponding to decreasing

the singular values. We call the estimation subspace ne; we project

estimation error to the space of the singular vectors corresponding to

the largest singular values in the ne subspace.
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Fig. 4. Variation (delay) estimation error vs. measurement error.
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Fig. 5. Variation (delay) estimation error vs. the number of measurements.

To evaluate the performance of the proposed methods, we sim-

ulated the variation model (Section II-A) on a number of MCNC

benchmark circuits. A total of 12% random variations is assumed.

Correlated intra-die variation is 60% of the total variation [18];

20% of the total variation is uncorrelated intra-die variation and the

remaining variation is allotted to the inter-die variation.

We used the ABC tool to map the benchmark circuits to NAND2,

NAND3, NAND4, NOR2, NOR3, NOR4, and inverter gates. Then,

the gate placement is done by the Dragon placement tool. The gates

have different sizes and they are located on irregular grids.

Figure 4 shows variation estimation error for both the �2 min-

imization and the �1 regularization methods on two benchmarks,

C432, and C880. The horizontal axis is delay measurement noise

and the vertical axis is variation estimation error. In average, the �1
regularization improves the estimation error by a factor of 2 over the

�2 minimization. The estimation subspace is 52 and 89 for the C432

and the C880 circuits respectively. When the measurement noise is

small, delay measurements provide enough information to estimate

the variations accurately. As measurement noise increases, sparsity

provides a strong prior that effectively de-noises the measurements.

Thus, the performance gap between the �1 regularization and the �2
minimization increases as the measurement noise increases.

The impact of the number of measurements is demonstrated in

Figure 5. The x-axis is the number of delay measurements divided by

the number of the gates. Again, �1 regularization exhibits a factor of 2

improvement compared to �2 minimization. The estimation subspace

is the same as in Figure 4.

Table 1 summarizes the results of variation estimation on 12 bench-

mark circuits. After the benchmarks’ name in the first column, the

second, third and fourth columns are the number of gates, the number
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Circuit properties 3% noise 6% noise 9% noise

name #gates #inputs #meas
σN/4

σ1
subspace �1 error �2 error �2 error �2 error �1 error �2 error

C432 206 36 309 0.035 26 3.76 6.82 4.34 12.86 5.23 17.25
52 6.57 12.58 7.75 21.22 9.5 30.846

C499 532 41 798 0.045 67 4.05 4.78 4.74 6.91 5.70 9.35
135 11.52 12.28 12.48 15.11 13.80 18.60

C880 353 60 529 0.043 44 2.65 5.45 4.27 10.61 5.99 22.49
89 5.34 11.56 7.93 21.71 10.9 36.5

C1355 517 41 775 0.038 65 2.55 4.11 4.17 7.87 5.90 11.69
131 5.22 7.10 8.21 13.19 11.41 19.47

C1908 615 33 992 0.052 78 2.56 2.77 4.05 71.61 5.68 100
156 4.78 5.25 7.57 70.94 10.58 97.21

C2670 900 233 1350 0.019 114 2.26 3.03 3.48 5.54 4.84 8.17
229 5.22 7.27 7.66 13.29 10.51 19.60

alu2 360 10 540 0.0519 45 2.54 10.69 3.74 21.30 5.17 38.78
91 4.88 25.70 7.89 51.28 11.28 78.55

alu4 733 14 1099 0.036 93 3.63 12.79 6.01 100 9.76 100
186 6.42 20.41 10.22 102.93 15.76 102.93

comp 163 32 244 0.061 20 1.16 1.78 1.71 3.11 2.34 4.51
41 2.63 4.43 3.81 8.05 5.19 11.87

cordic 102 23 153 0.099 13 3.37 5.11 5.04 9.41 6.93 13.90
26 8.38 15.93 13.10 29.89 16.91 44.17

b9 113 41 169 0.15 14 1.62 11.19 2.13 22.34 2.75 33.50
28 3.17 13.13 4.11 25.48 5.24 38.01

c8 165 28 247 0.22 20 2.32 9.43 4.12 18.72 5.85 28.03
41 5.10 14.09 9.33 27.95 13.10 41.84

TABLE I

PERFORMANCE OF �2-NORM MINIMIZATION AND �1-NORM REGULARIZATION FOR A NUMBER OF MCNC BENCHMARK CIRCUITS.

of inputs to the circuit, and the number of delay measurements

respectively. The fifth column is the ratio of the N/4-th singular

value to the first singular value in the measurement matrix (N is

number of gates.) This column shows how fast the singular values

decay; or how the measurement matrix is well conditioned. The sixth

column is the estimation subspace. The rest of the columns represent

the percent estimation error for �2 minimization and �1 regularization

for 3%, 6%, and 9% measurement noise.

VII. CONCLUSION

We have introduced a novel approach for post-silicon gate-level

timing characterization. The approach leverages the new theory of

compressed sensing to accurately estimate the gate-level delays using

only a few noninvasive measurements. To implement the approach,

we employed the set of sensitizable paths, sparse representation of the

delay variation, structural logic relations, and methods to account for

gate layouts irregularities. Experimental results demonstrated that the

post-silicon timing of the benchmark circuits could be characterized

with an average accuracy of 95% in the pertinent subspace.
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